当前位置:文档之家› 风能及新能源发电技术

风能及新能源发电技术

电气与新能源学院本科教学课程教案

课程名称:风能及新能源发电技术

授课教师:王凌云

开课时间:二O一一至二O一二学年秋季学期

课程基本情况

第一章太阳能及其利用

教学重点:太阳能的主要利用方式,太阳能热发电技术

作业:1.1,1.2,1.5,1.6

主要教学内容:

第一节太阳能概述

一、太阳能利用概述

太阳能量来源:核聚变反应H·H →He ;

太阳辐射到地球的能量:2.5亿桶(158.98L,128-142kg)石油/天;500万t标煤/s ;

风能、水能、海洋能、生物质能、化石燃料等几乎所有的能源均来自太阳;

我国太阳能资源丰富,陆地每年辐射总量3.3×103-8.4×106 kJ/(m2·年),相当于2.4×104亿t标煤,全国总面积2/3以上地区年日照时数大于2000h,日照在5×106kJ/(m2·年)以上;

丰富地区:大兴安岭向西南,经北京西侧,兰州,昆明再折向北到西藏南部,这一条线以西、以北广大地区;

二、太阳能的特点

1、取之不尽、用之不竭;从地球诞生起,太阳已向地球提供能源47亿年,太阳寿命还可有60亿年。

2、清洁、无污染;不会造成环境污染,不影响生态平衡。

3、太阳能能量密度低,并且受地区、昼夜、气候等自然条件限制;即便是晴天中午,每平方米太阳能最多仅1kW。

三、太阳对地球的辐射

1、太阳常数

指的是地球大气层上界垂直于太阳辐射的单位面积上每秒所接受的太阳辐射能量强度。太阳可视为一个温度为5762K的黑体,经长期实测与推算,太阳常数为1353w/m2。

2、大气质量

到达地面的太阳辐射受大气层厚度的影响,大气层越厚对太阳辐射的吸收、散射、反射越严重,到达地面的辐射能量就越少;而太阳辐射穿过大气层路径的长短与太阳辐射方向有关。

3、太阳辐射在大气层中的衰减

各种气体(臭氧、温室气体、水汽等)、尘埃等对太阳辐射的吸收、反射、散射。太阳辐射能够到达地面的是很少一部分,波长范围在0.29-2.5μm,占太阳辐射能量的95%,其中紫外区(0.3-0.4μm)能量很少,可见光区(0.4-0.76μm)和红外区(0.76-2.5μm)各占50%。

太阳辐射强度的峰值随太阳高度减少向长波方向移动,因此日出和日落时太阳光呈橘(暗)红色。

4、到达地面太阳辐射(日射)的强度

直射(直接接受且方向没有改变)+ 散射(反射和散射,来自半球天空各个方向)

四、太阳辐射的测量

太阳直射强度:太阳光垂直的表面上单位面积单位时间内所接收到的太阳辐射能。

总辐射强度:水平面上单位面积单位时间内所接收到的来自整个半球形天空的太阳辐射能总和,包括直射和散射。

第二节太阳能集热器

太阳能集热器是一种吸收太阳辐射能量并转化为热量向工质传热的基本部件。

一、平板型太阳能集热器

(一)概述

平板型集热器属于非聚光型太阳能集热器,特点是:直接采集自然光,其采光面积= 集热面积= 散热面积,因此,一般集热温度较低(小于100℃)。

1、分类(以工质种类不同):

(1)热水器:工质为液体(一般为水);

(2)空气集热器:工质为气体(常为空气);

2、特点(相对于聚光型)

(1)整体结构简单,不许跟踪;

(2)可同时利用直射辐射和散射辐射;

(3)接受副照度较低,故工质温度较低;

(4)成本较低,使用方便,安全可靠。

3、应用范围

原则上温度低于100℃的环境都可应用。

(1)供给热水;(生活、工业)

(2)工农业生产方面;(干燥、养鱼、温室加温等)

(3)采暖、空调与制冷;(室内采暖、泳池加温等)

(二)工作原理、结构和温度分级

1、工作原理:“热箱”原理。

2、基本结构:由“集热板、透明盖板、隔热层、外壳”四部分组成

(1)集热器应符合特性

①吸收表面的阳光热吸收率高,热辐射率低;②传热结构设计合理,热效率高;③具有良好的耐候性和耐热性,适合长期自然环境下使用;④对集热介质具有良好的耐腐蚀性;⑤加工工艺简单;⑥省材料,价格便宜。

(2)透明盖板应具备的特性

①阳光透过率高,吸收率和反射率低;②对热辐射具有低的透过率;③具有较强的机械强度,能够抵御风雪载荷及小规模的意外撞击;④不透水;⑤对环境中腐蚀性气体、雨水等具备一定的耐受能力;

⑥长期暴露在自然环境中,上述特性无严重恶化。

(3)隔热层应具备特性

①材料导热系数低;②工作温度超过200℃;③浸水或受自然环境作用后,无有毒、有害物质泄露。

(4)外壳应具备特性

①良好的机械强度;②良好的耐腐蚀性。

(四)平板型太阳能集热器的板型结构

1、管板式;

2、管式;

3、扁盒式

二、聚光型太阳能集热器

特点:太阳能利用效率更高,能量密度高,吸收器尺寸小,热损低。

(一)聚光型太阳能集热器的构成:聚光器、吸收器、跟踪系统。

(二)聚光系统的分类

1、根据所使用光学系统分

①抛物面/球形聚光器,反射系统;②菲涅尔透镜,折射系统;

2、根据焦斑形状分类

①一维聚光(线聚焦)系统;②二维聚光(点聚焦)系统;

第三节太阳能热水器

一、概述

太阳能热水器是现实的、比较经济的,并且已经得到广泛应用的太阳能热利用装置。1929年,美国加利福尼亚州最早使用;20世纪40年代中期,澳大利亚、以色列、日本等能源短缺国家广泛使用;目前,太阳能热水器已在全球范围内得到普遍关注与大规模应用。

二、太阳能热水器的类型及系统

根据流动方式而言,分为三类:循环式、直流式和整体式。

(一)循环式

自然循环式和强制循环式。

1、自然循环式:动力来源为“温差压头”。

优点:结构简单、运行可靠且控制不需要外来能源。

缺点:蓄水箱必须置于上方;不适用于大型装置;要求良好保温。

2、自然循环定温放水式

原理:在自然循环基础上增加电磁控制阀,当温度达到设定温度时,热水自动流入贮水箱。

3、强制循环式

当集热器底部与底部温差达到一定值时,采用水泵强制循环,适用于大型热水系统,例如太阳能集中供热系统。

(二)直流式

1、热虹吸式

原理:补水箱水位由球阀控制,阳光照射形成温差压头。

2、定温放水型

原理:增加电磁控制阀,根据出口温度来控制调节流量。

直流式优点:不需要水泵(仍靠自然循环),但可避免自然循环缺点(水箱必须位于上方、不适用于大型装置等)。

(三)整体式

特点:集热器与蓄水箱合二为一。

分类:开放式、塑料薄膜袋式、圆筒式、方箱式。

三、真空管太阳能热水器

具有中国特色的太阳能热水器。

(一)类型和结构

类型:全玻璃真空管太阳能集热管和玻璃—金属结构真空太阳能集热管。

1、全玻璃真空管太阳能集热管:“拉长的暖水瓶”。

2、玻璃—金属结构太阳能集热管:美国康宁(Corning)公司、日本三洋、(Sanyo)公司、原联邦德国Pring公司、荷兰菲利浦(Philips)公司。

原理:具有选择性吸收层的翅片紧贴金属管,金属管与玻璃真空熔封。

(二)材料与工艺流程概述

1、玻璃要求:透光性好,SiO2和B2O3含量超过90%的高硼硅玻璃;热膨胀系数低、耐热冲击;具有较强的机械强度。

2、选择性涂层材料

要求:不破坏真空、耐高温(400℃以上)、吸收率高(大于90%)。

工艺:磁控溅射工艺。目前我国大部分企业采用“铝—氮/铝选择性吸收涂层”,少数企业采用“不锈钢—碳/铝选择性吸收涂层”。

第四节太阳能的热贮存

解决地表太阳能受昼夜和季节变化以及天气等随机因素的影响具有的不稳定性、不均匀性。

根据存贮时间长短,分为:

1)短期热存贮:贮热时间16h左右,调整1d内热量供给与消费的不平衡;

2)中期热存贮:贮热时间3-5d(最多1周),满足阴雨天热负荷需要;

3)长期热存贮:贮热时间1个月甚至跨季度几个月,为了调整季度间热量供给和消费之间的不平衡。

根据贮热原理不同,分为:显热贮热、潜热贮热和化学贮热。

显热:物体在加热或冷却过程中,温度升高或降低而不改变其原有相态所需吸收或放出的热量。它能使人们有明显的冷热变化感觉,通常可用温度计测量出来。

潜热:物质发生相变(物态变化),在温度不发生变化时吸收或放出的热量。物质由低能状态转变为

高能状态时吸收潜热,反之则放出潜热。例如,液体沸腾时吸收的潜热一部分用来克服分子间的引力,另一部分用来在膨胀过程中反抗大气压强做功。熔解热、汽化热、升华热都是潜热。潜热的量值常常用每单位质量的物质或用每摩尔物质在相变时所吸收或放出的热量来表示。

一、显热贮存

原理简单、技术成熟、材料来源丰富、成本低廉、实际使用较为普遍。

原理:当对蓄热介质加热时,其温度升高,内能增加,从而将热能以显热的形式贮存起来;

分类(存贮介质不同):液体显热贮热和固体显热贮热;单介质(液体,水)和双介质(固体,岩石)。

低温范围内,显热贮热的液体材料较好,若固体以砂、石较为适宜;当温度较高时,可视情况选用石块、卵石或无机氧化物材料。

(一)液体显热贮热

低温贮热,水为介质(经济,既是载体,又是介质);

1、贮热水箱

2、地下含水层蓄热

原理:通过井孔将温度高于含水层原有温度的热水灌入地下含水层,利用含水层作为贮热介质来贮存热量,待需要时再抽取使用。可大规模跨季度贮热,贮热温度可达150-200℃,能量回收率达70%。

3、太阳池

水温4℃后密度随温度升高而减小,从而引起热损。采取一定的技术尽量减少或防止吸收到的热量散失掉的水池就是现代意义的太阳池。

(二)固体显热贮热

液体贮热具有经济、设备简单、低温效果好的优点,但高温段(100℃以上)其缺点明显:加压防止气化、设备要求较高。固体介质贮热在岩石等资源丰富地区,成本低廉,使用方便。

3种方式:石块床贮热、被动式太阳房墙体贮热和地下土壤贮热。

地下土壤贮热,当输热管插入土壤深度25m以上时,蓄热效率可达75%以上。

二、潜热贮热

原理:利用物质相变时需要吸收(或放出)大量热量的性质来实现贮热和放热,又称为相变贮热或溶解贮热。

优点:蓄能密度高(几百至几千千焦)、温度波动小(2-3℃);

材料多为水合盐类(无机盐水合物)和有机化合物。

(一)水合盐类贮热

贮能密度多在120-300kJ/kg,与冰的溶解潜热相当。常用Na2SO4·10H2O。

(二)有机化合物贮热

常用碳氢化合物(石蜡)、某些聚合物(塑料)、天然生成的有机酸等。

三、化学贮热

利用可逆的热化学反应贮热:AB+热﹤﹦﹥A+B。

四、长期贮热

常采用地下土壤贮热、地下含水层贮热、岩石井孔贮热等。

第五节太阳房

一、太阳房概述

是一种集取、蓄存和分配太阳能的建筑。分为被动式太阳房和主动式太阳房。

被动式太阳房:温室,偿还年限短、供暖效果好,易与传统建筑相结合,目前应用较为广泛;

主动式太阳房:热泵,供暖、制冷和空调相结合。

集热、贮热、保温是太阳房中三个重要环节,缺一不可。

二、太阳房的分类和构造

(一)主动式太阳房

组成:太阳能集热器、贮能装置、供暖房间及相关设备;备用系统(辅助热源)

(二)被动式太阳房

特点:不需要专门的太阳能集热器、热交换器、水泵(或风机)等主动式太阳房所需不见,而是利用建筑物本身作为集热装置,依靠建筑物方位的合理布置,提高建筑物的门、窗、屋顶等构件,以自然热交换方式(辐射、传导、对流)使建筑物在冬季尽可能地多吸收和贮存热量,以达到供暖的目的。

分类:①直接收益式;②集热蓄热墙式;③附加温室式;④屋顶集热蓄热式;⑤热虹吸式。

三、被动式太阳房设计

(一)建房位置的选择

1、与周围环境相协调,注意周围环境对太阳能建筑及装置的不良影响;

2、供暖为主要目的的太阳房,应考虑东至9:00-15:00阳光尽量照射;

3、注意当地气候、气象环境的变化特点(风等)。

(二)太阳房的形状和方位

1、平面形状:矩形设置;

2、北方地区“坐北朝南,冬暖夏凉”;华北可朝南偏东(8°—10°)。

(三)太阳房构件的设计

1、窗的设计:采光、通风之外,考虑热工性能(集热,热损等);

a、朝南;

b、采用双层中空玻璃。与单层相比,传热系数由21kJ/(m2·h·℃)下降到9.61kJ/(m2·h·℃),但太阳辐射透过率由0.9减小到0.81。

2、遮阳与日照间距

主要考虑夏天遮阳、冬天采暖,以及前方(南面)建筑物遮挡;房檐长度一般根据夏至和东至日正午太阳直射角度计算。

3、外围结构最佳隔热层厚度的确定

一般当室内外温差为20℃时,单位供暖面积的最大热损失控制在126-251kJ/(m2·h ·℃);隔热层厚度应根据年供暖成本与年保温成本之和的年总费用取最小值时的厚度确定。

(四)太阳房的层高与建筑进深

一般要求不低于2.8m,进深不超过层高的2.5倍(7m以内),可获得比较满意的节能率。

(五)太阳房的蓄热和出入口的防冷风渗透措施

1、太阳房的蓄热

要求建筑材料(地级、墙体、屋顶等)具有较高的体积热容和导热系数,常用砖石和混凝土结构,地面适当加厚,铺设防潮材料(油毡或塑料薄膜),再铺干炉渣保暖,以及鹅卵石等来贮热,表面按常规处理。

2、太阳房出入口的防冷风渗透措施

(1)设置门斗;(2)出入口设阳光间;(3)增设冬季使用的辅助出入口;

第六节太阳能干燥技术

太阳能干燥是指利用太阳辐射能,利用太阳能干燥装置所进行的干燥作业。一般农产品要求的干燥温度在40-70℃,与太阳能热利用领域中低温热利用相匹配;太阳能干燥系统设备简单、投资少,节省燃料、避免污染,经济效益显著。

一、太阳能干燥系统及应用

(一)特点

1、节省常规能源;

2、缩短干燥时间;

3、提高产品质量。

(二)温室干燥系统

受结构限制,干燥室单位容积所占采光面积较小,因此,接受太阳辐射量较小,不宜用来干燥含水量大且要求干燥周期短的物料。

(三)集热器型干燥系统

适宜干燥不允许直接接收阳光暴晒,或干燥温度要求较高的物料;将集热器和干燥室分开,利用太阳

能和空气集热器加热空气,被加热的空气由风机送到干燥室,与待干燥物料之间产生对流热交换,从而达到干燥的目的。

(四)温室—集热器组合式太阳能干燥系统

解决干燥周期短与干燥用热量大的矛盾,适用于含水量大、干燥时间短物料,例如鱼、水果干燥等。

第七节太阳能热发电技术

太阳能发电分热发电和光伏发电两种基本形式,近年又形成若干个分支,以异乎寻常的速度得到快速发展。

一、太阳能槽式热发电

太阳能槽式热发电系统采用多个抛物线槽型镜面集热器,将太阳能光聚集到位于焦线的中心管上,使管内的导热介质加热至350-390℃,然后循环的被加热介质经热交换产生过热蒸汽,过热蒸汽推动常规的汽轮发电机组发电。槽式太阳能热发电系统包括五个子系统。一是聚光集热子系统。由聚光镜、接收器和跟踪装置构成。接受器中的集热管一般采用长4米、直径70毫米的不锈钢内管。在不锈钢内管上镀有选择性涂层,用于吸收太阳能光热。不锈钢管外边还有一层耐高温的真空玻璃管,中间被抽取真空后保持一定真空度,以达到隔热保温效果。二是换热子系统。由预热器、蒸汽发生器、过热器和再热器组成。当系统工质为油时,采用双回路,即接收器中工质油被热后,进入换热子系统中产生蒸汽,蒸汽进入发电子系统发电。三是发电子系统。基本组成与常规发电设备类似,但需要配备一种专用装置,用于工作流体在接收器与辅助能源系统之间的切换。四是蓄热子系统。太阳能热发电系统在早晚或云遮间隙必须依靠储存的能量维持系统正常运行。蓄热的方法主要有显式、潜式和化学蓄热三种方式。五是辅助能源子系统。在夜间或阴雨天,一般采用辅助能源系统供热,否则蓄热系统过大会引起初始投资的增加。目前槽式热发电系统的功率可达10-1000MW,是目前所有太阳能热发电站中功率最大,也是目前最具商业化运用条件的太阳能发电模式。

二、太阳能塔式热发电

塔式太阳能热发电系统一般由反射镜阵列、高塔、集能器、蓄热器、发电机组等五个主要部分组成。反射镜阵列由许多面反射镜按一定规律排列而成。这些反射镜自动跟踪太阳,反射光能够精确地投射到集能器的窗口里。高塔可以建在镜阵中央或南侧。集能器按需要设计成单侧受光或四周受光。当阳光投射到集能器被吸收转变成热能后,便加热盘管内流动着的介质产生蒸汽。一部分热量用来带动汽轮发电机组发电,另一部分热量则被贮存在蓄热器里,以备没有阳光时发电用。由于聚光倍数高达1000以上,接受器一般可以收集1000MW级的辐射功率,产生1000℃的高温,总效率在15%以上。塔式电站的优点一是是聚光倍数高,容易达到较高的工作温度,阵列中的定日镜数目越多,其聚光比越大,接收器的集热温度也就愈高。二是能量集中过程是靠反射光线一次完成的,方法简捷有效。三是接收器散热面积相对较小,因而可得到较高的光热转换效率。塔式太阳能热发电系统可与高温、高压火电站的参数一致,这样不仅使太阳能发电系统有较高的热效率,而且容易获得配套设备。由于该发电系统每块镜面都随太阳运动而独立调节方位及朝向,所需要的跟踪定位机构代价高昂,在一定程度上限制了它的推广应用。目前塔式发电的利用规模可达10-20MW,还处于科技研发和示范工程阶段。

三、太阳能盘式热发电

太阳能盘式发电系统是利用曲面聚光反射镜,将入射阳光聚集在焦点处,在焦点处直接放置斯特林发动机发电的一种太阳能利用装置。系统的主要部分由控制柜、聚光反射镜、接受器、迴转台、跟踪装置和斯特林发动机构成。跟踪装置可连续地在两个坐标轴方向根据太阳移动进行定位。斯特林发动机为闭环活塞式发动机,聚焦的阳光直接落在发动机头部的吸热组件上,加热其内部的气体工质氦气进行发电。接收器位于各抛物面的焦点处,可产生800℃左右的高温,效率达29.4%,在聚光式发电中是最高的。当在800℃温度下运行时,单个盘式装置最大可发电约50kW。太阳能盘式发电系统可以实现并网发电,感应发电机效率达到94%以上,可提供60Hz,单相230V、三相460V的电力。交流发电机有时需要调频至直流,再调至交流,用来解决发电机输出波动及与电网匹配的问题。由于斯特林发动机的运动部件间没有机械连接,无须润滑、密封简单,被其带动的微型热电共生器既生电又生热等特点,使其具有能量转换效率高、机器非常“安静”、寿命长和非常环保、完全燃烧后只产生很少一点氧氮化物和一氧化碳等优势。虽然它

与槽式电站相似,也可将多个盘组成一个较大的系统,但它原则上仍是小型发电系统。如果在一个区域内集中若干个这样的系统,也可以采用集中控制的方式,总功率能达到5-1000kW。近年来国际上太阳能盘式热发电技术得到了长足的进步和发展,该技术以投资省、成本低、效率高为主要特征,电站容量可大可小,可以独立运行,也可以并网运行,因此具有广泛的适应性。

四、太阳能热气流发电

太阳能热气流发电系统是利用太阳辐射产生的热空气向上流动转化为动能的原理,并通过适当的机械转化成电能的一种自然驱动的发电装置。太阳能热气流发电系统主要由太阳能集热棚、导流烟囱和涡轮发电机组三部分构成。太阳能集热棚建在一块太阳辐照强、绝热性能比较好的土地上;集热棚和地面有一定间隙,可以让周围空气进入系统;集热棚中间离地面一定距离处装着烟囱,在烟囱底部装有涡轮机。太阳光照射集热棚,集热棚下面的土地吸收透过覆盖层的太阳辐射能,并加热土地和集热棚太阳能热气流覆盖层之间的空气,使集热棚内空气温度升高,密度下降,并沿着烟囱上升,集热棚周围的冷空气进入系统,从而形成空气循环流动。由于集热棚内的空间足够大,当集热棚内的空气流到达烟囱底部的时候,在烟囱内将形成强大的气流,利用这股强大的气流推动装在烟囱底部的涡轮机,带动发电机发电。太阳能热气流发电系统除了进行发电以外,还可以利用涡轮机旋转的动能直接抽取地下水,用于干旱地区农业灌溉。还可以在太阳能烟囱上安装风力发电机,利用风能和太阳能进行互补,提高发电功率和削减大风对太阳能烟囱装备的破坏。同时,还可利用太阳能烟囱改善局部空气扩散,消除局部的大气污染。但因烟囱入口热源温度与环境温度只相差只几十度,决定了其发电效率不可能很高,一般很难超过1%。而这一系统占地面积又大,30MW的电厂就需用地400万平方米,因此,比较适合地广人稀的沙漠地区。

第二章太阳能光伏发电

教学重点:太阳能电池工作的基本原理,太阳能光伏发电技术

作业:2.2,2.4

主要教学内容:

第一节概述

以太阳能发展的历史来说,光照射到材料上所引起的“光起电力”行为,早在19世纪的时候就已经发现了。

1849年术语“光-伏”才出现在英语中。

1839年,光生伏特效应第一次由法国物理学家A.E.Becquerel发现。

1883年第一块太阳电池由Charles Fritts制备成功。Charles用锗半导体上覆上一层极薄的金层形成半导体金属结,器件只有1%的效率。

1930年代,照相机的曝光计广泛地使用光起电力行为原理。

1946年Russell Ohl申请了现代太阳电池的制造专利。

1950年代,随着半导体物性的逐渐了解,以及加工技术的进步,1954年当美国的贝尔实验室在用半导体做实验发现在硅中掺入一定量的杂质后对光更加敏感这一现象后,第一个太阳能电池在1954年诞生在贝尔实验室。太阳电池技术的时代终于到来。

1960年代开始,美国发射的人造卫星就已经利用太阳能电池做为能量的来源。

1970年代能源危机时,让世界各国察觉到能源开发的重要性。

1973年发生了石油危机,人们开始把太阳能电池的应用转移到一般的民生用途上。

目前,在美国、日本和以色列等国家,已经大量使用太阳能装置,更朝商业化的目标前进。在这些国家中,美国于1983年在加州建立世界上最大的太阳能电厂,它的发电量可以高达16百万瓦特。南非、博茨瓦纳、纳米比亚和非洲南部的其他国家也设立专案,鼓励偏远的乡村地区安装低成本的太阳能电池发电系统。

在中国,太阳能发电产业亦得到政府的大力鼓励和资助。2009年3月,财政部宣布拟对太阳能光电建筑等大型太阳能工程进行补贴。

光伏发电具有安全可靠、无噪声、无污染、制约少、故障率低、维护简便等优点,在包括西藏在内的我国西部广袤严寒、地形多样的农牧民居住地区,发展太阳能光伏发电有着得天独厚的条件和非常现实的意义。

第二节太阳电池基本知识及应用

一、太阳能电池的分类

按照基体材料来分

晶体硅太阳能电池

非晶硅太阳能电池

微晶硅薄膜太阳能电池

多晶硅薄膜太阳能电池

按照基体材料来分

纳米晶硅薄膜太阳能电池

硒光电池

化合物太阳能电池(硫化镉、磷化铟)

有机半导体太阳能电池

按用途分

空间太阳能电池

地面太阳能电池

光伏传感器

按结构分

同质结太阳能电池

异质结太阳能电池

肖特基结太阳能电池

复合结太阳能电池

液结太阳能电池

按工作方式分

平板太阳能电池

聚光太阳能电池

分光太阳能电池

二、太阳能电池的基本原理

(一)概述

太阳辐射的光子带有能量,当光子照射半导体材料时,光能便转换为电能,这个现象叫“光生伏打效应”。太阳电池就是利用光生伏打效应制成的一种光电器件。太阳电池与普通的化学电池(干电池、蓄电池)完全不同,是一种物理性质电源。虽然太阳光一照射太阳电池就能发电,但它与一般的发电机大相径庭,它无旋转和磨损,能静悄悄地发电。

太阳能电池(光伏电池)发电系统一般由太阳能电池方阵、防反充二极管、储能蓄电池、充电控制器、逆变器等设备组成

太阳能电池的原理是基于半导体的光伏效应,将太阳辐射直接转换为电能。所谓光电效应,就是指物体在吸收光能后,其内部能传导电流的载流子分布状态和浓度发生变化,由此产生出电流和电动势的效应。在气体、液体和固体中均可产生这种效应,而半导体光伏效应的效率最高。和几乎所有的半导体器件一样,目前绝大部分光伏器件的发展都源于纯硅晶体。光伏电池实际上就是一个大面积平面二极管,在阳光照射下就可产生电流。

(二)太阳能电池电源系统组成

图2-1 太阳能电池系统组成

第三节太阳能电池的制造和封装工艺

一、硅太阳电池概述

是目前世界上使用最广泛的太阳电池,根据硅材料晶体结构区分,有单晶、多晶和非晶硅三种,晶体硅太阳电池占全球市场约90%。

(一)单晶硅太阳电池

目前国产产品光电转换效率通常为13%-15%,国外较好产品为14%-16%。

图2-2 单晶硅光伏电池发电原理

(二)多晶硅太阳电池

多晶硅材料是由多个不同取向的单晶晶粒组成,影响其性能的主要因素是晶粒尺寸和形态、晶界及基体中的有害杂质和分布。多晶硅电池板制造过程与单晶硅类似,不同的是以浇铸代替了单晶硅的拉制过程(生产时间和成本有所下降),以及对多晶硅特有晶界的处理。10cm×10cm方片,光电转换效率一般12.4%左右。

(三)非晶硅太阳电池

亦称无定型硅,是直接吸收半导体材料,光的吸收率很高,仅几个微米就能完全吸收太阳光。因此,电池板可以很薄,材料费用也较低,制备一般采用沉积方法,成本也较小。

目前非晶硅太阳电池的最高效率达15%,实验室的稳定效率为13%,商品非晶硅太阳电池的效率一般为6%。

二、太阳能电池的制造工艺

(一)硅材料来源

晶态硅分为单晶硅和多晶硅,它们均具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,且随温度升高而增加,具有半导体性质。晶态硅的熔点1410℃,沸点2355℃,密度

2.32~2.34g/cm3。

单晶硅和多晶硅的区别是,当熔融的单质硅凝固时,硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则形成单晶硅。如果这些晶核长成晶面取向不同的晶粒,则形成多晶硅。多晶硅与单晶硅的差异主要表现在物理性质方面。如在力学性质、电学性质等方面。

通常的晶体硅太阳能电池是在厚度300~350μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上,将单晶硅棒切成片,一般片厚约0.4~0.45毫米。硅片经过切、抛、磨、清洗等工序,制成待加工的原料硅片。

太阳能硅的杂质浓度较高,一般要求5个9的纯度(99.999%),比集成电路用的单晶硅(纯度要求7-8个9)要求低得多。太阳能硅常用0.3~2Ω?cm的P型(100)单晶硅片。

(二)多晶硅太阳能电池制造工艺

多晶硅产量占世界太阳能电池48.8%,效率达到19%。生产四个技术阶段:原料、基片、电池、组件。

工艺流程:切片→清洗腐蚀→制结→去边→制减反射膜→电极制备→烧结→检测

图2-3 工艺流程

第四节太阳能光伏发电

将太阳光辐射能通过光伏效应直接转换为电能,称为太阳能光伏发电技术。太阳能光伏发电系统主要由太阳能电池组件(阵列)、控制器、蓄电池、逆变器和用户负载等组成。其中,太阳能电池组件和蓄电池为电源系统,控制器和逆变器为控制保护系统,用户负载为系统终端。

(一)光伏发电的特点

1、优点:

①结构简单,系统大小灵活;②维护简单或免维护;③清洁、安全、无噪音;④可靠性高、寿命长(20-30年);⑤易运输、安装,建设周期短;⑥应用范围广;⑦供电自主性;⑧非集中电网;⑨高海拔性能。

2、缺点:①初投资大;②能量密度低;③间歇性。

(二)光伏系统的组成和原理

光伏系统的组成部分:太阳能电池组件;充、放电控制器、逆变器、测试仪表和计算机监控等电力电子设备和蓄电池或其它蓄能和辅助发电设备。

光伏系统的特点:应用非常广泛,光伏系统应用的基本形式可分为独立发电系统和并网发电系统。应用主要领域主要集中在太空航空器、通信系统、微波中继站、电视差转台、光伏水泵和无电缺电地区户用供电。随着技术发展和世界经济可持续发展的需要,发达国家已经开始有计划地推广城市光伏并网发电,主要是建设户用屋顶光伏发电系统和MW级集中型大型并网发电系统等,同时在交通工具和城市照明等方面大力推广太阳能光伏系统的应用。

光伏系统的规模和应用形式各异,如系统规模跨度很大,小到0.3~2W的太阳能庭院灯,大到兆瓦级的太阳能光伏电站。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同。图2-4是一个典型的供应直流负载的光伏系统示意图。太阳能光伏供电系统的基本工作原理就是在太阳光的照射下,将太阳能电池组件产生的电能通过控制器的控制给蓄电池充电或者在满足负载需求的情况下直接给负载供电,如果日照不足或

者在夜间则由蓄电池在控制器的控制下给直流负载供电,对于含有交流负载的光伏系统而言,还需要增加逆变器将直流电转换成交流电。光伏系统的应用具有多种形式,但是其基本原理大同小异。对于其他类型的光伏系统只是在控制机理和系统部件上根据实际的需要有所不同。

图2-4 直流负载的太阳能光伏系统

(三)光伏系统的分类与介绍

一般将光伏系统分为独立系统、并网系统和混合系统。如果根据光伏系统的应用形式、应用规模和负载的类型,对光伏供电系统进行比较细致的划分,可将光伏系统分为如下六种类型:小型太阳能供电系统(Small DC);简单直流系统(Simple DC);大型太阳能供电系统(Large DC);交流、直流供电系统(AC/DC);并网系统(Utility Grid Connect);混合供电系统(Hybrid);并网混合系统。下面就每种系统的工作原理和特点进行说明。

图2-5 小型太阳能供电系统图2-6 简单直流系统

(1)小型太阳能供电系统(Small DC)

该系统的特点是系统中只有直流负载而且负载功率比较小,整个系统结构简单,操作简便。其主要用途是一般的用户系统,负载为各种民用的直流产品以及相关的娱乐设备。如在我国西北边远地区就大面积推广使用了这种类型的光伏系统,负载为直流节能灯、收录机和电视机等,用来解决无电地区家庭的基本照明问题。

(2)简单直流系统(Simple DC)

该系统的特点是系统负载为直流负载而且对负载的使用时间没有特别的要求,负载主要是在白天使用,所以系统中没有使用蓄电池,也不需要使用控制器。系统结构简单,直接使用太阳能太阳电池组件给负载供电,省去了能量在蓄电池中的储存和释放过程所造成的损失,以及控制器中的能量损失,提高了太阳能的利用效率,常用于光伏水泵系统、一些白天临时设备用电和旅游设施中。图2-7显示的就是一个简单直流的光伏水泵系统。这种系统在发展中国家的无纯净自来水供饮地区得到了广泛的应用,产生了良好的社会效益。

图2-7 简单直流的光伏水泵系统

(3)大型太阳能供电系统(Large DC)

与上述两种光伏系统相比,这种光伏系统仍适用于直流电源系统,但是这种太阳能光伏系统的负载功率较大,为了保证可靠地给负载提供稳定的电力供应,其相应的系统规模也较大,需要配备较大的太阳能太阳电池组件阵列和较大的蓄电池组,常应用于通信、遥测、监测设备电源,农村的集中供电站,航标灯塔、路灯等领域。我国在西部地区实施的“光明工程”中,一些无电地区建设的部分乡村光伏电站就是采用这种形式;中国移动和中国联通公司在偏僻无电网地区建设的通信基站也采用了这种光伏系统供电。

图2-8 大型太阳能供电系统

(4)交流、直流供电系统(AC/DC)

与上述的三种太阳能光伏系统不同的是,这种光伏系统能够同时为直流和交流负载提供电力,在系统结构上比上述三种系统多了逆变器,用于将直流电转换为交流电以满足交流负载的需求。通常这种系统的负载耗电量也比较大,从而系统的规模也较大。在一些同时具有交流和直流负载的通信基站和其它一些含有交、直流负载的光伏电站中得到应用。

图2-9 交流、直流供电系统

(5)并网系统(Utility Grid Connected)

这种光伏系统最大的特点就是太阳能电池组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网,并网系统中光伏方阵所产生电力除了供给交流负载外,多余的电力反馈给电网。在阴雨天或夜晚,太阳电池组件没有产生电能或者产生的电能不能满足负载需求时就由电网供

电。因为直接将电能输入电网,免除配置蓄电池,省掉了蓄电池储能和释放的过程,可以充分利用光伏方阵所发的电力从而减小了能量的损耗,并降低了系统的成本。但是系统中需要专用的并网逆变器,以保证输出的电力满足电网电力对电压、频率等电性能指标的要求。因为逆变器效率的问题,还是会有部分的能量损失。这种系统通常能够并行使用市电和太阳能太阳电池组件阵列作为本地交流负载的电源,降低了整个系统的负载缺电率。而且并网光伏系统可以对公用电网起到调峰作用。但并网光伏供电系统作为一种分散式发电系统,对传统的集中供电系统的电网会产生一些不良的影响,如谐波污染,孤岛效应等。

图2-10 并网系统

(6)混合供电系统(Hybrid)

这种太阳能光伏系统中除了使用太阳能太阳电池组件阵列之外,还使用了燃油发电机作为备用电源。使用混合供电系统的目的就是为了综合利用各种发电技术的优点,避免各自的缺点。比方说,上述几种独立光伏系统的优点是维护少,缺点是能量输出依赖于天气,不稳定。综合使用柴油发电机和太阳电池组件的混合供电系统与单一能源的独立系统相比所提供的能源对天气的依赖性要小,但混合系统也有其自身的缺点,例如很多在偏远无电地区的通信电源和民航导航设备电源,因为对电源的要求很高,都采用混合系统供电,以求达到最好的性价比。我国新疆、云南建设的很多乡村光伏电站就是采用光/柴混合系统。

图2-11 混合供电系统

(7)并网混合供电系统(Hybrid)

随着太阳能光伏产业的发展,出现了可以综合利用太阳能光伏阵列、市电和备用油机的并网混合供电系统。这种系统通常是控制器和逆变器集成一体化,使用电脑芯片全面控制整个系统的运行,综合利用各种能源,达到最佳的工作状态,并可以配备使用蓄电池。进一步提高系统的负载供电保障率,例如AES 的SMD逆变器系统。该系统可以为本地负载提供合格的电源,并可以作为一个在线UPS(不间断电源)工作。它可向电网供电,也可从电网获得电力,是个双向逆变/控制器。系统工作方式是将市电和光伏电源并行工作,对于本地负载而言,如果太阳电池组件产生的电能足够负载使用,它将直接使用太阳电池组件产生的电能供给负载的需求。如果太阳电池组件产生的电能超过即时负载的需求还能将多余的电能返回给电网;如果太阳电池组件产生的电能不够用,则将自动启用市电,使用市电供给本地负载的需求;而且,当本地负载功耗小于SMD逆变器额定市电容量的60%时,市电就会自动给蓄电池充电,保证蓄电池长期

处于浮充状态;如果市电产生故障,即市电停电或者市电的供电品质不合格,系统就会自动断开市电,转成独立工作模式,由蓄电池和逆变器提供负载所需的交流电能。一旦市电恢复正常,即电压和频率都恢复到正常状态以内,系统就会断开蓄电池,改为并网模式工作,由市电供电。有的并网混合供电系统中还可以将系统监控、控制和数据采集功能集成到控制芯片中。

(四)光伏系统的容量设计

光伏系统的设计包括两个方面:容量设计和硬件设计。

光伏系统容量设计的主要目的就是要计算出系统在全年内能够可靠工作所需的太阳能电池组件和蓄电池的数量,同时要注意协调系统工作的最大可靠性和系统成本两者之间的关系,在满足系统工作的最大可靠性基础上尽量地减少系统成本。

光伏系统硬件设计的主要目的是根据实际情况选择合适的硬件设备包括太阳能电池组件的选型,支架设计,逆变器的选择,电缆的选择,控制测量系统的设计,防雷设计和配电系统设计等。在进行系统设计的时候需要综合考虑系统的软件和硬件两个方面。

蓄电池的设计则包括蓄电池容量的设计计算和蓄电池组的串并联设计。

(五)并网光伏系统设计

并网系统是目前发展最为迅速的太阳能光伏应用方式。随着光伏建筑一体化的飞速发展,各种各样的光伏并网发电技术都得到了广泛的应用。

首先我们介绍确定并网光伏系统的最佳倾角。并网光伏供电系统有着与独立光伏系统不同的特点,在有太阳光照射时,光伏供电系统向电网发电,而在阴雨天或夜晚光伏供电系统不能满足负载需要时又从电网买电。这样就不存在因倾角的选择不当而造成夏季发电量浪费、冬季对负载供电不足的问题。在并网光伏系统中唯一需要关心的问题就是如何选择最佳的倾角使太阳电池组件全年的发电量最大。通常该倾角值为当地的纬度值。

对于上述并网光伏系统的任何一种形式,最佳倾角的选择都是需要根据实际情况进行考虑,需要考虑太阳电池组件安装地点的限制,尤其对于是现在发展迅速的光伏建筑一体化工程,组件倾角的选择还要考虑建筑的美观度,需要根据实际需要对倾角进行小范围的调整,而且这种调整不会导致太阳辐射吸收的大幅降低。对于纯并网光伏系统,系统中没有使用蓄电池,太阳能电池组件产生的电能直接并入电网,系统的直接给电网提供电力。系统采用的并网逆变器是单向逆变器。因此系统不存在太阳电池组件和蓄电池容量的设计问题。光伏系统的规模取决于投资大小。

目前很多的并网系统采用具有UPS功能的并网光伏系统,这种系统使用了蓄电池,所以在停电的时候,可以利用蓄电池给负载供电,还可以减少停电造成的对电网的冲击。系统蓄电池的容量可以选择比较少,因为蓄电池只是在电网故障的时候供电,考虑到实际电网的供电可靠性,蓄电池的自给天数可以选择1-2天,该系统通常使用双向逆变器处于并行工作模式。

除了上述系统外,还有并网光伏混合系统。它不仅使用太阳能光伏发电,还使用其他能源形式,比如风力发电机、柴油机等。这样可以进一步的提高负载保障率。系统是否使用蓄电池,要据实际情况而定。太阳电池组件的容量同样取决于客户的投资规模。

第三章风能与风力发电

教学重点:风力机结构和工作原理,风力发电技术,并网技术

作业:3.2,3.4,3.5,3.6

主要教学内容:

第一节风能基本知识

一、风的形成

大气的流动形成风,太阳能是大气流动能量的源泉。太阳能中只有约2%转化为风能,但全球风能总量约2.74×109MW,其中可利用风能2×107MW,比全球可开发利用水能大10倍。

二、风向与风速

风是一种矢量,通常用风向和风速表示。

(一)风向

风向指风吹来的方向。陆地上采用16个方位,海上采用32个方位。(22.5°,11.25°)

(二)风速(m/s)

1、瞬时风速与平均风速。

2、风速频率与风速变幅。

在一定时间内,相同风速出现的时数占测量总时数的百分比,称为风速频率;即:某风速频率= 某相同风速时数/测量风速总时数×100%

在求得平均风速的限定时间内,最大风速与最小风速之差称为风速变幅。

3、启动风速、切除风速、有效风速

可使风机启动运行的风速称为启动风速(一般3m/s);风力机超速运行的上限风速称为切除风速(一般20m/s);大于此值风机会因为超速旋转而存在损坏的危险;启动风速与切除风速之间的风速称为有效风速(3m/s-20m/s)。

4、影响风速的主要原因

①垂直高度;②地形地貌;③地理位置;④障碍物;

三、风的能量

风能就是空气流动的动能。风能与空气密度、通过的面积、风速的立方成正比。

第二节风能资源与风能利用概况

一、我国的风能资源

“理论可开发总量”:10m高度层风能总储量32.26亿kW;“实际可供开发量”为理论量的10%,考虑风轮实际扫略面积(1m直径圆面积与1m边长正方形面积比值),乘以面积系数0.785,为2.53亿kW;

国家气象科学院编制的全国风能区划:

Ⅰ. 风能丰富区:东南沿海、台湾、海南岛西部及南海群岛、内蒙北部和阴山以东、松花江下游地区;

Ⅱ. 风能较丰富地区:东南沿海离岸20-50km地带、海南岛东部、渤海沿岸、东北平原、内蒙南部、河西走廊、青藏高原;

Ⅲ. 风能可利用区:闽、粤两岸20-50km地带、大小兴安岭、辽河流域、苏北、长江及黄河下游、两湖沿岸等地区;

Ⅳ. 风能欠缺区:四川、甘南、陕西、贵州、湘西、岭南等地。

二、风能资源的特点

(一)风能资源的优点

①风能是可再生能源,取之不尽、用之不竭;

②在偏远山区、海滨、居民分散的无电或少电地区,风能资源较为丰富,值得开发利用;

③开发利用风能,不污染环境,不影响生态平衡;

④把风能转化成机械能,办法比较简单,容易实现;

(二)风能资源的缺点

①不稳定;②密度低;③地区差异大。

第三节风力机的结构和工作原理

一、风力机的分类

风力机是把风的动能转换为机械能的装置。分类方法多样:

①按风轮轴与地面的相对位置,分水平轴式、垂直轴式;

②按叶片工作原理,分升力型、阻力型;

③按风轮相对塔架的位置,分上风向(前置式)、下风向(后置式);

④按叶片数量,分单叶片、双叶片、三叶片、四叶片和多叶片式;

⑤按叶片材料,分为由木质、金属盒复合材料制成;

⑥按叶片形状,分为螺旋桨式、Φ型、Δ型、H型、S型等;

⑦按容量大小,分微型(1kW以下)、小型(1-10kW)、中型(10-100kW)、大型(100-1000kW)和巨型(1000kW以上);

⑧按风力机用途,分风力发电机、风力提水机、风力铡草机、风力饲料粉碎机等;

⑨按风轮叶片叶尖线速度与对应风速之比的大小,分高速风力机(比值大于3)和低速风力机(比值小于3),也有将比值2-5的称为中速风力机;

二、风力机的组成及各部件的功用

以水平轴风力机为例,其组成为:风轮、传动装置、做功装置、蓄能装置、控制系统、塔架、附属部件等。

三、风轮

一般由叶片、叶柄、轮毂、风轮轴等组成。叶片有三种基本形式:平板型、弧板型、流线型,相同条件下的升力值:流线型>弧板型>平板型;阻力值相反。

风力发电机叶片一般采用流线型,材质多为玻璃钢或镀锌钢板。

四、调向机构

常见的有尾舵、舵轮、电动(或液动)和下风向自由对风四种。

五、调速(限速)机构

大体上分为两大类:定桨距调速和变桨距调速。桨距指叶片的偏角。

(一)定桨距调速(限速)机构

1、侧翼式;

2、偏心式;

图3-1 侧翼装置图3-2 偏心装置

3、风轮绕水平轴偏风装置

图3-3 风轮绕水平轴偏风装置

(二)变桨距调速(限速)机构

1、调速器;

2、离心螺旋槽式调速机构

六、塔架

1、单管拉线式;

2、衍架拉线式;

3、衍架式;

4、圆台(或棱台式)。

七、风力机的应用

风的动能→风轮的机械能→电能→其他形式能量。风力发电、风力提水、风力致热等。

第四节风力发电技术

风力发电机组是一种将风能转化为电能的能量转换装置,包括风力机和风力发电机两大部分,空气流

动的动能作用在风力机风轮上,从而推动风轮旋转起来,将空气动力能转变为风轮旋转机械能,风轮的轮毂固定在风力机轴上,通过传动系统驱动风力发电机轴及转子旋转,风力发电机将机械能转变成电能输送给负荷或电力系统,这就是风力发电机的工作过程。

(一)离网风力发电

在地处偏僻,居民分散的山区、牧区、海岛等电网延伸不到的地方,发展风力发电是解决照明等生活用电和部分生产用电的一条可行的途径

1.直流供电。直流供电是小型风力发电机组独立供电的主要方式,它将风力发电机组发出的交流电整流,并采用储能装置存储剩余的电能,使输出的电能具有稳频、稳压的特性。

小型风力发电机组的直流供电,主要用来作照明、使用电视机和收音机等生活用电的电源;也也可以用作电围栏等小型生产用电的电源。用电运营方式分为以下三种:

(1)一户一机的供电方式。这种方式一般都是自购、自管、自发、自用、自备蓄电池。

(2)直流线路供电。这种方式一般是一机多户,或者多机多户合用,实际上是风力发电站(厂)的直流供电。机组通常是集中安装,统一管理;蓄电池可以集中配备,也可以分散到户,各户自备:应当指出,当配电电压较低(例如12V或24V),其线路电损较多,所以,用户不宜相距太远。

(3)充电站式供电。这种情况下,风力发电站就是一个充电站,各户自备蓄电池到发电站充电,充电后取回自用。蓄电池容量不宜太大,否则不宜搬运且容易出事故。

2.交流供电

(1)交流直接供电。多用于对电能质量无特殊要求的情况,例如加热水、淡化海水等。在风力资源比较丰富而且比较稳定的地区,采取某些措施改善电能质量,也可带动照明、动力负荷。这些措施包括:利用风力机的调速机构、电压自动调整期、频率变换器、变速恒频发电机等,使供电的电压和频率保持在一定范围内。

(2)通过“交流-直流-交流”逆变器供电。先将风力发电机发出的交流电整流成直流,再用逆变器把直流电变换成电压和频率都很稳定的交流电输出,保证了用户对交流电的质量要求。

(二)并网风力发电

风力发电机组的并网运行,是将发电机组发出的电送入电网,用电时再从电网把电取回来,这就解决了发电不连续及电压和频率不稳定等问题,并且从电网取回的电的质量是可靠的。

风力发电机组采用两种方式向电网送电:一是将机组发出的交流电直接输入网上;二是将机组发出的交流电先整流成直流,然后再由逆变器变换成与电力系统同压、同频的交流电输入网上。无论采用哪种方式,要实现并网运行,都要求输入电网的交流电具备下列条件:电压的大小与电网电压相等;频率与电网频率相同;电压的相序与电网电压的相序一致;电压的相位与电网电压的相位相同;电压的波形与电网电压的波形相同。

另外,电业部门还规定发电量够一定规模(一般要求大于500KW)才能申请并网运行。可见,若想实现风力发电机组的并网运行,须统筹考虑设备容量大小、调整控制机构的精度、操作管理水平、发电成本与售电价格等因素。

基于上述情况,风力发电机组的并网运行虽然是一种良好的趋势,但是到目前为止,国内已经并网运行的风力发电机的数量并不很多。

第五节中国风电发展情况

风力发电是当今世界上可再生能源开发利用中技术最成熟、最具规模开发和商业化发展前景的发电技术,由于其再减轻环境污染、调整能源结构、解决偏远地区居民用电问题等方面的突出作用,风力发电展现了很好的发展前景,是中国重要的后续能源之一。

我国风能利用具有悠久的历史,但将风能用于风力发电则起步较晚,开始于20世纪60年代,发展于20世纪80年代后,经过近半个世纪特别是近10年来的高速发展,我国风力发电已具有相当规模,风力发电技术也是突飞猛进。总体来看,中国并网风力发电场的发展分为3个阶段。

1.风力发电起步示范阶段(1986~1993年)

20世纪80年代初,原国家科委和国家计委将新能源利用列入国家科技攻关计划,其中包括风力发电

的科技攻关项目,把小型风力发电作为实现农村电气化的措施之一,根据我国的具体情况,为解决地处偏远、居住分散、电网难以到达地区的农、牧民群众的用电问题,重点研制、开发和示范应用小型充电户用微型风力发电机,供农民一家一户使用,在电网不能通达的偏远地区,约有60万居民利用风能实现了电气化。截止1999年,我国累计生产小型风力发电机组18.57万台,局世界第一,对解决边远地区农、牧民生活用电起到了积极地示范作用,但尚未形成规模。

2.风力发电产业化阶段(1994~2003年)

1993年底,原电力部在汕头“全国风电工作会议”上提出风力发电产业化及风力发电场建设前期工作规范化的要求,1994年规定电网管理部门应允许风力发电场就近上网,并收购全部上网电量,上网电价按发电成本加还本付息、合理利润的原则确定,高出电网平均电价部分,其差价采取均摊方式,由全网共同负担,电力公司统一收购处理。由于投资者利益得到保障,贷款建设风力发电场开始发展。此后,原国家计委规定发电项目按照经营期核算平均上网电价,银行还贷期延长到15年,风力发电项目增值税减半(为8.5%),风力发电进入产业化阶段。但是随着电力体制向竞争性市场改革,风力发电由于成本高,政策不明确,发展仍然较为缓慢。

3.风力发电规模化及国产化阶段(2003~2008年)

为了大规模商业化开发风力发电,国家发展和改革委员会从2003年起推行风力发电特许权项目,每年一期,通过招标选择投资商和开发商,目前已经进行了4期,其主要目的是扩大开发规模,提高国产设备制造能力,约束发电成本,降低电价。从2006年开始,《中华人民共和国可再生能源法》正式生效,国家陆续颁布了一系列的法律实施细则,包括要求电网企业全额收购可再生能源电力、发电上网电价优惠及一系列费用分摊措施,从而大大促进了可再生能源产业的发展,中国风力发电也步入了快速增长时期。

2010年中国(不包括台湾地区)累计安装风电机组34485 台,装机容量44733.29MW,年同比增长73.3%。2010年新增安装风电机组12904台,装机容量18927.99MW,年同比增长37.1%。累计装机容量和新增装机容量双居世界第一。

第四章地热能发电

教学重点:地热能的利用方式,地热能发电技术

作业:4.2,4.4

主要教学内容:

第一节地热能的基本知识

地热能:是指地球内部蕴藏的热能。地球本身就是一座巨大的天然储热库,蕴藏着巨大的热能。一、地热能资源的成因

地热能资源:是地球内部能量释放的一种途径。

地壳里的巨大热源主要是因为地壳浅部有高温岩浆的侵入和地壳岩石中半衰期长达109-1010年的天然放热性元素。地壳中的热量通过传导、对流和辐射等过程进行传递。

地球内部局部热源的温度很高,地下水的深循环将是地下热能从深部带到地表的重要媒介,这里是否会出现地热田的关键是地质构造。地球板块的边缘地带,是高温地热的分布地带。

二、地热能的贮存形式及分布

地热能的贮存形式有:蒸汽型、热水型、地压型、干热岩型和岩浆型等5类。目前应用最广的是热水型和蒸汽型。

三、地热能的利用

直接利用和间接利用;

200-400℃,直接发电及综合利用;

150-200 ℃,双循环发电、制冷、工业干燥及热加工等;

90-150 ℃,双循环发电、供暖、制冷、工业干燥及脱水、盐类回收、罐头等;

50-90 ℃,供暖、温室、家庭用热水、工业干燥;

大连理工新能源发电大作业题目风力发电

大连理工新能源发电大作业题目风力发电网络教育学院 《新能源发电》课程设计 题目: 风力发电技术学习中心:奥鹏学习中心(直属) 层次: 专业: 电气工程及自动化年级: 年春/秋季学号: 学生: 辅导教师: 完成日期: 年月日 序言 能源、环境是当今人类生存和发展所要解决的紧迫问题。常规能源以煤、石油、天然气为主,它不仅资源有限,而且造成了严重的大气污染。因此,对可再生能源的开发利用,特别是对风能的开发利用,已受到世界各国的高度重视。风电是可再生、无污染、能量大、前景广的能源,大力发展风电这一清洁能源已成为世界各国的战略选择。我国风能储量很大、分布面广,开发利用潜力巨大。近年来我国风电产业及技术水平发展迅猛,但同时也暴露出一些问题。总结我国风电现状及其技术发展,对进一步推动风电产业及技术的健康可持续发展具有重要的参考价值。 第一章风力发电发展的现状 1,1. 风能利用历史 人类利用风能的历史,至少可以追溯到5000多年以前。埃及可能是最先利用风能的国家。2000多年以前,人类开始利用风的力量进行生产,例如靠风力带动简易装置来碾米磨面、引水灌溉。公元前几百年,亚洲的巴比伦人、波斯人也开始利用风能。公元10世纪,伊斯兰人开始用风车提水。到11世纪,风车在中东地区已经获得广泛的应用。

12世纪,风车的概念和设计从中东传入欧洲。荷兰人发明了水平转轴的塔形风车,并且很快风靡北欧。唐吉诃德大战风车的故事听说过吧,(可以查阅相关资料进行了解)。除了磨面、榨油、造纸、锯木等生产作业之外,在比利时等地势较低国家还用风车来排水。 我国至少在3000年以前就出现了帆船。中国最辉煌的风帆时代是明代,郑和下西洋,庞大的风帆船(见教材)在那几次举世闻名的航行中功不可没。郑和的“准环球”旅行,比西方的哥伦布和麦哲伦早了好几百年。公元前数世纪我国人民就开始利用风力提水、灌溉、磨面、舂米等。1300多年前宋代的一种垂直轴“走马灯式” ,一直沿用到新中国成立。中国沿海沿江地区的风力提水灌溉或制盐的做法,曾经非常盛行,仅在江苏沿海利用风力的设备就曾多达20万台。我国使用最广泛的是“斜杆式”风车,直到今天,沿海地区农田和盐场中仍有上千台之多。 1,2 我国风力发电的现状 2005年2月,我国国家立法机关通过了《可再生能源法》,明确指出风能、太阳能、水能、生物质能及海洋能等为可再生能源,确立了可再生能源开发利用在能源发展中的优先地位。2009年12月,我国政府向世界承诺到2020年单位国比较各种风力发电机的优缺点 一(当前风力发电机有两种形式: 1 水平轴风力发电机(大、中、小型) 2 垂直轴风力发电机(大、中、小型)。 水平轴风力发电机技术发展的比较快,在世界各地人们已经很早就认识了,大型的水平轴风力发电机已经可以做到3-5兆瓦,一般由国有大型企业研发生产,应用技术也趋于成熟。小型的水平轴风力发电机一般是一些小型民营企业生产,对研发生产的技术要求比较低,其技术水平也是参差不齐。

风能和风力发电技术论文

甘肃机电职业技术学院 现代装备制造工程系毕业论文风能和风力发电技术 姓名:酸菜 学号:G1******* 班级: G142701 年级: 2014级 指导老师:酸菜

摘要 (Ⅰ) 第1章风力发电的现状背景 (1) 1.1、风力发电的现状 (1) 1.2、风力发电的潜力 (2) 第2章风力发电类型特点 (4) 2.1风力发电特点 (4) 2.2风能发电优缺点 (4) 2.3风力发电结构 (4) 第3章发电机主要类型 (7) 3.1恒速风力发电机 (7) 3.2有限变速风力发电机 (7) 3.3变速风力发电机 (7) 第4章风力发电控制技术 (9) 4.1变桨距风力发电技术 (9) 4.2风力发电系统控制 (9) 4.3不同发电机的比较 (10) 第5章发展趋势建议 (12) 第6章总结 (13) 参考文献 (14) 致谢 (15)

风能是太阳能的一种转换形式,是一种重要的自然能源。太阳照射到地球表面,地球表面各处受热不同,产生温差,从而引起大气的对流运动形成风。据估计到达地球的太阳能中虽然只有大约2%转化为风能,但其总量仍是十分可观的。全球的风能约为2.74×109MW,其中可利用的风能为2×107MW,比地球上可开发利用的水能总量还要大10倍。风能作为一种无污染、可再生的绿色能源,它对于解决全球性的能源危机和环境危机有着重要的意义。因此,风力发电成为各国学者研究的重点。 风力发电的原理是利用风带动风车叶片旋转,再通过增速器将转速提高促使发电机发电。依据目前的风车技术,大约3m/s的微风速度便可以开始发电。风力发电的原理是最简单的风力风力发电机可由叶片和发电机两部分构成,空气流动作用在叶轮上,将动能转化为机械能,从而推动叶片旋转如果将叶轮的转轴与发电机的转轴相连,就会带动发电机发电,从而产生电能。 关键词:风能,风力发电;

风力发电机及风力发电控制技术综述 姜礼龙

风力发电机及风力发电控制技术综述姜礼龙 发表时间:2019-06-11T17:39:57.053Z 来源:《电力设备》2019年第1期作者:姜礼龙 [导读] 摘要:风能是目前全球发展最快的可再生绿色能源,风力发电系统是将风能转化为电能的关键系统,它直接关系到风力发电的性能与效率。 (我是国华(科左中旗)风电有限公司内蒙古通辽 028000) 摘要:风能是目前全球发展最快的可再生绿色能源,风力发电系统是将风能转化为电能的关键系统,它直接关系到风力发电的性能与效率。由于风能的能量密度低,具有不稳定性和随机性,控制技术是大型风力发电机组安全高效运行的关键。本文就风力发电的现状及风力发电机工作原理进行分析,着重探讨风力发电控制技术,提升风力发电经济效益。 关键词:风力发电;控制技术 随着我国经济发展有中低端迈向中高端的转型升级发展,更加各种清洁能源在经济社会发展中的作用、环保价值与开发前景。作为清洁可再生能源,风能的应用正在我国逐步推进。但是我国风能研究理论与应用技术落后于欧美国家。 1 风力发电的现状及原理 1.风力发电在能源开发企业中属于重点开发的项目。历经多年的发展,风力发电获得了较好的成绩。现阶段风力发电技术发展的现状较为良好。风力发电技术的单机容量近年一直在增加,能满足更多场合的发电需求。同时,风力发电技术需要投入较高的成本,日常运营过程中风力发电的运营费用却较少。另外,随 着能源公司规模的不断发展与扩大,整个发电行业中风能发电的占有比例也随之增大。从技术发展的层面进行分析我们不难发现,我国现有的市场经济环境中,风电企业从最开始的单存引进阶段到将国外的技术经过革新本土化后应用,最后到自主创新的阶段,当前已经有了基本的技术积累。尤其是兆瓦级机组在国内市场中的普及,更是标志着我国自主研发能力,已经进入了全新的阶段。 2.风力发电机的工作原理。风力发电机是将风能转换为机械能,机械能转换为电能的电力设备。它是一种以太阳为热源,以大气为工作介质的热能利用发动机。风力发电利用的是自然能源。风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风力发电机技术,大约是每秒三公尺的微风速度,便可以开始发电。风力发电正在世界上形成一股热潮,因为风力发电没有燃料问题,也不会产生辐射或空气污染。风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。机械连接与功率传递:水平轴风机桨叶通过齿轮箱及其高速轴与万能弹性联轴节相连,将转矩传递到发电机的传动轴,此联轴节应按具有很好的吸收阻尼和震动的特性,表现为吸收适量的径向、轴向和一定角度的偏移,并且联轴器可阻止机械装置的过载。另一种为直驱型风机桨叶不通过齿轮箱直接与电机相连风机电机类型。 2 风力发电控制技术 1.定桨距失速风力发电技术。定桨距风力发电机迈入风力发电市场是在20世纪80年代中期,其研制成功解决了发电机组的并网问题,运行安全可靠定桨距风力发电机主要是软并网技术、空气动力刹车技术、偏行与自动解缆技术三种技术的结合。定桨距风力发电机组的特点是桨叶与轮毅固定连接,在风速发生变化时,桨叶的迎风角度不发生变化结合桨叶翼型本身的失速特性,在风速高于额定值时,气流的功角就会达到失速状态,可使桨叶的表面的表面产生紊流,使发动机的效率降低来达到限制功率的目的,风力发动机的这一特性控制发电系统安全可靠,但是为了达到限制功率的目的,导致叶片重,结构复杂,机组的整体效率较低,所以说当风速达到某一限度时必须要停比使用。发电机转速是由电网频率限制,输出功率由桨叶本身性能限制,当风速比额定转速高时,桨叶能够通过失速调节功能将功率控制在额定值范围之内,其起到重大作用的是叶片独特的翼型结构,在遇到强风时,流过叶片背风面的气流产生紊流,降低叶片气动效率,影响能量捕获,产生失速失速是一个较为复杂的过程,在风速不稳定时,很难得出失速的效果,因此很少用来控制MW级以上的大型风力发电机。 2.变桨距风力发电技术。从空气动力学角度考虑,当风速过高时,可以通过调整桨叶节距、改变气流对叶片攻角,改变风力发电机组获得的空气动力转知,以保持稳定的输出功率采用变桨距调节方式,风机输出功率曲线平滑,在阵风时,塔筒、叶片、基础受到的冲击较失速调节型风力发电机要小,可减少材料使用率,降低整机重量它能自动调节叶片桨距角度,适应不同风况下功率的调节,特别是使得在接近额定风速附近得功率曲线充实,增加风力发电机的年发电量但其也有一定的缺点,即其需要一套复杂的变桨距机构,变桨距机构的设计要求对阵风的响应速度足够快,以减小由于风的波动引起的功率脉动同时,变桨距执行机构及液压驱动系统较复杂,运行可靠性难以有效保证,其成本也较高。 3.主动失速、混合失速发电技术。主动失速。混合失速发电技术是上述两种技术的组合低风速时采用变桨距调节可提高气动效率,使桨距角向减小的方向转过一个角度,增大相应的攻角,加深叶片的失速效应,从而限制风能的捕获这种方变桨距调节不需要很灵敏的调节速度,执行机构的功率相对较小风力发电机组在超过额定风速(一般为14-16m/s)以后,由于机械强度和发电机、电力电子容量等物理性能的限制,必须降低风力机的能量捕获,使功率输出保持在额定值附近,同时减少叶片承受负荷和整个风力机收到的冲击,从而有效避免风力机受到损害这种调节将引起叶片攻角的变化,从而导致更深层次的失速,使功率输出更加平滑。 4.变速风力发电技术。风力发电机组分恒速恒频风力发电和变速恒频风力发电。变速风力发电技术是改变了风力机的恒速运动规律,可以根据风速的变化调整运行,保持恒频发电,当风速小时争取获得更大的风能,风速过大时调整储存转化能量,比恒速风力发电机组的实用范围更广泛。变速风力发电技术可以根据风速的变化保证恒定的最佳叶尖速比,低风速时尽量获取多的风能,以保证平稳输出;高风速时及时调整风轮转速储存能量,避免功率过大当风速变大风能变强时风轮可以吸收储存部分的风能,提高了传动系统的柔性,减轻了主轴承受的应力及扭知通过电力电子装置的作用,变速风力的风能转化为可以输入电网的电能,使风力机组安全平稳的运行,能量传输机构系统也平稳运行。 3 技术发展趋势展望 为提高风力发电效率,降低成本,改善电能质量,减少噪声,实现稳定可靠运行,风力发电将向大容量、变转速、直驱化、无刷化、智能化以及微风发电等方向发展: 1.风力发电机大型化。这可以减少占地,降低并网成本和单位功率造价,有利于提高风能利用效率。

我国新能源风力发电的发展思路探索

我国新能源风力发电的发展思路探索 与火力发电相比较,风力发电无污染、能源可再生、对环境污染小、单机安装容量小等优点,加之,全球能源紧张,环境污染严重等现状,风力发电被越来越多的国家所重视。我国在风 力发电方面也投入了较多的技术支持和资金。因此,本文中笔者通过探讨影响风力发电的瓶 颈和措施进行探讨,为新能源风力发电提供一定的理论支持。 一我国新能源风力发电发展现状 我国是世界五大风能发电国家之一,具有较为丰富的风力资源。在我国,各地风能资源分布 差异较大,在风力发电的发展现状也有着明显的区别。内蒙古、甘肃、江苏、吉林、辽宁等 地的风力发电较为早,也有了较大的风力发电基地。我国也在上海建成了亚洲第一大型海上 风力发电厂。随着对新能源的需求,国家也出台相关政策支持风力发电,全国各地都积极响应,发展自己的风力发电项目。 随着我国风力发电技术的不断成熟和全球能源紧张局势,风发电在我国逐渐推行开来。但由 于我国发展起步较迟、风力发电整机制造和研发的条件还不完备,在制造和研发时还是采用 得合资生产和联合开发,我国目前只能生产制造一些小型风力发电机,特别是 1000w 以下的 风力发电机。同时,我国在该项目上的收益不是很理想,由于该行业发展迅速,相关企业数 量的增加导致了利润的下滑。 二我国新能源风力发电发展中遇到的瓶颈 2.1 风电入网 风电入网是影响我国新能源风力发电发展的一个主要问题,虽然我国在发展初期,建立了很 多风力发电场,但有很多都处于闲置状态,根本没有做到有效利用风电资源。这主要是由于 风电入网问题没有解决,导致了出现空转状态,造成了极大的浪费。虽然我国相关政策支持 风电入网,但是风速不稳定,导致风电稳定性不高,从而冲击了电网。有技术可解决此问题,但投资成本会加大,因此,大多数企业在接受风电入网问题上存在迟疑的态度。 2.2 风电企业竞争激烈 在市场需求和国家政策的相关支持下,出现了越来越多的风电企业,抢占市场份额。他们部 分通过转让技术到国外,随之带来了产能过剩、技术流失。部分企业根本没有掌握风电设备 的核心技术,生产达不到标准,出现问题不会检修,由于产能过剩,不是通过改变技术和提 升自身水平来实现竞争,带来了风电企业之间出现了价格战,市场竞争激烈,但陷入了恶性 循环的状态,从而造成该行业的利润较低。 2.3 技术相对落后 风电设备技术是决定风电发展的关键因素。这一问题在我国表现得尤为突出。在我国,因自 身技术的局限性,进口设备已在该行业存在一定的垄断,设备费用较高,加之与火力发电相比,风力发电成本较高,导致了我国在该行业呈现得是投入大、产出小的现状。国内生产风 力发电设备时主要采用与外商合资、合作的方法,不能有效开发自身的核心技术。因此,要 大力发展我国风力发电项目,就必须攻克技术难题,实现技术飞跃。 三促进我国新能源风力发电发展的措施 为了解决风力发电发展的瓶颈问题,主要从以下方面进行改进: 3.1 获得政府扶持,帮助风电入网

浅谈风力发电及其控制技术

浅谈风力发电及其控制技术 发表时间:2020-03-10T13:22:48.110Z 来源:《中国电业》2019年20期作者:黄晓芳[导读] 随着我国电力事业的快速发展,新能源的应用也日益成熟摘要:随着我国电力事业的快速发展,新能源的应用也日益成熟,文章主要以风力发电为基础,对我国风力发电现状进行分析,并探讨控制技术在其中的应用,结合实际情况提出几点建议。 关键词:风力发电;控制技术;风力技术;发电控制引言 近年来,我国风力发电事业迅猛发展,在理论研究和技术应用两方面都取得了较突出的成果。随着风力发电的广泛应用,风能的最大化利用成为当前研究的重要课题。风能的最大化利用关键在于风力发电机组的最大风能捕获以及与风电场内其他风力发电设备的合理配套,从而实现风能资源的优化利用。 1我国风力发电的产能现状我国地大物博,风场资源丰富,利用风能可发电量超过10亿千瓦,这些风力资源地区主要分布在地广人稀的地区,例如西北地区、华北、东北以及东南沿海部分地区。我国20世纪实现了对小型发电机的自主研发和批量生产,缓解和满足了农牧民和岛屿地区人们的用电需求。东部沿海地区风能资源丰富,目前许多重大的风力发电设备就主要建于东部沿海地区,如建于重大的跨海大桥周边,其他主要分布于风能较丰富的丘陵地区。当然,我国风电事业也不是一帆风顺的,前些年由于风电行业的无序发展导致一系列的问题,例如风机事故、弃风限电等问题。之后国家要求各地区相关部门在审核风电项目时,要向国家能源局提交申请,有效地遏制了地方政府无限制的风能资源开发,也解决了风能过剩的问题。近两年,部分经营不好实力较弱的风电企业也退出市场,我国风电行业走向成熟化,并实现稳定发展的业态。 2风力发电控制技术的应用 2.1风轮的控制技术 第一,利用功率信号的反馈进行控制。利用功率信号的反馈进一步控制风轮的功率信号,当风轮运行时,它们的功率与实际条件的改变是一致的,然后再对功率的关系作出分析,之后绘制出最大功率的曲线图,完成以上工作后接着做后面的工作。在实际操作时,还应该对比最大功率与系统中的实际输出功率,获取它们的差值大小,之后再进行风轮桨矩的调整工作,这样才有助于风轮的运行功率最大化。这种方式使成本无须花费过多,但是风机在正常运行时要获得最大功率曲线较为困难。第二,对叶尖速比的控制。受到风力作用的影响,风轮中叶片尖端转动时具有线速度,并且将其称为叶尖速。其中叶尖速比表示为叶尖速与同一时间风速的比值。对叶尖速比进行控制的主要方法是控制叶轮的转速,从而进一步改善风机的运行系统。因为风速是不断变化的,所以很难有效地确定出最合适的叶尖速比,应该适当地改变和调节叶尖速,并调节好风轮转矩,从而更好地调整风轮外边缘的速度,使叶尖速比得到最优控制。 2.2自适应控制技术的应用 自适应控制技术是信息控制技术中的一种,其应用对业务理解要求比较高,将这项技术应用到风力发电机组控制系统中,可以对系统的各项性能情况进行分析并优化控制,确保各项控制参数的合理性及最优化。传统的风力发电机组控制系统需要构建参数模型来对各项参数进行调节,其对模型的完整性要求比较高。但是这类模型在工程实践转化过程中具有较大的难度,所以无法保证风力发电机组的控制效果。而自适应控制技术的合理应用可以对系统中各方面的变化情况进行实时掌握,并根据外界环境进行调整,具有明显的应用优势,提升风力发电机组的控制效率及发电性能。 2.3现代化的控制技术 风力发电中现代化的控制技术可以分为以下几种类型:鲁棒控制技术、变结构控制技术、智能控制技术以及自适应控制技术,风力发电机组控制系统中,以变结构控制技术为主,该技术运用广泛是因为具有很快的反应力、设计较为简单、实现难度不大;处理一些多变量问题时,鲁棒控制技术可以发挥出很好的作用,具有较强稳定性的鲁棒控制技术还能有效地处理好参数不准、建模出现误差或者物质系统受影响的问题;而智能控制技术最突出的方法是模糊控制,它无须过度依赖数学模型,只需凭借专家经验就能克服一些非线性因素带来的影响。目前,一套准确的风力发电机组被控对象数学模型的实现概难度很大,所以对风力发电机组进行控制的过程中,可以多使用模糊控制方法。 2.4风电无功电压自动控制技术 该技术主要是由多个系统共同参与实现风电场无功自动化控制的一种方法,具体包括风电场无功电压自动控制子站及相关的监控系统等。其中子站可作为模块集成到综合监控系统中,也可采用外挂的方法使其独立运行,其负责对风电场内设备的无功电压运行状态进行监视,利用通信线路将调节设备的无功电压控制指令发给相应的监控系统。监控系统的控制方式有两种,一种是远程控制,另一种是就地控制。在远控模式下,子站会自动对无功电压控制目标进行追踪,而在就地控制模式下,子站可按预先给定的并网点电压目标曲线进行控制。子站的运行及控制状态可以通过人工进行设置,同时,风电场内的各类控制设备可通过人工进行闭锁和解锁,设备的投退则可由系统自动控制。当电网处于稳定运行状态的条件下,子站能够对风电机组的无功调节能力进行充分利用,实现调节电压的目标,如果机组的无功调节能力不足,则会由动态无功补偿装置完成无功调节。此外,子站能够对风电机组的无功补偿状态进行协调,从而有效避免了不合理的无功输出。 3风力发电并网控制技术的发展策略 3.1做好谐波抑制措施 风力发电机组并网过程中,要提升其电能质量控制效果,并结合静止无功补偿器来有效抑制谐波危害问题,这种补偿器是用多台可投切电容器、电抗器和谐波滤波装置构成的,这一设备最大的特点是反应速度快,对于无功功率的变化能够实现实时跟踪。针对风速变化导致的电压变化也能够实现有效的调节,实现有效的谐波滤除,提升整体电网的电能供应质量。 3.2优化风能发电的输电结构 目前我国风力资源地区分布不均衡,必须加大对远距离电力传输装备和技术的研发力度。第一,要研发适合我国国情的远距离电力传输装备和技术,逐步解决我国不同地区风电资源分布平衡的问题;第二,要加大投资力度,全世界范围内引进优秀人才,让风力发电技术给风力资源匮乏地区带去便利和经济效益,与此同时,让环境欠发达地区享受风电资源带来的益处。通过发电与用电地区的分配平衡,将风能的利用率持续提升,减少对于化石燃料的依赖,减低污染性气体的排放,坚持走低碳环保路线,促进生态平衡。 3.3电压波动与闪变控制

风力发电

风力发电 风很早就被人们利用--主要是通过风车来抽水、磨面……现在,人们感兴趣的,首先是如何利用风来发电。 风是一种潜力很大的新能源,人们也许还记得,十八世纪初,横扫英法两国的一次狂暴大风,吹毁了四百座风力磨坊、八百座房屋、一百座教堂、四百多条帆船,并有数千人受到伤害,二十五万株大树连根拔起。仅就拔树一事而论,风在数秒钟内就发出了一千万马力(即750万千瓦;一马力等于0.75千瓦)的功率!有人估计过,地球上可用来发电的风力资源约有100亿千瓦,几乎是现在全世界水力发电量的10倍。目前全世界每年燃烧煤所获得的能量,只有风力在一年内所提供能量的三分之一。因此,国内外都很重视利用风力来发电,开发新能源。 利用风力发电的尝试,早在本世纪初就已经开始了。三十年代,丹麦、瑞典、苏联和美国应用航空工业的旋翼技术,成功地研制了一些小型风力发电装置。这种小型风力发电机,广泛在多风的海岛和偏僻的乡村使用,它所获得的电力成本比小型内燃机的发电成本低得多。不过,当时的发电量较低,大都在5千瓦以下。 目前,据了解,国外已生产出15,40,45,100,225千瓦的风力发电机了。 1978年1月,美国在新墨西哥州的克莱顿镇建成的200千瓦风力发电机,其叶片直径为38米,发电量足够60户居民用电。而1978年初夏,在丹麦日德兰半岛西海岸投入运行的风力发电装置,其发电量则达2000千瓦,风车高57米,所发电量的75%送入电网,其余供给附近的一所学校用。 1979年上半年,美国在北卡罗来纳州的蓝岭山,又建成了一座世界上最大的发电用的风车。这个风车有十层楼高,风车钢叶片的直径60米;叶片安装在一个塔型建筑物上,因此风车可自由转动并从任何一个方向获得电力;风力时速在38公里以上时,发电能力也可达2000千瓦。由于这个丘陵地区的平均风力时速只有29公里,因此风车不能全部运动。据估计,即使全年只有一半时间运转,它就能够满足北卡罗来纳州七个县1%到2%的用电需要。

新能源风力发电的发展思路探索

新能源风力发电的发展思路探索 发表时间:2019-04-01T11:54:53.143Z 来源:《电力设备》2018年第28期作者:刘波 [导读] 摘要:风能是一种十分清洁的可再生能源,具有良好的经济效益和环境效益,较好地满足当前我国用电量增加的问题。 (新疆宏远建设集团有限公司新疆可克达拉市 835213) 摘要:风能是一种十分清洁的可再生能源,具有良好的经济效益和环境效益,较好地满足当前我国用电量增加的问题。我国具有大量的风能资源,使得风能在我国有十分广阔的发展前景,国家要继续推动风能产业的发展,保证市场公平,推动风能汗液的技术研发,推动风能发电的全面发展。 关键词:新能源风力发电;发展思路;分析 1风力发电 1.1风力发电的原理和特点 风力发电是一个将风能的机械能转化成电能的过程,这个转化过程由风力发电机和其控制系统实现,当风力进入发电系统后,便成为发电系统的输入信号,系统内的风力控制器输出桨距角信号,对机械的转和输出功率进行调整。机械产生的能量会进入发电机,最后转化成电能进入电网[1]。风能发电的特点在于风能是可再生的,发电厂的建设周期很短,装机规模灵活、具有较高的可靠性,同时运营维护简单,造价低。 1.2风力发电系统的类型 常见的风力发电系统主要有三种,包括恒速感应发电系统,变速恒频双馈式发电系统和变速同步发电系统。恒速感应发电系统在当前使用的最为广泛,这种系统的构造简单,造价很低,发电过程比较容易控制,后期维护投入非常低;但是这类系统存在着不能有效控制无功补偿的问题,使得供电效率很低[2]。变速恒频双馈式发电主要使用在电力生产中,这类系统的优势在于发电具有较高的稳定性,而且容易控制,不需要无功补偿,成本低的同时对风能具有较高的转化效率;但是这类系统比较复杂,使得维护比较困难。变速同步发电系统还处于摸索阶段,而且造价很高,目前并没有太多的使用,但是该系统具备着不需要无功补偿和稳定性高的优势,具有较高的潜力。 2我国新能源风力发电的现状 《可再生能源法》作为我国对新能源发展的规划,其预示着可再生能源将会成为能源发展的重要部分,经过十多年的努力,我国的风力发电水平已经不容小觑,风电装机比重越来越高,到2008年8月,已经进入世界前五,这也标志着中国已经成为可再生能源大国。目前,我国风电产业发展十分迅猛,增长率和总装机量都占全世界第一,已成为全世界范围内风电系统最大的国家。 如今我国对于国内风电发展所需的一般零件都已能够自给自足,但在一些技术要求较高的部件如励磁系统和一些关键电子元件仍然需要从外国大量进口。因此,我国必须在高层技术方面进行创新和突破,才能继续保持高速的发展趋势。 3问题分析 3.1风能能源的评估有待完善 对于风能资源进行评估并以此制定风力发电的规划是我国风力发电进行管理的基础。目前我国的相关机构在开展的风力能源评估还处于有点完善的状态,距离世界上的发达国家还存在明显的差距,因此,开展对于风力发电的相关资料整理以及重新进行调查评估是非常有必要的,相关部门应该更加严格的对我国沿海地区和内陆地区的风力分别进行检测和评估,同时还需要不断对我国现有的风力发电场所产能进行更科学合理的长远规划。 3.2自主创新需要提升 在目前我国对于风力发电产业生态圈建设尚未完成的过程中,我国的企业对于大型兆瓦发电机的信息技术吸收还没有充分进行。与此同时,我国对于风力发电机组中的核心设备和相关零件还无法进行自主生产,这是制约我国风力发电发展的关键问题。因此更快地进行我国风力发电设备制作的自主创新,同时加强完整知识产权的风力发电机组设备的研究,都是保障我国风力发电事业发展的重要目标[1]。 3.3国家电力网络与风力发电的发展不协调 目前我国电力网络设施的管理和运用并没有与风力发电产生足够的协调性。在风力发电场所接入电网的工作并没有很好地得到完成,整个国家电网的发展规划也缺乏对于风力发电场所的重视。就这个问题,还需要我国的政府相关部门更好地制定相应的管理办法,从而保证风力发电场所与国家电网之间可以共同协调发展,更好地为风力发电的发展提供保障。 4新能源风力发电的发展思路 4.1政府提供足够的政策 风力发电是一项十分巨大的工程,没有足够底气的公司是不会冒这个风险的,因此政府如果能够给出一些充满诱惑的“橄榄枝”,那些企业还是会冒一下风险闯一下的。比如,政府颁布多购多奖励,少购少处罚的政策,通过政策来刺激企业的投资,这样能够带动起风力发电的发展。其次,政府可以为企业提供电厂和电网的建设点,并为这些企业提供一定的补助,让害怕风险的企业有了保障,这样就会出现越来越多的企业投资风力发电,达到推动风力发电发展的目的。 4.2实现风力发电的产业化发展 在越来越多的企业投入风力发电后,风电企业就会慢慢变得和其他发电产业一样形成一个产业集群。这些企业能够在产业集群中相互竞争相互促进,就和达尔文自然选择学说一样,在竞争中优胜劣汰,从而营造一个以发展为目标的产业集群。这样就能使电力企业朝着更好的方向前进,促进经济的发展。 4.3政府完善市场检查管理制度 为了解决风电发展规划与电网规划的不相协调,政府应该采取一系列的措施,并且完善监管制度。首先,要吸引其余公司加入风电产业,这就需要政府对风电产业结构体制进行改革,根据市场经济规律在市场中建立一个公平开放、能够为国内投资者提供投资的平台。其次,为了使投资的主体群众保持一个较高的积极性,政府应该放低政策,提供一个多元化的投资平台。同时相关部门还要对风力发电投资项目可能出现的问题有所保障,这就需要政府规范市场秩序,营造一个公平的市场,保证风电产业的高速发展。 4.4明确我国风力发电的发展目标 为了促进我国风力发电的健康发展,同时不断提升我国电网运行过程中的安全性和可靠性,首先需要对我国风力发电的发展目标进行

风能技术

风能技术 内容简介 《风能技术》是“新能源技术”丛书之一。风能作为一种重要的可再生能源,其具有清洁、无污染、安全、储量丰富的特点,受到世界各国的普遍重视。《风能技术》主要讲解了风车和风力发电发展史、风的特性和风能资源、风力发电机组的布置、风力发电机组基础理论、风力发电系统设计、风力发电系统控制等内容。《风能技术》内容丰富、图文并茂、重点突出、应用性强。 《风能技术》可供风力发电技术领域的工程技术人员、研发人员、管理等相关人员阅读,也可作为高等院校相关专业师生的参考书。 图书目录 1 风车和风力发电发展史 1.1 20世纪以前的风力利用技术 1.2 风力发电发展简史 1.2.1 风力发电机组诞生的背景 1.2.2 风力发电的先驱者 1.2.3 以丹麦为中心的风力发电的发展史 1.2.4 20世纪风力发电机组技术的发展 2 风的特性和风能资源 2.1 风速功率谱 2.2 风速随高度变化 2.2.1 对数率分布 2.2.2 指数率分布 2.3 风速频率分布 2.4 风能 2.5 地形和风 2.5.1 日本各地由于区域地理环境形成的地形风 2.5.2 峡谷风 2.5.3 山脉对气流的抬升作用 2.6 风况分布图 2.6.1 局部地区风况预测模型LAwEPS

2.6.2 风况分布图 2.6.3 风速的历年变化 3 风力发电机组的布置 3.1 风和风能 3.2 风的特性 3.2.1 海陆风 3.2.2 山谷风 3.2.3 季风 3.2.4 高压低压引起的风 3.2.5 台风 3.2.6 地理环境形成的地形风 3.3 风的统计分析 3.3.1 逐时、月、年平均风速 3.3.2 风向玫瑰图 3.3.3 风速频率分布 3.3.4 威布尔分布 3.3.5 风功率密度 3.4 年发电量 3.5 风况数据的利用 3.5.1 风况观测站 3.5.2 日本的风况分布图 3.6 影响风况的各种因素 3.6.1 地表面的粗糙度 3.6.2 地形 3.6.3 障碍物 3.7 风况预测 3.7.1 基于风况观测数据进行风况预测的方法 3.7.2 利用气象模型进行风况预测方法

(完整word版)新能源发电的调研报告(精)

新能源发电的调研报告 随着全球范围内能源危机的冲击和环境保护及经济持续发展的要求,开发利用新能源和可再生能源成为大多发达国家和部分发展中国家21世纪能源发展战略的基本选择。从70年代开始,我国政府就积极倡导新能源的研究与开发、推广与应用,并坚持讲求效益的方针;1992年世界环境与发展大会后,又提出了因地制宜地开发和推广风能、太阳能、潮汐能、生物质能(垃圾)、地热能等新能源的方针。 当今社会.电力已是现代文明的象征.一个国家的人均用电量往往是该国经济发展水平的标志然而仅仅依靠煤、石油、天然气和核能发电,已面临着资源枯竭和环境污染的双重压力.已不能适应世界人口和经济持续发展的需要人们迫切地呼唤新能源,希望用洁净的、可再生的能源发电来取代煤电、油电、气电和核电。 新能源与可再生能源.是指除常规化石能源和大中型水利发电、核裂变发电之外的太阳能、风能、生物质能、海洋能以及地热能等一次能源这些能源资源丰富、可以再生、清洁干净,是最有前景的替代能源.将成为未来世界能源的基石。 我国自然能资源非常丰富,开发潜力巨大,然而,由于技术、资金以及政策引导等方面的原因,新 能源的开发步伐明显滞后。至2000年底,我国风能、太阳能等新能源发电约为33×104kW,只占我国电力装机总容量的0.4%。因此,推动新能源产业的快速发展,已成当务之急。 自20世纪70年代以来,许多国家开展了对新型可再生能源的研究、开发和利用工作,到目前为止, 除水电外,全世界可再生能源发生的总容量已经接近4×144MW,占全世界总装机容量的1%。其中风力发电装机容量已达到1.8×104MW,太阳能光伏发电装机容量近的1×104MW。美国、日本、澳大利亚等国家和欧盟都制订了相关政策积极发展新能源产业。

风力发电及其控制技术研究 (2)

风力发电及其控制技术研究 风力发电是当前我国经济社会发展中,是具有代表性的一种环保型的发电方式,对于推动社会经济可持续性增长具有不可比拟的积极作用。本文以风力发电为切入点分析其现存问题,就提出具体的控制技术要点进行深入探究,旨在为相关从业人员积累更多的实践经验。 标签:风力发电;控制技术;发展前景 我国风力发电技术水平在不断提高,但是仍旧有许多问题亟待解决,所以要正视目前风力发電技术存在的问题,积极争取社会各方的支持,在原有的基础上不断突破创新,投入一定的资金,不断完善相关政策,从而实现风力发电技术的良性发展,让风力发电技术真正成为我国电力供应的主流技术。 1加强风力发电控制的重要性 由于自然风速度快慢及方向大小存在着明显差异性,客观上要求相关技术人员重视风力发电控制技术,例如:控制机组切入及切出电网、限制输出功率、检测风轮运行期间中各种故障予以保护等。近几年来我国风力发电控制技术日趋成熟,即由定桨距恒速运行技术向变桨距变速运行技术转变,基本达到预期的生产目标。从风力发电机组角度来看,以调节机组功率为核心技术之一,其调节方法可划分为变桨距调节、定桨距失速调节及主动失速度调节。目前我国风力发电机组基本实现变桨距变速运行,结合风速风向的变化情况基本实现脱网、并网及调向控制各个发电机组,充分发挥变距系统作用,控制机组转速及功率。 2当前我国风力发电技术存在的问题 2.1风力资源分布不均 我国的国土面积十分广阔,每个地区的自然环境也有着很大差异,所以不同地区的风力资源分布十分不均匀,这就给风力发电工作带来了一定的困难。目前我国风力发电影视工作呈现出了,东南沿海和西北内陆发达,中部落后的趋势,风力发电事业发展十分不均衡。 2.2产业结构不合理 风力发电技术在我国不断更新发展,单机容量不断扩充,目前已经取得瞩目的进步,但是当前整个行业的产业结构仍然缺乏完善性,在零部件生产和产品创新方面,大多数发电技术都已经取得良好成果,实现了经济效益,但在核心零件生产过程中,仍没有实现自主式创新和开发,电力企业在进行风力发电技术改造时,大部分设备都来源于国外,国内缺乏独立资助的研发团队,这也进一步导致风力产业结构发展失衡,所以,还需要进一步加速产业结构变革,促进产业结构转型,形成完整的、具有发展潜力的风力发电产业结构。

风能发电3000字论文

关于新能源风能发电论文 姓名:王刚 班级:0801013328

风能发电 在不断持续的能源紧张中,不少人想到了新能源利用。利用洁净的能源(可再生能源)是人类社会文明进步的表现、是科学技术的发展、是环保理念的体现。洁净能源指太阳能、风能、潮汐能、生物能等,这都是可再生取之不尽的能源,特别是风能技术最为成熟,经济可行性较高,是一种较理想的发展能源。风是地球上的一种自然现象,它是由太阳辐射热引起的。风能是太阳能的一种转换形式,是一种重要的自然能源。太阳照射到地球表面,地球表面各处受热不同,产生温差,从而引起大气的对流运动形成风。据估计到达地球的太阳能中虽然只有大约2%转化为风能,但其总量仍是十分可观的。全球的风能约为2.74×109MW,其中可利用的风能为2×107MW,比地球上可开发利用的水能总量还要大10倍。 我国风能资源总量约42亿千瓦,技术可开发量约3亿千瓦。目前东南沿海是最大风能资源区,风能密度为200W/M2~300W/M2,大于6m/s的风速时间全年3000h以上就可取得较大经济效益。 一风力发电的现状 21世纪是可再生能源的世纪,由于风能非常丰富、价格非常便宜、能源不会枯竭,又可以在很大范围内取得,非常干净、没有污染,不会对气候造成影响,因而风力发电具有极大的推广价值。在中国,风能资源丰富的地区主要集中在北部、西北和东北的草原、戈壁滩以及东部、东南部的沿海地带和岛屿上。这些地区缺少煤炭及其他常规能源,并且冬春季节风速高,雨水少;夏季风速小,降雨多,风能和水能具有非常好的季节补偿。另外,在中国内陆地区,由于特殊的地理条件,有些地区具有丰富的风能资源,适合发展风电,比如江西省都阳湖地区以及湖北省通山地区。目前我国的风能利用方面与国际水平还在一定差距,但是发展很快,无论在发展规模上还是发展水平上,都有很大提高。据资料显示,2004年全国在建项目的装机容量约150万千瓦,其中正在施工的约42万千瓦,可研批复的68万千瓦,项目建议书批复的45万千瓦,包括五个10万千瓦特许权项目。 江西都昌老爷庙风电场风能资源丰富,建设条件较好,已被列为全国大型风电场预可研项目。目前,江西省能源结构性矛盾突出,一次能源只有煤炭和水电;而且电煤大部分需要从省外运入,水电开发程度又较低。风电和水电具有不同步发生规律,风力发电高峰处于秋季与冬季,水利发电高峰期处于春季和夏季,风电和水电具有季节性特性,可实现季节性互补;风力发电是环保型可再生能源,可改善电源结构,替代一部分火电容量,节约煤炭,减少污染,保护环境。 据资料显示,“十一五”末九江电网电力开始出现缺额,2010年缺额将达158兆瓦。老爷庙风电场的建设,可以缓解九江电网电力不足的矛盾,满足九江电网日益增长的电力需要;同时可就近向当地供电,减少了长距离输送的网损,提高供电可靠性和经济性。 据初步测算,目前风电场造价成本约为8000~9000元/KW,机组(设备)占75%左右,基础设施占20%,其它占5%。风能利用小时数在2700~3200小

风力发电机及风力发电控制技术研究

风力发电机及风力发电控制技术研究 摘要:基于对风力发电机及风力发电控制技术的研究,首先,阐述风力发电机 基本内容。然后,分析风力发电控制技术具有减少环境污染、减少能源消耗等重 要作用。最后,对风力发电控制技术进行分析,包括传统控制技术、智能控制技 术等。 关键词:风力;发电机;风力发电控制技术 社会的快速发展带来的是,环境污染、能源消耗、资源浪费等一系列问题。此类 问题的出现,对人们生活质量与生活水平的提升会产生很大影响。实现人类与环 境的和谐发展与共同进步,我国针对环境污问题、能源资源浪费问题,出台各种 政策条例,将发展清洁能源作为重点与关键。因此,风能以及风力发电受到更多 人的重视与关注,无论是风力发电机,还是风力发电控制技术,都得到进步与完善。所以,本文将针对风力发电机及风力发电控制技术相应内容进行阐述。 1、风力发电机基本概述 风力发电在缓解能源危机中发挥着不可替代的作用,因为风力发电具备可再生、 清洁等优势,在全世界范围内得到重视与关注(如图一)。传统风力发电机的类 型有很多,比如,有刷双馈异步发电机、垄型异步发电机等。垄型异步发电机在 实际工作过程中,要对电容器进行合理应用,使用电容器的主要原因就是无功补偿。垄型异步发电机同步转速,相较附近的恒速转速要高,在垄型异步发电机运 行期间,可以使定桨距失速方式。有刷双馈异步发电机在应用过程中,促使功率 变化器的功率降低。同步发电机其转速相对较低、轴向尺寸较小,因此,可以将 其应用在启动力矩较大的电机并网中,这样可以将同步发电机的作用与价值发挥 出来。在如今社会快速发展背景下,使得风力发电机也得到一定完善与创新,比如,目前使用较为广泛的永磁无刷同步发电机、永磁同步发电机以及无刷双馈异 步发电机等。在这其中无刷双馈异步发电机的自身优势较为明显,比如,结构较 为简单、有着较强裹在能力,有着较高的运行效率,运行的可靠性与安全性能够 得到保障。将传统标准型的双馈电机运行中存在的问题在最大程度上弥补,具有 垄型异步发电机优点。不同风力发电机都有着自身优势与特点,因此,对于不同 风力发电机都要有正确认识,这样才能达到良好风力发电效果。 2、风力发电控制技术的重要作用 风力发电控制技术应用的重要作用主要体现在以下几点中:(1)在风力发电中,通过对风力发电控制技术的科学合理应用,使得风力发电控制技术的应用范围与 推广范围得到拓展。在一定程度上,缓解我国能源紧张与能源压力问题,减少对 资源的消耗。提升工作质量与工作效率,促使风力发电能够在我国得到更好发展,同时推动风力发电能够朝着智能化与现代胡方向进步。(2)特别是在大型风力 发电控制工作中,将风力发电控制技术优势发挥出来[1]。可以减少对土地资源的 占用,系统运行功率也将会得到提高。变桨距以及变速恒频技术的优化与完善, 将规模局限性问题更好解决。特别是在对直驱技术的应用中,可以节约更多风力 发电费用成本,提升资源利用率。通过该种方式,可以创造更多经济效益、社会 效益以及生态效益,防止对周围环境造成破坏。 3、风力发电控制技术分析 3.1传统控制技术

21世纪新能源之风力发电 感想

风力发电原理及现状 摘要:能源短缺和地球生态环境污染已经成为人类面临的最大问题。节能减排,寻找可再生的清洁能源,已经是能源发展的必然趋势。风能,作为21世纪可再生的清洁的新能源,已被人们广泛地关注。随着电力技术的不断进步及风能产业的不断发展,风能将给人们带来无尽的财富。本文介绍了风力发电的原理,风能的利用形式,以及国内外风能发展情况。 关键词:能源;风力发电;原理;优缺点;现状; Abstract: Nowadays, we are facing a major problem on the shortage of energy and the pollution of the earth's ecological environment. It is an inevitable trend to save energy and reduce emission. We are eager to look for some new energy. And wind energy, as a renewable clean energy in twenty-first Century, has been widely concerned by people. With the development of wind energy industry, it will give us endless fortune. This essayfocuses on the principle of wind energy, the use of wind energy, and the current situation of wind energy internal and enternal. Keywords: power; wind energy; principle; advantages; present situation 正文: 能源短缺和地球生态环境污染已经成为人类面临的最大问题。本世纪初进行的世界能源储量调查显示,全球剩余煤炭只能维持约216年,石油只能维持45年,天然气只能维持61年,用于核发电的铀也只能维持71年。另一方面,煤炭、石油等矿物能源的使用,产生大量的CO2、SO2等温室气体,造成全球变暖,冰川融化,海平面升高,暴风雨和酸雨等自然灾害频繁发生,给人类带来无穷的烦恼。根据计算,现在全球每年排放的CO2已经超过500亿吨。我国能源消费以煤为主,CO2的排放量大约占世界的25%,位居世界第一,所以减少排放CO2、SO2等温室气体,已经成为刻不容缓的大事。推广可再生能源是今后的必然趋势。 风能,随着地球大气的往复运动,周而复始地循环,几十亿年内不会枯竭,因此我们把它们称为可再生能源。风力发电,作为21世纪可再生的清洁的新能源,已被人们广泛地关注。风力发电是新能源中技术中相对成熟的、较具规模开发条件和商业化发展前景的发电方式之一。风力发电区别于传统的火力发电,它所用的资源是取之不尽而用之不竭的。所以我们更加需要利用好这大自然给予我们的恩赐。 风能利用形式,主要有两大类: 1.直接利用风能:直接利用风能驱动设备,也就是我们俗话说的风车。它在农村中经常还能见到用来灌溉农田的装置。这是一种最朴素的风能利用方式,也是最实在的。 2.间接形式:即将风能转化为电能。电能可谓是18,19世纪最伟大的发现,如今,电能可以被我们利用到世界的各个角落。风力发电,通过电网传输到需要的地方,这便间接地利用了风能。虽说过程要比风车复杂,但他的应用范围有了质的飞跃。 风力发电原理 风力发电的原理,其实和其他的发电方式都是一样的,总归是让发电机的轴“动起来”,从而切割磁感线自由电子因受到洛仑兹力,而出现了定向运动,这就是我们所学过的右手定则,金属阳离子则向另一端运动,这便产生了电势差,从而有了电能。

相关主题
文本预览
相关文档 最新文档