当前位置:文档之家› 精馏塔开题报告

精馏塔开题报告

精馏塔开题报告
精馏塔开题报告

DN700甲醇精馏塔设计

一、甲醇精馏塔设计的背景与意义

精馏塔是化工工业中广泛使用,是分离工艺中的重要设备。而精馏是甲醇生产的重要后处理工序,在甲醇生产中占据重要的位置。甲醇精馏塔是精馏的核心设备,它与产品质量回收率消耗定额三废排放及处理等方面密切相关甲醇精馏塔既可采用板式塔,也可采用填料塔。近年来,我国精馏塔内件技术有了长足发展,如高效导向筛板、新型垂直筛板、新型导向浮阀塔板及新型规整填料等技术开始被广泛采用[1]。

甲醇精馏装置是甲醇生产的重要处理工序,其能耗占甲醇生产总能耗20%左右。甲醇精馏技术的好坏直接关系到精甲醇的质量;先进、节能、高效的精馏装置,对降低成本、节能降耗、提高产品竞争力和企业经济效益起到重要的作用。

加强对甲醇精馏塔的研究与改进,不断满足化学工业的要求,达到低成本、低耗能、节能环保、绿色高效等要求,有利于我国化学工业科学快速的发展,不断赶上国际以及发达国家的脚步,提升自己的竞争实力。

二、国内外对本课题的研究现状

现阶段,国内外的研究聚焦于新型高效性能塔板的开发及工业应用;塔板设计、开发更趋于科学化的方向。在填料塔研究方面,不断研究新型、高效的填料来提高填料塔的效能。随着时代的发展,国内外对精馏塔的研究更趋向于经济、安全、高效、清洁方向发展,推动精馏设备的前进与发展。

2.1精馏塔的发展

从精馏设备的历史发展来看,精馏技术与石油、化学加工工业的发展是相辅相成、相互刺激、共同进步的发展关系。精馏技术的任何进步,都会极大刺激化学加工工业的技术发展,同样在石油、化学加工工业发展的每一个历史阶段都会对精馏设备技术提出更高的要求。

①.阶段一:20~50年代

●1920年,有溢流的泡罩塔板开始应用于炼油工业,开创了一个新的炼油时代

●泡罩塔板对设计水平要求不高、对各类操作的适应能力强、对操作控制要求低等特性在当时被认为

是无可替代的板型

●Rachig环填料塔主要应用于较小直径的无机分离塔设备中,同时也开发了Pall环,标志着现代乱

堆填料的诞生

②.阶段二:50~70年代

●消除放大效应的研究:AIChE研究

●浮阀塔板的开发

●FRI的成立

●系统化的设计方法:1955年,Monsanto公司的Bolles发表了著名的“泡罩塔板设计手册”,首先

提出了科学的、规范化塔板设计技术,该方法到目前为止仍然广泛流行

●大孔筛板的研究

③.阶段三:70~90年代

●大型液体分布器的基础研究,使得填料塔的放大研究成功,并在减压塔中应用获得极大的经济效益

和社会效益

●计算机应用(辅助精馏塔放大效应的研究,计算塔板效率;精馏过程设计)

●新型高性能浮阀塔板的开发及应用

④.阶段四:80末至今

●新型高效性能塔板的开发及工业应用

●塔板设计、开发更趋于科学化的方向

现有精馏设备的优点:

●结构简单,造价低;

●生产能力大,分离效率高;

●操作弹性大,精馏效率较高。

所存在的问题:

●对原材料的适应性存在差异;

●容易堵塞,不宜处理易结焦、粘度大的物料;

●生产能力和工作效率有待提高。

新型精馏设备的研究与发展趋向是全面的把高速、高效与简化结构结合起来。较之旧型设备,性能都有所改进,材料与加工方面也有节约。但它们都多少还存在某些问题和不足,如操作稳定性尚差,气液分配还有一定的缺陷。当然随着进一步研究和生产数据的完善,新型精馏设备和其他化工设备一样,将不断更新换代,日趋完善。为国际化学生产服务,为经济社会发展服务。

2.2国内对甲醇精馏塔的研究现状

我国塔设备技术的发展,经历了一个漫长而又艰辛的过程。自新中国成立以后,随着我国工业的快速发展,我国陆续建立了一批现代化的石油化工装置。随着这些装置引进的新型塔设备,不仅在操作、使用这些设备方面提供了大量的第一手资料,还带动了塔设备的科研、设计工作,加速了这方面的技术开发。

塔器是工业广泛应用的重要单元设备。在目前操作的塔器中,仍以板式塔为主,但开发应用新塔,则以填料塔为主导。其中,金属环矩鞍、阶梯环、朗博帕克和各种波纹填料已接近理想填料,具有传质效率高、通量大、压降低和价格合理等特点,性能优于传统填料,集中代表了现代塔填料水平。填料塔的放大技术取得重大突破,出现了新型填料塔不仅取代传统填料塔而且也部分代替大型板式塔,乃至形成在炼

油和石油化工行业与板式塔抗衡的新局面。估计世界应用新型填料塔已不下万座,产生了巨大的经济效益和社会效应。这就是新型填料塔分离技术主要发展趋势。我国要继续跟踪国外塔分离技术最新发展动向,在已有基础上及时赶上和达到国际先进水平,创造更大经济效益和社会效益[2]。

在化工生产中,无论是精馏还是吸收、解析或萃取,其目的都是为了使得混合液中不同馏程的组分得以分离。

目前,我国常用的板式塔型仍为泡罩塔、浮阀塔、筛板塔和舌形塔等[3]。目前板式塔的形式已有一百多种,在化工生产中最广泛应用的是泡罩塔、浮阀塔及筛板塔。

塔板技术的发展:

●开孔方式及其新开孔构件的发展;

●塔板空间的合理利用;

●新降液管结构

●气液接触构型的复合和交融

通过以上对现有塔设备技术发展的评述得出,国内现有板式塔设备技术的发展是在传统简单机制技术基础上的深化和完善,并在当前工业应用中表现出优良的操作性能,获得了可以满足现有生产要求的操作效果。

精馏是应用最广和规模最大的传质分离过程。在化学工业中精馏设备的研究占有较大的比重,特别是在改革开放初期,设备研究论文数量比例较大,精馏过程模拟也是被普遍关注的研究课题,这与我国化学工业的高速发展对精馏装备及其设计的需求是相适应的。进入21世纪以来,对采用反应精馏等非常规精馏方法实现精馏过程强化研究的关注显著增加,反映出我国精馏研究向复合过程创新研究方面发展的趋势。这和我国化学工业的发展以及节能的倡导有所相关[4]。

精馏塔设备在生产过程中维持一定的压力、温度和规定的气液流量等工艺条件,其设备的性能对产品质量、产量、生产能力和原材料消耗以及三废处理和环境保护等,都有重要的影响。是化工生产过程中必不可少的设备。

中国甲醇装置的整体技术装备水平,低生产工艺落后,发达国家以天然气合成甲醇的单位能耗一般低于30 GJ/t ,而中国生产能力较大的甲醇装置能耗多在40~50GJ/t小装置,由于采用国外已淘汰的高压法,单位能耗大多在60 GJ/t左右,显然满足燃料甲醇大宗化、低成本生产的需要,采用先进工艺、建设(超)大型化装置是唯一出路[5]。

甲醇精馏技术的好坏直接关系到甲醇的质量,先进、节能、高效的精馏装置,对降低成本、节能降耗、提高产品竞争力和企业经济效益起到重要的作用。目前甲醇三塔精馏技术具有热利用率高、消耗低、易操作、产品质量好、环保效益高等特点,越来越多地被广泛推广和应用[6]。

填料塔具有结构简单、压降小,且可用各种材料制造等优点。在处理容易产生泡沫的物料以及用于真空操作时,有其独特的优越性。过去由于填料本体及塔内构件的不够完善,填料塔大多局限于处理腐蚀介质或不适宜安装塔板的小直径塔。近年来由于填料结构的改进,新型高效、高负荷填料的开发,即提高了塔的通过能力和分离效能,又保持了压力降小及性能稳定的特点,因此填料塔已被推广到所有大型气液中,在某些场合,还代替了传统的板式塔。随着对填料塔的研究和开发,性能优良的填料塔已被

大量的应用于工业生产中。

2.3国外甲醇精馏塔的研究现状

国外目前塔设备的研究方向是“在提高处理能力和简化结构的前提下,保持适当的操作弹性和压力降,并尽量提高塔盘的效率”,在新型填料方面则在努力的研究发展有利于气液分布均匀、高效和制造方便的填料。

国外出现了分隔壁精馏塔(Divided Wall Column,简称DWC)是一种完全热耦合的蒸馏塔,具有能耗低、投资少的优点。早在1933年,Luster因裂解气分离而提出了DWC概念,并申请了美国专利。最简单的隔板塔是在普通精馏塔中放人1块隔板,这样相当于2个精馏塔。因此更大程度的利用了能量,降低了能耗。

DWCs[7]利用于一个广泛的化学物质的分离,如碳氢化合物、醇类、醛类、酮类、缩醛和胺。原则上,DWCs都应用在板式塔和填料塔。然而,到目前为止,绝大多数已经由Montz建造和由BASF SE利用作为填料塔。现有的DWCs在具体特征上的细节是主要的秘密。DWCs通常比普通蒸馏塔大,它们的直径可达5米。对于超过三种成分混合物的分离,仅仅只有两个工业应用程序被报道过。

DWC共沸概念的集成、采掘和反应蒸馏原理表明显著降低了投资和运营成本。目前,工业应用领域只存在萃取蒸馏(BASF SE和UOP)。关于共沸和采掘的DWCs的文献是很稀少的。一些调查已经进行了,从实验和理论上来讲,对于反应性DWCs。一些模型已经被发展了,但是没有可以用的工业应用。

相比与传统的蒸馏塔,DWCs更加节能,需要的投资资本更少。最近DWC应用的快速扩张允许我们预计大约350个工业应用可以预见直到2015年。

近几年来, 国外对DWC技术的研究和应用都十分重视。美国、德国、日本、英国等都有专门的研究机构。而我国在这方面还没有进行研究, 加快这一技术的开发和工业化步伐,有自己的知识产权, 是推进我国炼油、石化及化工行业的一项重要内容。

总之, DWC 技术是具有独特作用的精馏。它在化学工业中的应用越来越广泛, 将取得的成果逐步加以推广, 必将创造极大的经济效益。

三、甲醇精馏塔的设计

3.1甲醇精馏塔设计的原始资料

设计一套甲醇回收装置,进料温度86℃,回流液温度63℃,进料中含甲醇76.39%(质量),进料流量2000kg/h,塔顶出料中含甲醇99.5%,经精馏后残液含甲醇1%。精馏塔直径为Φ700,设计压力0.55MPa,设计温度160℃,介质为甲醇和水的混合物;再沸器直径为Φ1100,采用内置管盘加热,管内压力为0.9MPa,设计温度200℃,介质为水蒸汽。再沸器采用立式容器结构,整套装置支撑在裙座上。

3.2设计要求

完成装置总体结构设计,重点完成再沸器结构设计,以及各零部件的强度计算。

●完成设计说明书1份

●完成设计图纸(总装配图和零部件图等折合3张零号图纸)

●完成文献综述1份

●完成外文翻译1份

3.3设计步骤

本设计的研究方法主要是结合设计内容和设计条件,参阅相关塔设备设计的资料,按照塔设备设计的要求进行设计,以达到培养我们设备设计工程概念的目的。塔设备的设计一般主要包括两个部分:工艺设计和机械设计。工艺设计中要初步确定各阶段混合物的物理特性,由计算得出的具体数据再进行塔高、塔径的最基本设计,主要是与填料有关的各种计算,在工艺设计的最后还要进行塔的附属设备设计。进入塔设备的机械设计部分后,塔的结构形式渐渐明朗化。机械部分要解决的问题,除了确定塔设备的各细节结构外,更重要的就是要做各种校核工作,以保证设计完成的塔设备不仅能够正常运转,而且必须符合国家安全生产的标准。其校核内容主要包括:质量载荷、地震载荷、风载荷等,还包括强度及稳定性校核。在完成设计部分的任务后,就进入画图阶段。均采用计算机绘图,并严格按照设计尺寸进行绘制。

本设计的研究的步骤:

①.工艺设计计算

●物料衡算

●热量衡算

●理论塔板数的计算

●确定填料高度,确定塔高、塔径

②.结构设计计算

●塔体总体结构设计

●附属设备以及主要附件的选型计算(冷凝器、再沸器、液体分布器、进料液分布器、除沫器、

填料支撑板)

●零部件设计,包括接管、裙座、人孔、塔内件、塔体辅助设备、法兰、吊柱以及平台扶梯

③.强度校核对塔体、封头、裙座等进行强度计算和稳定性校核

④.绘制图纸

⑤.提出技术要求

⑥.编写设计说明书,整理图纸

3.4预期需要解决的困难

●采用内置管盘加热,需要解决内置管盘结构、安装、热力学以及力学强度计算等困难

●采用立式容器结构,整套装置支撑在裙座上,需要查阅相关标准,认真计算强度,选择合适的

材料以及适当的配件,达到安全、节能、高效的要求

●介质为甲醇和水的混合物,设计压力0.55MPa,设计温度160℃,需查阅相关国家标准,进行

热力学计算

3.5选题特色

精馏塔是化工工业中广泛使用,是分离工艺中的重要设备。而精馏是甲醇生产的重要后处理工序,在甲醇生产中占据重要的位置。进行此次课题的研究,可以了解目前化工工业的发展与现状,了解目前最新的科研成果和发展动向,有利于加强未来从事这方面工作的我对化工工业工作的认识。而对本课题甲醇精馏塔的设计也将为满足低成本、低能耗、高效率、节能环保的要求而不懈努力。最后结合画图软件CAD或者SolidWorks进行制图工作,完成甲醇精馏塔的设计工作。

4、研究工作总体安排与时间进度

参考文献

[1] 王海义. 甲醇精馏塔新型高效塔板及填料简介[J]. 民营科技, 2010, 11: 013.

[2] 褚雅志, 向小凤, 付亚玮, 等. 塔器技术新进展[J]. 化工进展, 2007 (z1): 1-7.

[3] 郑津洋,董其伍,桑芝富.过程设备设计[M],北京:化学工业出版社,2010.

[4] 余国琮, 袁希钢, 李根浩. 六十年来《化工学报》上发表有关精馏过程论文的回顾[J]. 化工学报, 2013, 64(1): 11-27.

[5] 王乃继, 纪任山, 王昕, 等. 含氧燃料—甲醇合成技术发展现状分析 (一)[J]. 洁净煤技术, 2004, 10(1): 29-34.

[6] 褚立志. 甲醇三塔精馏工艺[J]. 河北化工, 2010 (6): 50-52.

[7] ?mer Yildirim,Anton A. Kiss,Eugeny Y. Kenig. Dividing wall columns in chemical process industry:

A review on current activities. Separation and Purification Technology 80 (2011) 403–417.

[8] 陈敏恒,丛德滋,方图南等,化工原理[M],北京:化学工业出版社,1999.

精馏塔的计算

本次设计的一部分是设计苯酐轻组分塔,塔型选用F1浮阀塔,进料为两组分进料连续型精馏。苯酐为重组分,顺酐为轻组分,从塔顶蒸除去,所以该塔又称为顺酐塔。 确定操作条件 顺酐为挥发组分,所以根据第3章物料衡算得摩尔份率: 进料: 794.0074.4323 9072 .5x F == 塔顶: D x = 塔底: w x = 该设计根据工厂实际经验及相关文献给出实际回流比R=2(R=),及以下操作条件: 塔顶压力:; 塔底压力:; 塔顶温度:℃; 塔底温度:℃; 进料温度:225℃; 塔板效率:E T = 基础数据整理 (1)精馏段: 图5-1 精馏段物流图 平均温度: ()01.17122502.1172 1 =+℃

平均压力:()=?? ? ????+? ?-?333100.107519.75100.10100.30213103.015?pa 根据第3章物料衡算,列出精馏段物料流率表如下: 标准状况下的体积: V 0=2512.779.42234.7880=?Nm 3/h 操作状况下的体积: V 1=6 36 10101.01003.1510101.027301.1712732512.779?+???+? = Nm 3/h 气体负荷: V n =3064.03600 1103.2112 = m 3/s 气体密度: =n ρ0903.32112.11033409.2240 = kg/m 3 液体负荷: L n =9470.036003409.2240 = m 3/s ℃时 苯酐的密度为1455kg/m 3 (2)提馏段: 图5-2 提馏段物料图 平均温度: ()01.23122502.2372 1 =+℃ 入料压力:()Pa k 9.1475 19 751030=-?-

cmos4046集成电路研究锁相环(pll)的工作原理毕业外文翻译

本实验要使用CMOS4046集成电路研究锁相环(PLL )的工作原理。电路包括两个不同的鉴相器和一个VCO 。另外还有一个齐纳二极管参考电压源用在供电调节中,在解调器输出中有一个缓冲电路。用户必须提供环路滤波器。4046具有高输入阻抗和低输出阻抗,容易选择外围元件。 注意事项 1. 本实验较为复杂,进入实验室之前,确认你已经弄懂了电路预计应该怎样工作。对某样东西还没有充分分析之前,不要去尝试制作它。在开始实验之前要通读本文。 2. 在实验第一部分得到的数据要用来完成实验的其它任务。 所以要仔细对待这部分内容。 3. 小心操作4046芯片,CMOS 集成电路很容易损坏。避免静电释放,使用10k Ω电阻把信号发生器的输出耦合到 PLL 。在关掉4046供电电源之前先关闭信号发生器,或者从信号输入端给整个电路供电。要避免将输出端对电源或对地短路,TTL 门电路可以容忍这种误操作但 CMOS 不能(要注意松散的导线)。CMOS 输出也没有能力驱动电容负载。VSS 应该接地,VDD 应该接5V ,引脚5应该接地(否则VCO 被禁止)。 1 VCO 工作原理 阅读数据手册中的电路描述。 VCO 常数(0K 单位为弧度/秒-伏)是工作频率 变化与输入电压(引脚9上)变化之比值。测量出0K ,即,画出输出频率关于 输入电压的曲线。确认数据范围要覆盖5kHz 到50kHz 。对于R1, R2 和C 的各种参数取值进行测量,确定 0K 对于R1 ,R2 和C 是怎样的近似关系。测量VCO 输出的上升和下降时间,研究电容性负载的影响。2 无源环路滤波器 无源环路滤波器位于鉴相器输出与VCO 输入之间。此滤波器对鉴相器输出中 的高次谐波进行衰减,并控制环路的强度。通常用一个简单 RC 滤波器就可以满足要求,这种设计能避免有源滤波器设计中固有的电平移动和输出限制的恼人问 题。但另外一方面,有源滤波器可以提供更优越的性能。 2.1 相位比较器首先来看一下4046的相位比较器II 的输出。该输出端是一个三态器件,这可以在环路锁定时减小波纹。与存在两倍基频拍频的情况不同,这里没有任何拍频。糟糕的方面是,当我们需要为环路建立一个框图时, D K 却不能很好地定义。当向上或向下驱动之一接通时,输出端表现为电压源。但是当输出端悬浮时,它实质上为一个电流源(一个 0A 电流源)。因此D K 的值将依赖于给定的滤波器。考 察图1。 图1 相位比较器II 的输出 图中当向上驱动器接通时,相位比较器输出为 5PO v V ,当向下驱动器接通时,0PO v V ,当相位比较器处在开路状态时,PO D v v 。我们可以求出输出的平均值:

(完整版)精馏例题

例7—4 欲将65000kg /h 含苯45%、甲苯55%(质量百分率,下同)的混合液在一连续精馏塔内加以分离,已知馏出液和釜液中的质量要求分别为含苯95%和2%,求馏出液和釜液的摩尔流率以及苯的回收率。 解 苯和甲苯的摩尔质量分别为78kmol/kg 和92kg/mol 进料组成 4911.092 /55.078/45.078/45.0=+= F x 产品组成 9573.092 /05.078/95.078/95.0=+=D x 0235.092/98.078/02.078/02.0=+=W x 进料平均摩尔质量 kg kmol M x M x M B F A F F /12.8592)4911.01(784911.0)1(_____=?-+?=-+= 则 h kmol F /6.76312 .8565000== 根据式(7—29)得 h kmol F x x x x D W D W F /4.3826.7630235 .09573.00235.04911.0=?----== 所以 W =F -D =763.6-382.4=381.2kmol/h 苯的回收率 %6.97%1004911 .06.7639573.04.382%1001=????==F D Fx Dx η 例7-5 分离例7-4中的苯-甲苯溶液。已知泡点回流,回流比取3。试求: (1) 精馏段的气液相流量和精馏段操作线方程; (2) 泡点进料和50℃冷液进料时提馏段的气液相流量和提馏段操作线方程。 解: (1) 精馏段的气液相流量和精馏段操作线方程 精馏段的气液流量由回流比及馏出液流量决定,即 h kmol D R V /6.15294.3820.4)1(=?=+= h kmol RD L /2.11474.3820.3=?== 精馏段操作线方程由式(7-34)计算,即 2393.075.09573.01 3113311+=?+++=x x R x x R R y D +=++ (2) 提馏段的气液相流量和提馏段操作线方程 在其他操作参数一定的情况下,提馏段的气液相流量即操作线方程受进料热状况的影响。 ① 泡点进料,q=1,则由式(7-43)得 h kmol F q V V h kmol qF L L /6.1529)1(/8.19106.7632.1147=--='=+'=+= 代入提馏段操作线方程(7-38)得 00586.0249.16 .15290235.02.3816.15298.1910-=?--'--''=x x x W L W x W L L y W = ② 50℃冷液进料. 根据x F =0.4911,查常压下苯—甲苯的t-x-y 图,得泡点t b =94.2℃,露点t d =99.2℃。在平均温度为(92.4+50)/2=71.2℃下,查得苯和甲苯的质量比热容为1.83kJ /(kg·℃),于是料液在该温度下的比热容为 )./(8.15512.8583.1℃kmol kJ c PL =?=

基于Multisim的锁相环解调系统仿真毕业论文

基于Multisim的锁相环解调系统仿真毕业论文 目录 第1章绪论 (1) 1.1 研究背景 (1) 1.2 研究现状 (1) 1.3 研究容介绍 (2) 第2章基本原理 (3) 2.1 Multisim介绍 (3) 2.2 锁相环基本原理 (5) 2.2.1锁相环的基本组成 (5) 2.2.2 锁相环的工作原理 (5) 第3章调制解调电路设计 (8) 3.1 2FSK调制解调电路设计 (8) 3.1.1 2FSK调制电路设计原理 (8) 3.1.2 2FSK调制单元电路的设计 (9) 3.1.3 2FSK解调单元电路的设计 (13) 3.1.4 2FSK解调电路的整体设计 (15) 3.2 2PSK调制解调电路设计 (17) 3.2.1 2PSK调制解调电路设计原理 (17) 3.2.2 2PSK调制与解调电路的设计与仿真 (18) 3.3 2ASK调制解调电路设计 (19) 3.3.1 2ASK调制解调电路设计原理 (19) 3.3.2 2ASK调制与解调电路的设计与仿真 (20) 3.4 解调结果分析 (22) 总结 (24) 参考文献 (25) 附录:(外文翻译) (26)

致谢 (50)

第1章绪论 1.1 研究背景 实现调频波解调的方法有很多,而锁相环鉴频是利用现代锁相环技术来实现鉴频方法,具有工作稳定失真小,信噪比高等优点,所以被广泛用在通信电路系统中。锁相环路是一种反馈电路,锁相环的英文全称是Phase-Locked Loop,简称PLL。其作用是使得电路相位同步。因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,它还具有载波跟踪特性。作为一个窄带跟踪滤波器,可提取淹没在噪声中的信号;用高稳定的参考振荡器锁定,可提供高稳定的频率源;可进行高精度的香味与频率测量等等。如今锁相环解调器在通信、雷达、测量和自动化控制等领域应用极为广泛,随着电子技术的发展,对锁相环解调的研究和应用得到了越来越多的关注。 现在通过分析与研究,加深对锁相环解调方式的理解,并根据它的原理,设计出2FSK、2PSK、2ASK的调制电路,并通过锁相环解调出来。 1.2 研究现状 锁相环解调技术的发展十分迅速,如今已经在很多领域都应用了锁相环解调的理论。可用于手机中、SDH网络中、在汽车MP3无线发射器中‘测量汽车转速都是十分典型的应用。调频波的特点是频率随调制信号幅度的变化而变化,压控振荡器的振荡频率取决于输入电压的幅度。当载波信号的频率与锁相环的固有振荡频率ω0相等时,压控振荡器输出信号的频率将保持ω0不变。若压控振荡器的输入信号除了有锁相环低通滤波器输出的信号uc外,还有调制信号ui,则压控振荡器输出信号的频率就是以ω0为中心,随调制信号幅度的变化而变化的调频波信号。当然,锁相环的许多优越性使得锁相环解调技术在很多我们周围都可以见到的物品中发挥着其巨大的功效。 如今,锁相环路理论与研究日臻完善,应用围遍及整个电子技术领域。随着通信及电子系统的飞速发展,促使集成锁相环和数字锁相环突飞猛进。现在品种齐全繁多,提高系统的工作稳定性和可靠性和小型化,目前仍朝着集成化,数字化,多用化方向迅速发展。

化工原理精馏习题课图文稿

化工原理精馏习题课文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

第一章 蒸馏 1、熟悉气液平衡方程、精馏段操作线方程、提馏段操作线方程和q 线方 程的表达形式并能进行计算; 2、能根据物料进料状况列出q 线方程并用于计算,从而根据q 线方程、 进料组成还有气液平衡方程计算出点(x q ,y q ),再进一步计算出最小 回流比R min ;例如饱和液相进料(泡点进料)时,q 线方程式x=x F ,即 x q =x F ;而饱和蒸汽进料时,q 线方程式y=x F ,即y q =x F 。 3、掌握通过质量分数换算成摩尔分数以及摩尔流量的方法,要特别注意 摩尔流量计算时应该用每一个组分的流量乘以它们的摩尔分数而不是质量分数。 习题1:书上P71页课后习题第5题; 分析:本题的考察重点是质量分数与摩尔分数之间的转换,这个转换大家一定要注意,很多同学在此常会出错。在此我们采用直接将原料组成和原料流量都转换成摩尔量来进行计算,首先还是先列出所有题目给出的已知量,为了便于区分,建议大家以后再表示质量分数的时候可以使用w 来表示,而表示摩尔分数时使用x 来表示: ① 根据题目已知:w F =0.3,F=4000kg/h ,w w =0.05,另外还可以知道二硫 化碳的分子量Mcs 2=76,四氯化碳的分子量Mccl 4=154 根据这些条件可以先将进料和塔底组成转换成摩尔组成 ② =+F x =二硫化碳摩尔量二硫化碳质量分数二硫化碳分子量总摩尔量二硫化碳质量分数二硫化碳分子量四氯化碳质量分数四氯化碳分子量 0376=0.4650376+1-03154 F x =..(.) ③ 同理可以求出塔底组成

精馏塔的计算

1 平均温度:—117.02 2 本次设计的一部分是设计苯酐轻组分塔,塔型选用 F1浮阀塔,进料为两组分进 料连续型精馏。苯酐为重组分,顺酐为轻组分,从塔顶蒸除去,所以该塔又称为 顺酐塔。 确定操作条件 顺酐为挥发组分, 进料: 所以根据第3章物料衡算得摩尔份率: 5.9072 XF --------- 0.0794 74.4323 X D = X w = 塔顶: 塔底: 该设计根据工厂实际经验及相关文献给出实际回流比 R=2 (R=),及以下操 作条件: 塔顶压力:; 塔底压力:; 塔顶温度: 塔底温度: 进料温度: 塔板效率: C ; C ; 225 r ; E T = 基础数据整理 (1 )精馏段: 图5-1精馏段物流图 225 171.01 r

1 3 3 75 19 3 3 平均压力:2 30.0 10 10. 10 右 10.0 10 15. 03 10 pa E 时 苯酐的密度为1455kg/m 3 (2)提馏段: 平均温度:1 237.02 225 231.01 E 2 入料压力:30 10 互」9 14.9k Pa 75 物料 质量流量 kg/h 分子量kg/kmol 摩尔流量kmol/h 内回流 98 V o =34.788O 22.4 779.2512Nm 3 /h 标准状况下的体积: 根据第3章物料衡算,列出精馏段物料流率表如下: 表5-1 精馏段物料流率 操作状况下的体积: V 1=779.2512 273 171.01 273 0.101 106 15.03 103 0.101 106 气体负荷: 气体密度: 液体负荷: =Nm 3/h 1103.2112 Cd 3 Vn = 0.3064 m 3 /s 3600 3409.2240 c cccc . , 3 n 3.0903 kg/m 3 1103.2112 3409.2240 3 Ln= ----------- 0.9470 m 3 /s

手机电路图英汉翻译 英汉对照

模数转换 地址线 音频 自动频率控制控制基准频率时钟电路在手机电路中只要看到字样则马上可以断定该信号线所控制地是主时钟电路该信号不正常则可能导致手机不能进入服务状态严重地导致手机不开机有些手机地标注为文档收集自网络,仅用于个人学习 自动增益控制该信号通常出现在接收机电路地低噪声放大器被用来控制接收机前端放大器在不同强度信号时给后级电路提供一个比较稳定地信号文档收集自网络,仅用于个人学习告警属于接收音频电路被用来提示用户有电话进入或操作错误 铃声电路 放大器 先进地移动电话系统 天线用来将高频电磁波转化为高频电流或将高频信号电流转化为高频电磁波在电路原理图中找到就可以很方便地找到天线及天线电路文档收集自网络,仅用于个人学习 天线开关控制信号 自动频率控制通常出现在手机发射机地功率放大器部分(摩托罗拉手机比较常用) 自动功率控制参考电平 专用应用集成电路在手机电路中.它通常包含多个功能电路提供许多接口主要完成手机地各种控制文档收集自网络,仅用于个人学习 鉴权中心 音频 辅助 音频供电 背光 平衡不平衡转换 频段 频段选择只出现在双频手机或三频手机电路中该信号控制手机地频段切换 基带信号 电源 电池电压 广播信道 接收数据信号 发射数据信号 背景灯控制 偏压常出现在诺基亚手机电路中被用来控制功率放大器或其他相应地电路 屏蔽罩 发光 基站 基站控制器 频段切换 基站收发器 电池尺寸在诺基亚地许多手机中若该信号不正常会导致手机不开机 缓冲放大器常出现在电路地输出端 通信总线

蜂鸣器出现在铃声电路 带宽 卡 码分多址多址接人技术一种通信系统容量比更大其微蜂窝更小手机所需地电源消耗更小所以手机待机时间更长文档收集自网络,仅用于个人学习 小区 蜂窝 信道 检查 充电正电源 充电电源负端 时钟出现在不同地方起地作用不同若在逻辑电路则它与手机地开机有很大地关系在卡电路则可能导致卡故障文档收集自网络,仅用于个人学习 复制 金属氧化半导体 编译码器主要出现在手机地音频编译码电路 列地址线出现在手机地按键电路 串口 连接器 联系服务商 代码 耦合 覆盖 表示鉴相器地输出端 控制信号输出 发射控制输出端 中央处理器在手机地逻辑电路完成手机地多种控制 晶振 片选 数模转换 数据 数据总线 外接电源输入 直流接通 数字通信系统工作频段在频段该系统地使用频率比更高也是数字通信系统地一种它是地衍生物地很多技术与一样文档收集自网络,仅用于个人学习 频段选择信号 功率放大器输出地信号 射频接收信号 调解 检测 数字址 数字 二极管

精馏习题与题解

精馏习题与题解 一、填空题: 1. 精馏塔设备主要有_______、______、_______、________、_______。 ***答案*** 筛板塔 泡罩塔 浮阀塔 填料塔 舌形板板式塔 2. 在1个大气压.84℃时, 苯的饱和蒸气压P=11 3.6(kpa),甲苯的饱和蒸气压p=4 4.38(kpa),苯--甲苯混合溶液达于平衡时, 液相组成x=__________.气相组成y=______.相对挥发α=____. ***答案*** 0.823 0.923 2.56 3. 在精馏操作中,回流比增大,精馏段操作线与平衡线之间的距离________,需理论板_________。 ***答案*** 越远, 越少 4. 精馏的基本原理是________而且同时应用___________,使混合液得到较彻底的分离的过程。 ***答案*** 多次 部分冷凝和部分汽化 5. 精馏塔不正常的操作有:_________________________________________________。 ***答案*** 液泛、严重漏液、严重液沫夹带 6. 试述五种不同进料状态下的q 值:(1)冷液进料____;(2) 泡点液体进料_____;(3)汽液混合物进料___; (4)饱和蒸汽进料____;(5)过热蒸汽进料_______。 ***答案*** (1) q>1 (2) q=1 (3) 0<q<1 (4) q=0 (5)q<0 7. 已知精馏段操作线为y=0.75x+0.24,则该塔的操作回流比R=_______,塔顶产品组成x=_____。 ***答案*** 3, 0.96 8. 试比较某精馏塔中第n,n+1层理论板上参数的大小(理论板的序数由塔顶向下数起),即: 1+n y n y n t ___1+n t ,n y n x ***答案*** <, <, > 9. 精馏操作的依据是_________________ 。 实现精馏操作的必要条件包括_______________和_____________。 ***答案*** 混合液中各组分的挥发度差异。 塔顶液相回流 塔底上升气流 10. 某二元物系的相对挥发度α=3,在具有理论板的精馏塔内于全回流条件下作精馏塔操作,已知n x =0.3,则1+n y 塔顶往下数) ***答案*** ))1(1(n n n x x y -+=αα=3×0.3/(1+2×0.3) =0.563 1-n x =n y =0.563 1-n y =3×0.563/(1+2×0.563)=0.794 11. 精馏塔塔顶某理论板上汽相露点温度为d t , 液相泡点温度为b t 。 塔底某理论板上汽相露点温度为d t ,液相泡点温度为b t 试按温度大小顺序用>、=、<符号排列如下:_

精馏塔计算方法

目录 1 设计任务书 (1) 1.1 设计题目……………………………………………………………………………………………………………………………………………………………………… 1.2 已知条件……………………………………………………………………………………………………………………………………………………………………… 1.3设计要求………………………………………………………………………………………………………………………………………………………………………… 2 精馏设计方案选定 (1) 2.1 精馏方式选择………………………………………………………………………………………………………………………………………………………………… 2.2 操作压力的选择………………………………………………………………………………………………………………………………………………………………… 2.4 加料方式和加热状态的选择…………………………………………………………………………………………………………………………………………………… 2.3 塔板形式的选择………………………………………………………………………………………………………………………………………………………………… 2.5 再沸器、冷凝器等附属设备的安排…………………………………………………………………………………………………………………………………………… 2.6 精馏流程示意图………………………………………………………………………………………………………………………………………………………………… 3 精馏塔工艺计算 (2) 3.1 物料衡算………………………………………………………………………………………………………………………………………………………………………… 3.2 精馏工艺条件计算……………………………………………………………………………………………………………………………………………………………… 3.3热量衡算………………………………………………………………………………………………………………………………………………………………………… 4 塔板工艺尺寸设计 (4) 4.1 设计板参数………………………………………………………………………………………………………………………

示波器文献综述

目录 目录 目录 (1) 1、项目概述 (2) 2、数字示波器的基本原理及特点 (2) 2.1、基本原理 (2) 2.2、主要特点 (2) 2.3、主要技术指标 (3) 3、系统总体设计方案 (4) 3.1、方案论证比较 (4) 3.2、系统详细功能图 (7) 3.2.1、程控放大 (7) 3.2.2、高速A/D (7) 3.2.3、FPGA (8) 3.2.4、ARM处理器 (8) 4、参考文献 (8)

1、项目概述 示波器作为电子工程师常用的一种电子测量仪器,它能测试出高速变化的信号的不同电量,如电压、电流、频率、相位、调幅度等等。能够帮助工程师快速发现设计者存在的问题,用途十分广泛。然而传统的示波器体积大、功耗高、价格昂贵、对工作电压要求高等等的特性,让传统的示波器只能使用在实验室中,对于需要现场测量的一些信号,就可能有心无力了。相比较而言,手持示波器体积小,功耗低,工作电压要求低,使用方便灵活。手持示波器正在以这些优秀的性质,在市场上占据越来越多的比重。目前,国内具有自主知识产权的数字存储示波器产品还非常少,高昂的价格阻碍了数字存储示波器在生产和试验中广泛的应用。在研究剖析数字存储示波器产品工作原理的基础上,本文利用ARM+FPGA设计示波器,并详细论述了其设计和实现过程 2、数字示波器的基本原理及特点 2.1、基本原理 数字示波器就是利用A/D转换器将模拟信号转换为数字信号,然后存储在半导体存储器FIFO中,需要时从FIFO读取相应的数据,通过ARM处理器将读取到的数据显示在TFT 彩屏之上。数字示波器的主要性能取决于A/D转换器、FIFO读写速度、微处理器等,因此,相比较模拟示波器而言,数字示波器精度更高,处理速度可以达到更快。 2.2、主要特点 与模拟示波器相比较,数字示波器有很多特点,主要如下: 1、具备波形存储的功能,存储的时间可以无限延长,对于观察单次脉冲信号极为重要。

精馏塔工艺工艺设计方案计算

第三章 精馏塔工艺设计计算 塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。 板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。 本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。 3.1 设计依据[6] 3.1.1 板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度 T T T H E N Z )1( -= (3-1) 式中 Z –––––板式塔的有效高度,m ; N T –––––塔内所需要的理论板层数; E T –––––总板效率; H T –––––塔板间距,m 。 (2) 塔径的计算 u V D S π4= (3-2) 式中 D –––––塔径,m ; V S –––––气体体积流量,m 3/s u –––––空塔气速,m/s u =(0.6~0.8)u max (3-3) V V L C u ρρρ-=max (3-4) 式中 L ρ–––––液相密度,kg/m 3

V ρ–––––气相密度,kg/m 3 C –––––负荷因子,m/s 2 .02020?? ? ??=L C C σ (3-5) 式中 C –––––操作物系的负荷因子,m/s L σ–––––操作物系的液体表面张力,mN/m 3.1.2 板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计 W OW L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。 3 2100084.2??? ? ??=W h OW l L E h (3-7) 式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取E=1。 h T f L H A 3600= θ≥3~5 (3-8) 006.00-=W h h (3-9) ' 360000u l L h W h = (3-10) 式中 u 0ˊ–––––液体通过底隙时的流速,m/s 。 (2) 踏板设计 开孔区面积a A : ??? ? ??+-=-r x r x r x A a 1222sin 1802π (3-11)

精馏题库计算题精选(课堂版)

某双组分理想物系当温度t=80℃时,P A°=106.7kPa,P B°=40kPa,液相摩尔组成x A=0.4,试求: ⑴与此液相组成相平衡的汽相组成;⑵相对挥发度α。 解:(1)x A=(P总-P B°)/(P A°-P B°) ; 0.4=(P总-40)/(106.7-40) ∴P总=66.7kPa; y A=x A·P A°/P总=0.4×106.7/66.7=0.64 (2)α=P A°/P B°=106.7/40=2.67 j07a10011 用连续精馏塔每小时处理100 kmol含苯40% 和甲苯60% 的混合物,要求馏出液中含苯90%,残液中含苯1%(组成均以kmol%计)。 (1)馏出液和残液各多少kmol/h。 (2)饱和液体进料时,已估算出塔釜每小时汽化量为132kmol,问回流比为多少? 解:① F=D+W Fx F = Dx D+Wx W ∴ W=56.2kmol/h D= 43.8kmol/h ②∵q=1 V'=V ∴L =V-D=132-43.8=88.2 kmol/h R=L/D=88.2/43.6=2.02 j07a10019 在常压连续精馏塔中分离理想二元混合物,进料为饱和蒸汽,其中易挥发组分的含量为0.54(摩尔分率),回流比R=3.6,提馏段操作线的斜率为1.25,截距为-0.0187,求馏出液组成x D。 解: y q=x F=0.54 (1) 精馏段方程: y=0.7826x+0.217 x D 提段方程: y=1.25x-0.0187 (3) 式(1)与(3)联立得两操作线交点坐标x q=x=0.447, 将y q=0.54,, x q=0.447代入(2) 得x D=0.8764 j07b20014 在连续精馏塔中,精馏段操作线方程y=0.75x+0.2075,q线方程式为y=-0.5x+1.5x F试求 ①回流比R ②馏出液组成x D③进料液的q值 ④当进料组成x F =0.44时,精馏段操作线与提馏段操作线交点处x q值为多少? 并要求判断进料状态。 解:y=[R/(R+1)]x+x D/(R+1) ①R/(R+1)=0.75, R=0.75R+0.75, R=0.75/0.25=3 ② x D/(R+1)=0.2075 , x D=0.83 ③q/(q-1)=-0.5 , q=0.5/1.5=0.333 ④0.75x+0.2075=-0.5x+1.5 x F , 0.75 x q+0.2075=-0.5x q +1.5×0.44, x q=0.362 , ⑤0

精馏塔的工艺计算

2 精馏塔的工艺计算 2.1精馏塔的物料衡算 2.1.1基础数据 (一)生产能力: 10万吨/年,工作日330天,每天按24小时计时。 (二)进料组成: 乙苯212.6868Kmol/h ;苯3.5448 Kmol/h ;甲苯10.6343Kmol/h 。 (三)分离要求: 馏出液中乙苯量不大于0.01,釜液中甲苯量不大于0.005。 2.1.2物料衡算(清晰分割) 以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。 01.0=D HK x ,005.0=W LK x , 表2.1 进料和各组分条件 由《分离工程》P65式3-23得: ,1 ,,1LK i LK W i HK D LK W z x D F x x =-=--∑ (式2. 1) 2434.13005 .001.01005 .0046875.0015625.08659.226=---+? =D Kmol/h W=F-D=226.8659-13.2434=213.6225Kmol/h 0681.1005.06225.21322=?==W X W ,ωKmol/h 编号 组分 i f /kmol/h i f /% 1 苯 3.5448 1.5625 2 甲苯 10.6343 4.6875 3 乙苯 212.6868 93.7500 总计 226.8659 100

5662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=?==D X D d ,Kmol/h 5544.212132434.06868.212333=-=-=d f ωKmol/h 表2-2 物料衡算表 2.2精 馏塔工艺 计算 2.2.1操作条件的确定 一、塔顶温度 纯物质饱和蒸气压关联式(化工热力学 P199): C C S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=- 表2-3 物性参数 注 :压力单位0.1Mpa ,温度单位K 编号 组分 i f /kmol /h 馏出液 i d 釜液i ω 1 苯 3.5448 3.5448 0 2 甲苯 10.6343 9.5662 1.0681 3 乙苯 212.6868 0.1324 212.5544 总计 226.8659 13.2434 213.6225 组份 相对分子质量 临界温度C T 临界压力 C P 苯 78 562.2 48.9 甲苯 92 591.8 41.0 乙苯 106 617.2 36.0

外文文献引言分析

Harmonic PhasorAnalysisBased on ImprovedFFTAlgorithm Bo Zeng, Zhaosheng Teng, Yulian Cai, Siyu Guo, and Baiyuan Qing I.INTRODUCTION N ONLINEAR loads can introduce large harmonic current into power systems, which may lead to severe problems(e.g., meter malfunctions, equipment overheat, overvoltage, and data loss) [1]. In researches on eliminating or at least reducing the impacts of harmonics on power systems, harmonic phasor analysis has been one of the most vital problems that attract most attentions. 译文:电力系统中由于非线性负荷的存在产生大量的谐波电流,导致出现例如仪表故障、设备过热、过压和数据丢失等严重问题[1]。在研究消除或至少减少谐波对电力系统的影响时,谐波相量分析已经成为较重要和热门的方法。 分析:第一层简述研究领域,确定研究对象—电力系统谐波(harmonic of power systems )及研究的主流研究方法—谐波相量分析(harmonic phasor analysis ). The existing harmonic phasor analysis methods utilize a variety of techniques, such as the least square algorithms [2], Kalman filter [3], artificial neural network [4], Newton’smethod [5], Prony’s method [6], and state estimation [7]. However, when real-time performances are required, these methods do not give satisfactory outcome, and in these sit- uations, the fast Fourier transform (FFT)-based methods are preferable for its availability, understandability, simplicity, and easiness to implement in DSP and advanced RISCmachineschips. Unfortunately, the fundamental frequency of a power system may vary, and fixed sampling rates are typical for most data acquisition systems [8]. Though a number of sampling synchronization methods, such as the adoption of discrete phase-locked loop [9] or adjustable sampling frequency [10], have been proposed, synchronous sampling is still difficult to achieve. 译文:现有的谐波相量分析理论有: 最小二乘法[2]、卡尔曼滤波[2]、人工神经网络(ANNs)[4]、Newton法[5]、Prony 法[6]及状态估计法[7]。但是,对于动态信号这些方法难以有满意的效果,在此情况下,快速傅里叶变换(FFT)因其有效性,易懂, DSP及RISC芯片的轻松实现,得到广泛应用。然而,由于电力系统基波频率实时变化,固定的采样率仅对大多数数据采集系统具有典型性[8]。尽管已经提出许多同步采样方法,如使用采用离散锁相环技术[9],或修正采样频率法[10],同步采样仍然很难实现。 分析:第一层,综述现有谐波相量分析方法理论,描述解决问题的方法——快速傅里叶变换(FFT)。 The FFT approaches under asynchronous sampling suffer from two serious drawbacks [11], namely, the spectral leakagedue to time limitation and the picket fence effect due to the frequency discretization of the calculated spectrum. As a con- sequence, the harmonic phasor of a signal cannot be obtained accurately. The common strategy to cope with these drawbacks is the windowing of the signal sequence for reducing the spectral leakage [12] and spectrum interpolation for reducing the picket fence effect [13], [14].

精馏塔计算例题

【例4-1】 在连续精馏塔中,分离某二元理想溶液。进料为汽-液混合物进料,进料中气相组成为0.428,液相组成为0.272,进料平均组成x F =0.35,假定进料中汽、液相达到平衡。要求塔顶组成为0.93(以上均为摩尔分率),料液中易挥发组分的96%进入馏出液中。取回流比为最小回流比的1.242倍。试计算:(1)塔底产品组成;(2)写出精馏段方程;(3)写出提馏段方程;(4)假定各板效率为0.5,从塔底数起的第一块板上,上升蒸汽的组成为多少? 解题思路: ()W x 1 问要求的,此法不通) (第 3 1W L Wx x W L L y Wx Dx Fx F m m W D F -'--'' =+=+ W F D W D F x Fx Dx W D F Wx Dx Fx 联立解得只要通过 96.0 , =+=+= ()1 21++= +x x R R y D n n ()n n n x a y 11-+= ()F F F x x y 11-+=αα q q m R = 1 1---= q x x q q y F ()F F f Fy q qFx Fx -+=1 (3)提馏段方程可以简化或代入提馏段方程本身求,也可以用两点式方程求得,即点(x w , x w )和进料线与精馏线交点 (4)5.0 1 * 21 22=--=→→y y y y E y MV 逐板计算法 解题过程:

()0223 .0361.0193.0361.035.01 361.093 .035 .096.0 , 96.0 1=-?-=-- = --=-= ???+=+==?=∴=F D x F D x D F Dx Fx W Dx Fx x Wx Dx Fx W D F F D Fx Dx D F D F D F W W D F F D 得:由 ()()()()()186.08.0 1 493 .014411 0 .422.3242.1242.1 22 .3272.0428.0428 .093.0 428 .0272 .0 07.03.27.012 7 .0 15.035 .015.05.011 5 .0 428.01272.035.0 1 1 12 2 , 272 .011272 .0428.0 11 22+=+++=+++= ∴=?===--=--=∴???? ?==∴=-+????? ?+-=-= +-=---=---=∴=∴?-+?=-+=∴-'=-+= ∴=∴?-+?=-+= n n n D n n m q q q D m q q f F F F n n n x y x R x x R R y R R x y y x R y x x x x y x x y x y x q x x q q y q q q y q F Fqx Fx F L L q q q x x y a a a x a ax y 即:精馏段方程为:线的交点联立求解平衡线与进料即,进料线方程为: 气相所占分率为分率,则可视为进料中液相所占在汽、液混合进料中,:平衡线方程为

化工专业开题报告范文.doc

化工专业开题报告范文 学了化工的你,知道自己的专业开题报告要怎么写吗?下面是为大家带来的,仅供参考。 1: 25万吨/年二甲醚精馏系统及二甲醚精馏塔设计 一、课题的目的与意义 二甲醚又称甲醚,简称DME,分子式:CH3OCH3 ,结构式: CH3—O—CH3 。二甲醚在常温常压下是一种无色气体或压缩液体,具有轻微醚香味。相对密度(20℃)0.666,熔点-141.5℃,沸点-24.9℃,室温下蒸气压约为0.5MPa,与石油液化气(LPG)相似。溶于水及醇、乙醚、丙酮、氯仿等多种有机溶剂。易燃,在燃烧时火焰略带光亮,燃烧热(气态)为1455kJ/mol。常温下DME具有惰性,不易自动氧化,无腐蚀、无致癌性,但在辐射或加热条件下可分解成甲烷、乙烷、甲醛等。 二甲醚是醚的同系物,但与用作麻醉剂的乙醚不一样,却具有神经毒性;能溶解各种化学物质;由于其具有易压缩、冷凝、气化及与许多极性或非极性溶剂互溶特性,广泛用于气雾制品喷射剂、氟利昂替代制冷剂、溶剂等,另外也可用于化学品合成,用途比较广泛。 二甲醚作为一种基本化工原料,由于其良好的易压缩、冷凝、汽化特性,使得二甲醚在制药、燃料、农药等化学工业中有许多独特的用途。如高纯度的二甲醚可代替氟里昂用作气溶胶喷射剂和致冷剂,减少对大气环境的污染和臭氧层的破坏。由于其良好的水溶性、油溶性,使得其应用范围大

大优于丙烷、丁烷等石油化学品。代替甲醇用作甲醛生产的新原料,可以明显降低甲醛生产成本,在大型甲醛装置中更显示出其优越性。作为民用燃料气其储运、燃烧安全性,预混气热值和理论燃烧温度等性能指标均优于石油液化气,可作为城市管道煤气的调峰气、液化气掺混气。也是柴油发动机的理想燃料,与甲醇燃料汽车相比,不存在汽车冷启动问题。它还是未来制取低碳烯烃的主要原料之一。由于石油资源短缺、煤炭资源丰富及人们环保意识的增强,二甲醚作为从煤转化成的清洁燃料而日益受到重视,成为2010年来国内外竞相开发的性能优越的碳一化工产品。作为 LPG和石油类的替代燃料,二甲醚是具有与LPG的物理性质相类似的化学品,在燃烧时不会产生破坏环境的气体,能便宜而大量地生产。与甲烷一样,被期望成为21世纪的能源之一。 二、研究现状和前景展望 1.研究现状 目前DME的制取工艺有合成气一步法以及甲醇两步法,其中两步法包括甲醇液相法以及气相法。甲醇液相硫酸催化法和甲醇气相法制取二甲醚的生产技术较为成熟,两种方法均有工业装置运转。 甲醇脱水法以精甲醇为原料,脱水反应副产物少,二甲醚纯度高达99%,使用于有较高要求的气雾产品,也可以用作制冷剂或医用气雾剂的抛射剂5,且三废排放少。该工艺比较成熟,可以依托老企业建设新装置,也可单独建厂生产。但该方法要经过甲醇合成、甲醇精馏、甲醇脱水和二甲醚精馏等工艺,流程较长,因而设备投资大,产品成本高,受甲醇市场波动的影响也比较大。

相关主题
文本预览
相关文档 最新文档