当前位置:文档之家› 红外温度传感器原理

红外温度传感器原理

红外温度传感器原理
红外温度传感器原理

自然界一切温度高于绝对零度(-273.15℃)的物体。由于分子的热运动都在不停

地向周围空间辐射包括红外波段在内的电磁波。其辐射能量密度与物体本身的温

度关系符合普朗克(Plank)定律。红外测温的原理是一样的,都是根据普朗克原

理。一般理解红外测量的是物体的温度.其实测的是目标物与传感器或者说是物

体与环境温度之间的差值。物体辐射能量的大小直接与该物体的温度有关.具体

地说,是与该物体热力学温度的4次方成正比.用公式可表达为:

E=δε(T4-T4o) (1)

式中,E 是辐射出射度.单位是W /m3;

δ是斯蒂芬一波尔兹曼常数,5.67x10-8W /(m2·K4);

ε是物体的辐射率:

T是物体的温度(K);

To是物体周围的环境温度(K)。

人体主要辐射波长为9 μm—10 μm的红外线.通过对人体自身辐射红外能量的测量便能准确地测定人体表面温度。由于该波长范围内的光线不被空气所吸

收,因而也可利用人体辐射的红外能量精确地测量人体表面温度。

红外测温仪工作原理:红外测温仪由光学系统,光电探测器,信号大器及信号处理.显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,红外能量聚焦在光电探测器

上并转变为相应的电信号,该信号再经换算转变为被测目标的温度值

红外测温模块输出的有效数据就是温度值,只需要把这些数据换算成10进制就可以了

#i nclude

#define uchar unsigned char

#define uint unsigned int

/*----------------------------------工程说明--------------------------------------

; 工程名称: ZyTemp.Uv2

; 功能描述:测量环境温度和目标温度,并用键盘控制显示温度值,

; 按K1,显示目标温度

; 按K2,显示环境温度

; IDE环境: Keil uVision3 V3.31

; 硬件连接: VCC-------VCC

; P1.0------Data

; P1.2------Clk

; P1.4------ACK

; GND-------GND

;------------------------------------定义接口------------------------------------*/

sbit TN_Data = P1^0;

sbit TN_Clk = P1^2;

sbit TN_ACK = P1^4;

sbit key_1 = P2^2;

sbit key_2 = P2^3;

/*-----------------------------------变量列表------------------------------------*/

unsigned char code keytab_1[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e,0x89};//H: 0x89;//L: 0x87;//P: 0x8a;//Q: 0X98;

unsigned char code keytab_2[]={0xef,0xdf,0xbf,0x7f};

uchar ReadData[5],iShow[5];

/*-----------------------------------函数列表------------------------------------*/ void display_1(uchar i,uchar num); //定位显示单个字符

void display_2(void); //定位显示四个字符

void TN_ReadData(uchar Flag); //读数据

void TN_GetData(void); //计算数据

/*----------------------------------主程序入口-----------------------------------*/ void main()

{

TN_ACK=1;

while(1)

{

if(!key_1)

{

TN_ACK=0;

TN_ReadData(0x4c); //目标温度的第一个字节为0x4c

}

else if(!key_2)

{

TN_ACK=0;

TN_ReadData(0x66); //环境温度的第一个字节为0x66

}

if((ReadData[0]==0x4c)&&(ReadData[4]==0x0d)) //每帧的最后一个字节为0x0d

{

TN_GetData();

display_2();

}

else if((ReadData[0]==0x66)&&(ReadData[4]==0x0d)) //每帧的最后一个字节为0x0d

{

TN_GetData();

display_2();

}

}

}

/*------------------------------定位显示单个字符-------------------------------*/ void display_1(uchar i,uchar num)

{

P0=keytab_1[i];

P2=keytab_2[num];

}

/*------------------------------定位显示四个字符-------------------------------*/

void display_2(void)

{

uchar kk;

display_1(iShow[3]&0x0f,3); //显示十位

for(kk=200;kk>0;kk--); //延时

display_1(iShow[2]&0x0f,2); //显示个位

for(kk=200;kk>0;kk--); //延时

display_1(iShow[1]&0x0f,1); //显示小数第一位

for(kk=200;kk>0;kk--); //延时

display_1(iShow[0]&0x0f,0); //显示小数第二位

for(kk=200;kk>0;kk--); //延时

}

/*------------------------------------读数据-------------------------------------*/ void TN_ReadData(uchar Flag)

{

uchar i,j,k;

bit BitState=0;

for(k=0;k<7;k++) //每次发七帧

{

for(j=0;j<5;j++) //每帧五个字节

{

for(i=0;i<8;i++)

{

while(TN_Clk);

BitState= TN_Data;

ReadData[j]=ReadData[j]<<1;

ReadData[j]=ReadData[j]|BitState;

while(!TN_Clk);

}

}

if(ReadData[0]==Flag) k=8;

}

TN_ACK=1;

}

/*-----------------------------------计算数据------------------------------------*/ void TN_GetData(void)

{

int Temp;

Temp=(ReadData[1]<<8)|ReadData[2];

Temp = Temp/16 - 273.15;

Temp=Temp*100; //温度值乘100,以方便计算小数点后两位

iShow[4]=Temp/10000; //计算温度值的百位数

iShow[3]=(Temp/1000); //计算温度值的十位数

iShow[3]=iShow[3]%10;

iShow[2]=(Temp/100); //计算温度值的个位数

iShow[2]=iShow[2]%10;

iShow[1]=(Temp/10); //计算温度值的小数点后第一位数 iShow[1]=iShow[1]%10;

iShow[0]=(Temp); //计算温度值的小数点后第二位数 iShow[0]=iShow[0]%10;

}

char data BUFFER[1]={0};//定时器计数变量

Sbit PR=P2^2; //定义播放/录音的控制端口

Sbit EOM=P2^2; //定义结束信号

Sbit PD=P2^4; //定义芯片电源开关

Sbit CE=P2^5; //定义片选

Void play(void)

{

PD=1; //打开芯片电源开关

CE=0; //选中该芯片

PR=1; //开始播放

While (! EOM); //等待播放内容结束信号

Delays(); //延时

PD=0; CE=0; PR=0;

}

Main()

{

EA=1;IT=1;ET0=1; //开中断

TMOD=0x01; //T0 方式1 计时1 秒

TH0=- 5000/256;TL0=- 5000%256;

TR0=1; //开中断, 启动定时

For(;;);

}

/* 定时计数器0 的中断服务子程序*/

Void timer0(void) interrupt 1 using1

{

TH0=- 5000/256; //定时器T0 的高4 位赋值TL0=- 5000%256; //定时器T0 的低4 位赋值BUFFER[0]=BUFFER[0]+1; //百分秒进位

If(BUFFER[0]=1000)

Play(); //调用播放子程序

}

《温度传感器原理》.(DOC)

一、温度传感器热电阻的应用原理 温度传感器热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 1.温度传感器热电阻测温原理及材料 温度传感器热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。温度传感器热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造温度传感器热电阻。 2.温度传感器热电阻的结构

(1)精通型温度传感器热电阻工业常用温度传感器热电阻感温元件(电阻体)的结构及特点见表2-1-11。从温度传感器热电阻的测温原理可知,被测温度的变化是直接通过温度传感器热电阻阻值的变化来测量的,因此,温度传感器热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。为消除引线电阻的影响同般采用三线制或四线制,有关具体内容参见本篇第三章第一节.

(2)铠装温度传感器热电阻铠装温度传感器热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,如图2-1-7所示,它的外径一般为φ2~φ8mm,最小可达φmm。 与普通型温度传感器热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。 (3)端面温度传感器热电阻端面温度传感器热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,其结构如图2-1-8所示。它与一般轴向温度传感器热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。 (4)隔爆型温度传感器热电阻隔爆型温度传感器热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

半导体气体传感器的结构及原理

一、在博物馆文物、档案管理方面的运用 这是温湿度传感器应用的另一个领域。档案的纸张在温湿度适宜的条件可以多存放一些时间,而一旦温湿度条件遭到破坏纸张将要变脆,重要资料也将随之荡然无存,对档案馆进行温湿度记录是必要的,可以预防恶性事故的发生。使用温湿度传感器将使温湿度记录的工作得以简化,也将节约文物保管的成本,使这一工作得以科学化,不受到过多的人为因素的干扰。 二、在疫苗冷链中的运用 气体传感器主要针对于行业中的气体进行检测,在工业、电子、电力、化工、治金等行业中都有一定的应用。气体传感器的种类是比较多的,其中常用的主要有半导体式、接触燃烧方式、化学反应式、光干涉式、热传导式、红外线吸收散式等。而这当中以半导体气体传感器应用更为广泛。 半导体气体传感器由气敏部分、加热丝以及防爆网等构成,它是在气敏部分的sno2、fe2o2、zno2等金属氧化物中添加pt、pd等敏化剂的传感器。传感器的选择性由添加敏化剂的多少进行控制,例如,对于zno2系列传感器,若添加pt,则传感器对丙烷与异丁烷有较高的灵敏度;若添加pd,则对co与h2比较敏感。 气体传感器以陶瓷管为框架,外覆一层敏感膜的材料,利用膜两端的镀金引脚进行测量。敏感膜的材料最常用的有金属氧化物、高分子聚合物材料和胶体敏感膜等。它的两个关键部分是加热电阻和气体敏感膜。金电极连接气敏材料的两端,使其等效为一个阻值随外部待测气体浓度变化的电阻。由于金属氧化物有很高的热稳定性,而且这种传感器仅在半导体表面层产生可逆氧化还原反应,半导体内部化学结构不变,因此,长期使用也可获得较高的稳定性。 原理简介如下:金属氧化物一旦加热,空气中的氧就会从金属氧化物半导体结晶粒子的施主能级中夺走电子,而在结晶表面上吸附负电子,使表面电位增高,从而阻碍导电电子的移动,所以,气体传感器在空气中为恒定的电阻值。这时还原性气体与半导体表面吸附的氧发生氧化反应,由于气体分子的离吸作用使其表面电位高低发生变化,因此,传感器的电阻值要发生变化。对于还原性气体,电阻值减小;对于氧化性气体,则电阻值增大。这样,根据电阻值的变化就能检测气体的浓度。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.doczj.com/doc/688528072.html,。

温度传感器工作原理

温度传感器工作原理 温度传感器temperature transducer,利用物质各种物理性质随温度变化的规律把温度转换为可用输出信号。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。 温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。IC温度传感器又包括模拟输出和数字输出两种类型。 1.热电偶的工作原理当有两种不同的导体和半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端)或冷端,则回路中就有电流产生,如图2-1(a)所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向),称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决于电流相对于温度梯度的方向),称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0)是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势,此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势,热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b之间便有一电动势差△V,其极性和大小与回路中的热电势一致,如图2-1(b)所示。并规定在冷端,当电流由A流向B时,称A为正极,B为负极。实验表明,当△V 很小时,△V与△T成正比关系。定义△V对△T的微分热电势为热电势率,又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度

红外温度传感器(BM43系列)应用指南

红外温度传感器(BM43系列)应用指南 Application Note for BM43 series 编号BM-SOP-T023 版本V1.0 发布日期2016.8.20 生效日期2016.8.20 1 目的 为更好的解答客户在BM43系列产品在设计和应用中遇到的问题,将之前客户反馈的问题整理解答,以便参照。 2 范围 适用于本公司红外温度传感器系列产品(BM43THA/BM43THD/BM43TNA/BM43TND)以及以BM43系列产品为主要测温单元生产的各种可穿戴式/手持式测温仪器的应用。 3 主要问题及应用指南 3.1. 基本使用 3.1.1 如何使用BM43系列产品测量人体温度 正常人体体温不是一个具体的温度点,而是一个温度范围。机体深部的体温较为恒定和均匀,称深部体温;而体表的温度受多种因素影响,变化和差异较大,称表层温度。临床上所指的体温是指平均深部温度。一般以口腔、直肠和腋窝的体温为代表,其中直肠体温最接近深部体温。正常值:口腔舌下温度为37℃(范围36.3-37.2℃),直肠温度37.5℃(比口腔温度高(0.3-0.5℃),腋下温度为36.5℃(范围 36.0℃-37.0℃)。 使用BM43系列产品测量人体体温时,额温枪建议测量位置为人体额头太阳穴动脉附近,这里的动脉血所辐射出的温度接近人体核心温度;耳温枪建议测量位置为耳道内部,枪头越深入越好,但不要造成不舒服,测儿童时最好将耳朵轻往后上方拉(将耳道拉直)。 3.1.2 穿戴设备戴在手腕上监测手腕皮肤温度的作用 穿戴设备戴在手腕上监测手腕皮肤温度不能代表人体核心温度,原因一:手腕皮肤表面的温度在医学上不能代表人体核心温度,四肢不是医学上认可的测温点;二,通过大数据分析,手腕的温度变化受外界环境影响较大,长时间监测显示温度为非线性变化。 但该测量温度可以作为一项生命体征数据,长时间监控体表温度的变化,超出设定温度的阈值则发出提醒信号。 3.1.3 如果靠近皮肤,每5s检测一次,连续24小时,会不会有问题?时间长了会不会因信号累计出现不准?如果放在腋下长时间使用有没问题?需要注意什么问题? 如果突然从低温发热源(冰)靠近高温发热源(火),会对传感器增加一个突发热源(骤热) ,会短时间内造成传感器热休克。这种情况与耳温枪类似,耳温枪的解决办法是在传感器外加上金属热阻,以缓冲热休克现象对测温造成不准的影响;另外一种方法是软件上指令ASIC忽略最开始的50-100个数据(大概

传感器原理与工程应用考试题库

传感器原理与工程应用习题 一、单项选择题 1、在整个测量过程中,如果影响和决定误差大小的全部因素(条件)始终保持不变,对同一 被测量进行多次重复测量,这样的测量称为( C ) A.组合测量 B.静态测量 C.等精度测量 D.零位式测量 1.1在直流电路中使用电流表和电压表测量负载功率的测量方法属于( B )。 A. 直接测量 B. 间接测量 C. 组合测量 D. 等精度测量 2、1属于传感器动态特性指标的是( B ) A.重复性 B.固有频率 C.灵敏度 D.漂移 2.1不属于传感器静态特性指标的是( B ) A.重复性 B.固有频率 C.灵敏度 D.漂移 2.2 以下那一项不属于电路参量式传感器的基本形式的是( D )。 A.电阻式 B.电感式 C.电容式 D.电压式 2.2传感器的主要功能是( A )。 A. 检测和转换 B. 滤波和放大 C. 调制和解调 D. 传输和显示 3.电阻式传感器是将被测量的变化转换成( B )变化的传感器。 A.电子 B.电压 C.电感 D.电阻 3.1电阻应变片配用的测量电路中,为了克服分布电容的影响,多采用( D )。 A.直流平衡电桥 B.直流不平衡电桥 C.交流平衡电桥D.交流不平衡电桥 3.2电阻应变片的初始电阻数值有多种,其中用的最多的是( B )。 A、60Ω B、120Ω C、200Ω D、350Ω 3.3电阻应变片式传感器一般不能用来测量下列那些量( D ) A、位移B、压力C、加速度D、电流 3.4直流电桥的平衡条件为( B ) A.相邻桥臂阻值乘积相等 B.相对桥臂阻值乘积相等 C.相对桥臂阻值比值相等 D.相邻桥臂阻值之和相等 3.5全桥差动电路的电压灵敏度是单臂工作时的( C )。

红外甲烷(CH4)传感器模块

产品的结构与特点 ◆NDIR 红外测量原理◆单光源、双光束◆数字信号处理◆温度自动补偿 ◆4-20mA/0.4-2V 、UART 、Modbus 多种信号输出可选 ◆进口元器件,性能稳定,波动小◆长寿命,可自动零点校准◆多点标定,量程范围内线性良好◆可按用户要求订制气体种类、量程 及精度等级 圣凯安科技研发、生产的NE-101系列高精度红外气体传感器是一款采用NDIR红外吸收检测原 理的气体传感器模组。该传感器采用国外进口光源、特殊结构的光学腔体和双通道探测器,实现空间双光路参比补偿,微处理器进行信号采集、处理和输出,线性误差优于满量程的±1%、零点漂移小,具有很好的选择性,高灵敏度,无氧气依赖性,寿命长,低功耗;内置温度传感器,可进行温度补偿;同时具有4-20mA /0.4-2V、UART、Modbus (用户可选)输出;报警点可设置,能够简单、快速地与现有的监测和控制系统相连接,方便客户各种应用 NDIR 红外气体 检测模块NE-101 NE Sensor

检测气体SF6CO2CH4HC 检测量程(其他量程请咨询技术人员)0-1000ppm0-2000ppm0-5000ppm0-5000ppm 0-1500ppm0-5000ppm0-1%VOL0-1%VOL 0-2000ppm0-1%VOL0-100LEL0-100LEL 0-3000ppm0-5%VOL0-10%VOL0-10%VOL 分辨率1ppm;0.1%LEL(根据检测范围) 进气方式管道式扩散式 气体接口3mm(inner);5mm(outer)/ 气体流量0.2…0.5L/min(稳定) 气室尺寸(L)76x(W)51x(H)22mm 预热时间<2min;<30min(达到技术标准) 运行电压9-36VDC 输出波动0.5%FS 输出信号4-20mA/0.4-2V、UART、Modbus(RTU、ASCLL、自定义)使用温度‐10℃—50℃ 温度对零点影响0.1%FS per℃ 存储温度‐20℃…60℃ 环境压力800hPa—1200hPa 环境湿度0%…95%(rel.) 响应时间<30s(@0.3l/min)<60s(@0.3l/min)检测下限2%FS 重复性1%FS 线性误差2%FS

GWH400型本质安全性红外温度传感器

红外温度传感器|本质安全型红外测温传感器|GWH400型本安型 红外测温传感器 一、概述 1、产品特点及用途: GWH400本质安全型红外温度传感器(以下简称传感器)是一种非接触式高精度红外测温传感器,可就地显示,远距离信号传输,超限报警等功能,具有体积小、重量轻、测量精度高、防尘、防潮、使用安装方便等特点。 传感器主要用于存在可燃性气体混合物的易燃、易爆工作环境中与监控系统连接进行在线温度监测,可广泛应用于煤炭、石油、化工、铁路、医疗、电力、纺织等行业快速非接触测量物体表面的温度,以达到温度控制或设备安全检测的目的。 2、产品执行标准:Q/SD 005-2006《GWH400本质安全型红外温度传感器》 二、工作原理 传感器由光学系统、红外传感器、信号放大器及信号处理、显示等部分组成。光学系统汇聚 其视场内的目标红外辐射能量,红外能量聚焦在红外传感器上并转变为相应的电信号,通过 信号放大和调理电路放大并进行模拟/数字转换后,由8位单片机组成的中央处理器进行线 形化数据处理及辐射系数补偿,最后转换为被测目标的温度值由LED数码管显示,并将(0~400)℃转换成(200~1000)Hz频率信号输出。 传感器发出的点式激光仅用于瞄准被测目标。 三、主要技术参数 地址:西安市经济技术开发区草滩生态产业园尚苑路3699号 联系人:苏女士 固话:-859

手机: QQ:09 邮编:710018 传真: 免费电话:400-6260611 网址: 本公司主要产销: 仪器仪表: CD4型便携式多参数测定器,CJR100/5H型红外甲烷二氧化碳测定器,CYH25型氧气测定器,CLH100型硫化氢测定器,CJYB4/25型甲烷氧气两参数测定器,CJT4/1000,CTH1000C型一氧化碳测定器,JCB4(A)型甲烷检测报警仪,光干涉式甲烷测定器,气体检测器,气体采样器,皮托管,压差计,通风多参数检测仪,电子风表,粉尘采样器,测尘仪,激光指向仪,激光测距仪,红外测温仪,传感器,隔爆型摄像仪,信号灯,甲烷断电仪,稳压电源,变压器,充电架等。救护设备: 过滤式自救器,隔绝式化学氧自救器,隔绝式压缩氧自救器,矿井供水施救装置,矿井压风自救装置煤矿用自动苏生器,矿用可视化监测通信装置,隔绝式正压氧呼吸器,正压式消防空气呼吸器等。 防爆照明: LED矿灯,多功能矿灯,出口型LED矿灯,隔爆型LED巷道灯,LED矿灯充电器 检测装置: 发爆器参数测试仪,气体检测仪检定装置,自救器正压气密校验装置,自救器负压气密校验装置,矿用气体传感器检定装置,水柱式光瓦校

传感器原理与工程应用完整版习题参考答案

《传感器原理及工程应用》完整版习题答案 第1章 传感与检测技术的理论基础(P26) 1—1:测量的定义? 答:测量是以确定被测量的值或获取测量结果为目的的一系列操作。 所以, 测量也就是将被测量与同种性质的标准量进行比较, 确定被测量对标准量的倍数。 1—2:什么是测量值的绝对误差、相对误差、引用误差? 1- 3 用测量范围为-50~150kPa 的压力传感器测量140kPa 的压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。 解: 已知: 真值L =140kPa 测量值x =142kPa 测量上限=150kPa 测量下限=-50kPa ∴ 绝对误差 Δ=x-L=142-140=2(kPa) 实际相对误差 %= =43.11402 ≈?L δ 标称相对误差 %==41.1142 2≈?x δ 引用误差 %--=测量上限-测量下限= 1) 50(1502 ≈?γ 1-10 对某节流元件(孔板)开孔直径d 20的尺寸进行了15次测量,测量数据如下(单位:mm ): 120.42 120.43 120.40 120.42 120.43 120.39 120.30 120.40 120.43 120.41 120.43 120.42 120.39 120.39 120.40 试用格拉布斯准则判断上述数据是否含有粗大误差,并写出其测量结果。 答:绝对误差是测量结果与真值之差, 即: 绝对误差=测量值—真值 相对误差是绝对误差与被测量真值之比,常用绝对误差与测量值之比,以百分数表示 , 即: 相对误差=绝对误差/测量值 ×100% 引用误差是绝对误差与量程之比,以百分数表示, 即: 引用误差=绝对误差/量程 ×100%

温度传感器工作原理

温度传感器工作原理 1.引脚★ ●GND接地。 ●DQ为数字信号输入\输出端。 ●VDD为外接电源输入端(在寄生电源接线方式时接地) 2.与单片机的连接方式★ 单线数字温度传感器DS18B20与单片机连接电路非常简单,引脚1接地(GND),引脚3(VCC)接电源+5V,引脚2(DQ)接单片机输入\输出一个端口,电压+5V和信号线(DQ)之间接有一个4.7k的电阻。 由于每片DS18B20含有唯一的串行数据口,所以在一条总线上可以挂接多个DS18B20芯片。 外部供电方式单点测温电路如图★ 外部供电方式多点测温电路如图★ 3.DS18B20的性能特点 DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器。与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。DS18B20的性能特点如下: ●独特的单线接口仅需要一个端口引脚进行通信。 ●多个DS18B20可以并联在唯一的三线上,实现多点组网功能。 ●不需要外部器件。 ●在寄生电源方式下可由数据线供电,电压围为3.0~5.5V。 ●零待机功耗。

●温度以9~12位数字量读出 ●用户可定义的非易失性温度报警设置。 ●报警搜索命令识别并标识超过程序限定温度(温度报警条件)的器件。 ●负电压特性,电源极性接反时,温度计不会因发热而烧毁,只是不能正常工作。 4.部结构 .DS18B20采用3脚PR—35封装或8脚SOIC封装,其部结构框图★ 64位ROM的位结构如图★◆。开始8位是产品类型的编号;接着是每个器件的唯一序号,共有48位;最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用单线进行通信的原因。非易失性温度报警触发器TH和TL,可通过软件写入用户报警上下限数据。 MSB LSB MSB LSB MSB LSB DS18B20温度传感器的部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的E2PROM。 高速暂存RAM的结构为9字节的存储器,结构如图★。前2字节包含测得的温度信息。第3和4字节是TH和TL的拷贝,是易失的,每次上电复位时被刷新。第5字节为配置寄存器,其容用于确定温度值的数字转换分辨率,DS18B20工作时按此寄存器中的分辨率将温度转化为相应精度的数值。该字节各位的定义如图★,其中,低5位一直为1;TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式,在DS18B20出厂时,该位被设置为0,用户不要去改动;R0和R1决定温度转化的精度位数,即用来设置分辨率,其定义方法见表★ 高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。第9字节是前面所有8

常用温度传感器解析,温度传感器的原理、分类及应用

常用温度传感器解析,温度传感器的原理、分类及应用 温度传感器(temperature transducer)是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。 温度传感器的分类接触式 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。 温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。 随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量 1.6~300K范围内的温度。 非接触式 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。 最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐

传感器原理及工程应用概述

第二章传感器概述 1、传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。 2、传感器是由敏感原件和转换原件组成 3、两种分类方法:一种是按被测参数分类,一种是按传感器工作原理分类 4、传感器的基本特性可分为静态特性和动态特性 5、静态特性是指被测量的值处于稳定状态时输入与输出的关系。主要指标有灵敏度、线性度、迟滞、重复性和漂移等。 6、灵敏度是输出量增量ΔY与引起输出量增量ΔY的相应输入量增量ΔX之比。用S表示即S=ΔY\ΔX。 7、线性度是指传感器的输入与输出之间数量关系的线性程度。也叫非线性误差用γL 表示即γL= 8、传感器在相同工作条件下输入量由小到大(正量程)及由大到小(反量程)变化期间输入输出特性曲线不重合的现象称为迟滞。迟滞误差用 9、重复性是指传感器在相同的工作条件下输入量按同一方向做全量程连续多次变化时,所得特性曲线不一致的程度。最大重复差值 10、漂移是指输入量不变的情况下传感器输出量随着时间变化。产生漂移的原因有两个一是传感器自身结构参数一是周围环境。温度漂移的计算 第三章应变式传感器 1、电阻应变式传感器是以电阻应变片为转换原件的传感器。 2、工作原理是基于电阻应变效应,即导体在外界作用下产生机械变形(拉伸或压缩)是,其电阻值相应发生变化(应变效应)。 3、电阻应变片分为丝式电阻应变片和箔式电阻应变片。 4、电阻在外力作用下而改变原来尺寸或形状的现象称为变形,而去掉外力后物体又能完全恢复其原来的尺寸和形状,这种变形称为弹性变形。具有弹性变形特性的物体称为弹性原件。 5、应变片的电阻值是指应变片没有粘贴且未受应变时,在室温下测定的电阻值即初始电阻值。 6、将直的电阻丝绕成敏感栅后,虽然长度不变,但应变状态不同,应变片敏感栅的电阻变化减小,因而其灵敏系数K较整长电阻丝的灵敏系数K0小,这种现象称为应变片的横向效应。为了减少横向效应产生的测量误差,现在一半多采用箔式应变片。 7、应变片温度误差:由于测量现场环境温度的改变而给测量带来的附加误差。产生的主要因素有以下两个方面:一是电阻温度系数的影响,一是试件材料和电阻丝材料的线膨胀系数的影响。 8、电阻应变片的温度补偿方法:1)线路补偿法2)应变片的自补法9***电阻应变片的测量电路10、压阻效应是指在一块半导体的某一轴向施加一定的压力时,其电阻值产生变化现象, 第四章电感式传感器 1、利用电磁感应原理将被测非电量如、位移、压力、流量、振动等转换成线圈自感系数L或互感系数M的变化,再由测量电路转换为电压或电流的变化量输出,这种装置称为电感式传感器。 2、零点残余电压:传感器在零点位移时的输出电压。产生原因主要有以下两点一是由于两电感线圈的电气参数及导磁体几何尺寸不完全对称,因此在两电感线圈上的电压幅值和相位不同,从而形成了零点残余电压的基波分量。一是由于传感器导磁材料磁化曲线的非线性(如铁磁饱和,磁滞损耗)使得激励电流与磁通波形不一致,从而形成了零点残余电压的高次谐波分量。为减小电感式传感器的零点残余电压,可以采取以下措施1)在设计和工艺上,力求做到磁路对称,铁芯材料均匀;要经过热处理以除去机械应力和改善磁性;两线圈毕恭毕敬绕制要均匀,力求几何尺寸与电气特性保持一致。2)在电路上进行补偿。 3、把被测的非电量变化转化为线圈互感变化的传感器称为互感式传感器。这种传感器

传感器原理与工程应用复习题参考答案1

《传感器原理及工程应用》习题答案 第1章 传感与检测技术的理论基础(P26) 1-3 用测量围为-50~150kPa 的压力传感器测量140kPa 的压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。 解: 已知: 真值L = 140kPa 测量值 x =142kPa 测量上限=150kPa 测量下限=-50kPa ∴ 绝对误差 Δ=x-L=142-140=2(kPa) 实际相对误差 %= =43.1140 2 ≈?L δ 标称相对误差 %= =41.1142 2 ≈?x δ引用误差 %--=测量上限-测量下限= 1)50(1502≈?γ

1-10 对某节流元件(孔板)开孔直径d 20的尺寸进行了15次测量,测量数据如下(单位:mm ): 120.42 120.43 120.40 120.42 120.43 120.39 120.30 120.40 120.43 120.41 120.43 120.42 120.39 120.39 120.40 试用格拉布斯准则判断上述数据是否含有粗大误差,并写出其测量结果。 解: 对测量数据列表如下: 当n =15时,若取置信概率P =0.95,查表可得格拉布斯系数G =2.41。 则 2072.410.03270.0788()0.104d G mm v σ=?=<=-, 所以7d 为粗大误差数据,应当剔除。然后重新计算平均值和标准偏差。 当n =14时,若取置信概率P =0.95,查表可得格拉布斯系数G =2.37。 则 20 2.370.01610.0382()d i G mm v σ=?=>,所以其他14个测量值中没有坏值。 计算算术平均值的标准偏差 20 0.0043()d mm σσ= = = 20 330.00430.013()d mm σ=?= 所以,测量结果为:20(120.4110.013)()(99.73%)d mm P =±= 1-14 交流电路的电抗数值方程为

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量 (取决于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T 的微分热电势为热电势率, 又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。 2. 热电偶的种类

《传感器原理与工程应用》第四版(郁有文)课后答案

第一章传感与检测技术的理论基础 1. 什么是测量值的绝对误差、相对误差、引用误 差? 答:某量值的测得值和真值之差称为绝对误差。 相对误差有实际相对误差和标称相对误差两种表示方法。实际相对误差是绝对误差与被测量的真值之比;标称相对误差是绝对误差与测得值之比。 引用误差是仪表中通用的一种误差表示方法,也用相对误差表示,它是相对于仪表满量程的一种误差。引用误差是绝对误差(在仪表中指的是某一刻度点的示值误差)与仪表的量程之比。 2. 什么是测量误差?测量误差有几种表示方法? 它们通常应用在什么场合? 答:测量误差是测得值与被测量的真值之差。 测量误差可用绝对误差和相对误差表示,引用误差也是相对误差的一种表示方法。

在实际测量中,有时要用到修正值,而修正值是与 绝对误差大小相等符号相反的值。在计算相对误差时 也必须知道绝对误差的大小才能计算。 采用绝对误差难以评定测量精度的高低,而采用相 对误差比较客观地反映测量精度。 引用误差是仪表中应用的一种相对误差,仪表的精 度是用引用误差表示的。 3. 用测量范围为-50?+150kPa 的压力传感器测量 140kPa 压力时,传感器测得示值为142kPa,求该示 值的绝对误差、实际相对误差、标称相对误差和引 用误差。 解:绝对误差 ,142-140 = 2 kPa 4. 什么是随机误差?随机误差产生的原因是什 么?如何减小随机误差对测量结果的影响? 答:在同一测量条件下,多次测量同一被测量时,其 绝对值和符号以不可预定方式变化着的误差称为随机 误差。 实际相对误差 标称相对误差 引用误差 142 -140 0 = ------------------- 140 100% =1.43% 142-140 100% =1.41% 142 142 -140 150 -( - 汉1 0 80 =1%

红外温度传感器OTP-668D2

深圳永盟电子邬先生 152.2017.9727 The OTP-668D2 is a thermopile sensor in classic TO-46 housing. The sensor is composed of 116 elements of thermocouple in series on a floating micro-membrane having an active area of diameter 700 μm. The thermopile sensor provides nearly Johnson-noise-limited performance, which can be calculated by its ohmic series resistance. A thermistor with a lead connected to ground is also provided inside the TO package for ambient temperature reference. TO-46 metal housing with IR absorber coating inside Thermistor reference included Low temperature coefficient of sensitivity Ideally suited for ear thermometers, miniature pyrometer. Thermopile Sensor OTP-668D2 Revision Date: 2010/10/14

传感器原理及工程应用习题参考答案[1]

《传感器原理及工程应用》习题答案 王丽香 第1章 传感与检测技术的理论基础(P26) 1-3 用测量范围为-50~150kPa 的压力传感器测量140kPa 的压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。 解: 已知: 真值L =140kPa 测量值x =142kPa 测量上限=150kPa 测量下限=-50kPa ∴ 绝对误差 Δ=x-L=142-140=2(kPa) 实际相对误差 %==43.11402≈?L δ 标称相对误差 %= = 41.1142 2≈?x δ 引用误差 %--= 测量上限-测量下限 = 1) 50(1502≈? γ 1-10 对某节流元件(孔板)开孔直径d 20的尺寸进行了15次测量,测量数据如下(单位:mm ): 120.42 120.43 120.40 120.42 120.43 120.39 120.30 120.40 120.43 120.41 120.43 120.42 120.39 120.39 120.40 试用格拉布斯准则判断上述数据是否含有粗大误差,并写出其测量结果。 解: 对测量数据列表如下:

当n =15时,若取置信概率P =0.95,查表可得格拉布斯系数G =2.41。 则 2072.410.03270.0788()0.104d G mm v σ=?=<=-, 所以7d 为粗大误差数据,应当剔除。然后重新计算平均值和标准偏差。 当n =14时,若取置信概率P =0.95,查表可得格拉布斯系数G =2.37。 则 20 2.370.01610.0382()d i G mm v σ=?=>,所以其他14个测量值中没有坏值。 计算算术平均值的标准偏差 20 0.0043()d m m σσ= = = 20 330.00430.013()d mm σ=?= 所以,测量结果为:20(120.4110.013)()(99.73%)d m m P =±= 1-14 交流电路的电抗数值方程为 C L X ωω1 - = 当角频率Hz 51=ω,测得电抗1X 为Ω8.0; 当角频率Hz 22=ω,测得电抗2X 为Ω2.0; 当角频率Hz 13=ω,测得电抗3X 为Ω-3.0。 试用最小二乘法求电感L 、电容C 的值。 解法1: 1 L C ωωX =- ,设x L =,1y C =- ,则:

温度传感器在工业中的应用

红外温度传感器在工业中的应用 随着工业生产的发展,温度测量与控制十分重要,温度参数的准确测量对输出品质、生产效率和安全可靠的运行至关重要。目前,在热处理及热加工中已逐渐开始采用先进的红外温度计等非传统测温传感器,来代替传统的热电偶、热电阻类的热电式温度传感器,从而实现生产过程或者重要设备的温度监视和控制。 基本原理 温度传感器基本原理,最常用的非接触式温度传感器基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微观组织等有关,因此很难精确测量。在自动化生产中往往需要利用辐射测温法来测量或控制某些物体的表面温度,如冶金中的钢带轧制温度、轧辊温度、锻件温度和各种熔融金属在冶炼炉或坩埚中的温度。在这些具体情况下,物体表面发射率的测量是相当困难的。对于固体表面温度自动测量和控制,可以采用附加的反射镜使与被测表面一起组成黑体空腔。附加辐射的影响能提高被测表面的有效辐射和有效发射系数。利用有效发射系数通过仪表对实测温度进行相应的修正,最终可得到被测表面的真实温度。最为典型的附加反射镜是半球反射镜。球中心附近被测表面的漫射辐射能受半球镜反射回到表面而形成附加辐射,从而提高有效发射系数式中ε为材料表面发射率,ρ为反射镜的反射率。至于气体和液体介质真实温度的辐射测量,则可以用插入耐热材料管至一定深度以形成黑体空腔的方法。通过计算求出与介质达到热平衡后的圆筒空腔的有效发射系数。在自动测量和控制中就可以用此值对所测腔底温度(即介质温度)进行修正而得到介质的真实温度。 在水泥制造生产中的应用 红外温度传感器在水泥制造生产中有着广泛的应用。据调查目前我国每年因红窑事故造成的直接经济损失达2000万元,间接损失达3亿元。用常规的方法很难对非匀速旋转的水泥胴体进行测温,国际上先进的办法是在窑尾预热平台上安装一套红外扫描测温仪,系统的软件部分主要由数据采集滤波、同步扫描控制、数据通讯处理等,红外辐射测温仪按预定的扫描方式,实现对窑胴体轴向每一个测量段成的温度的测量,在一个扫描周期内,红外温度传感器将在扫描装置的驱动下,将每一个测量元表面的红外辐射转换成温度相关的电信号,送进数据采集装置作为数据采集,同步装置保证数据采集与回转窑的旋转保持严格同步,要让测量的温度值与测量元下确对应,测温仪由扫描起点扫描到终点后,即对窑胴体表面各测量元完成了一次逐元温度检测后,立即快速返回扫描起点,开始下一扫描周期的检测,数据经微机处理后,给出反映窑内状况的图像,文字信息,必要时可以发射声光报警。为保证测量的精度,定要考虑物体的发射率,周围环境影响。红外测温仪要垂直对准窑胴体的表面,因因水汽,尘埃,烟雾的影响,要采取加装水冷,风吹扫装置。意义:1.生产过程中对产品的质量监控与监视,只要温度控制在设定值内,产品质量会有保证,过低过高都浪费能源;2.在线安全的检测可以起到保护人以及设备安全;3.降低能耗,节约能源。 在热处理行业中的应用 红外温度传感器可以广泛的应用于钢铁生产过程中,对生产过程的温度进行监控,对于提高生产率和产品质量至重要。红外温度传感器可精确地监视每个阶段,使钢材在整个加工过程中保持正确的冶金性能。红外温度传感器可以帮助钢铁生产过程中提高产品质量和生产率、降低能耗、增强人员安全、减少停机时间等。 红外温度传感器在钢铁加工和制造过程中主要应用在连铸、热风炉、热轧、冷轧、棒材和线材轧制等过程中。 红外温度传感器传感头有数字和模拟输出两种,发射率可调。—这对于发射率变化金属材料尤其重要。要生产出优质的产品和提高生产率,在炼钢的全过程中,精确测温是关键。连铸将钢水变为扁坯、板坯或方坯时,有可能出现减产或停机,需精确的实时温度监测,配以水嘴和流量的调节,以提供合适的冷却,从而确保钢坯所要求的冶

外文翻译---智能红外温度传感器

毕业设计外文文献翻译 毕业设计题目温室大棚测控系统设计翻译题目智能红外温度传感器专业测控技术与仪器 姓名 班级 学号 指导教师 机械与材料工程学院 二〇一一年十月

智能红外温度传感器 跟上不断发展的工艺技术对工艺工程师来说是一向重大挑战。再加上为了保持目前迅速变化的监测和控制方法的过程的要求,所以这项任务已变得相当迫切。然而,红外温度传感器制造商正在为用户提供所需的工具来应付这些挑战:最新的计算机相关的硬件、软件和通信设备,以及最先进的数字电路。其中最主要的工具,不过是新一代的红外温度计---智能传感器。 今天新的智能红外传感器代表了两个迅速发展的结合了红外测温和通常与计算机联系在一起的高速数字技术的科学联盟。这些文书被称为智能传感器,因为他们把微处理器作为编程的双向收发器。传感器之间的串行通信的生产车间和计算机控制室。而且因为电路体积小,传感器因此更小,简化了在紧张或尴尬地区的安装。智能传感器集成到新的或现有的过程控制系统,从一个新的先进水平,在温度监测和控制方面为过程控制方面的工程师提供了一个直接的好处。 1.集成智能传感器到过程线 同时广泛推行的智能红外传感器是新的,红外测温已成功地应用于过程监测和控制几十年了。在过去,如果工艺工程师需要改变传感器的设置,它们将不得不关闭或者删除线传感器或尝试手动重置到位。当然也可能导致路线的延误,在某些情况下,是十分危险的。升级传感器通常需要购买一个新单位,校准它的进程,并且在生产线停滞的时候安装它。例如,某些传感器的镀锌铁丝厂用了安装了大桶的熔融铅、锌、和/或盐酸并且可以毫不费力的从狭窄小道流出来。从安全利益考虑,生产线将不得不关闭,并且至少在降温24小时之前改变和升级传感器。 今天,工艺工程师可以远程配置、监测、处理、升级和维护其红外温度传感器。带有双向RS - 485接口或RS - 232通信功能的智能模型简化了融入过程控制系统的过程。一旦传感器被安装在生产线,工程师就可以根据其所有参数来适应不断变化的条件,一切都只是从控制室中的个人电脑。举例来说,如果环境温度的波动,或程序本身经历类型、厚度、或温度的改变,所有过程工程师需要做的是定制或恢复保存在计算机终端的设置。如果智能传感器由于高温度环境、电缆断裂或者未能组成部分而失败了,其故障进行自动修复。该传感器激活触发报警停机,防止损坏产品和机械。如果烤炉或冷却器失败了,音响和LO警报信号还可以指出哪里有问题并且关闭生产线。 1.1 延长传感器的使用寿命 为了使智能传感器符合数千种不同类型的进程,就必须完全自己定义。由于智能传感器包含只读(可擦除可编程只读存储器),用户可以重新编程以满足他们各自的具体程序要求

相关主题
文本预览
相关文档 最新文档