当前位置:文档之家› 《半导体物理》复习大纲

《半导体物理》复习大纲

《半导体物理》复习大纲
《半导体物理》复习大纲

《半导体物理》复习大纲

题型:名词解释、选择、填空、简答、问答、画图、证明、计算

第一章:半导体中的电子状态

1、晶体结构、点阵及基元的关系

2、Wigner-Seitz初基晶胞的定义

3、晶面、晶列与晶向的关系

4、十四种晶体结构是什么

5、布喇格定律、倒易点阵、布里渊区

6、电子共有化运动及其产生结果是什么?

7、硅、锗能带的特点是什么?

8、如何理解电子在周期性势场中运动(即:E(k)和k的关系的定量计算

理解)?

9、怎样从能带区分绝缘体、半导体和导体?

10、有效质量的理解

11、导电机构的理解

12、回旋共振

13、硅和锗的能带结构

第二章:半导体中杂质和缺陷能级

1、替位式杂质与间隙式杂质的定义,计算间隙式原子占晶胞空间的百分比?

2、间隙式扩散和替位式扩散的理解

3、施主杂质和受主杂质的概念

4、掺杂元素与电导类型的关系、施主能级、受主能级、杂质电离能

5、浅能级杂质与深能级杂质的区别,几种常见的浅能级杂质是什么?

6、浅能级杂质电离能的简单计算

7、杂质补偿的理解

8、点缺陷种类有哪些?及它们的特点以及对半导体性能的影响是什么?

9、位错的理解

第三章:热平衡状态下载流子的统计分布

1、什么是热平衡状态?

2、状态密度的理解及其计算

3、状态密度g c(E)和g v(E)与能量E的关系?抛物线。状态密度与有效质

量的关系?有效质量决定了开口大小。有效质量与状态密度的关系?有效质量大的能带中的状态密度大。

4、什么是费米分布函数?它反映了什么物理含义?它与温度和能量的关系是什

么?

5、电子占据杂质能级的几率?

6、什么是费米能级?不同掺杂浓度半导体材料费米能级的差别是什么?

7、什么是波尔兹曼分布?它的物理含义是什么?波尔兹曼分布满足的前提条件

是什么?它和费米分布的区别是什么?

8、电子的玻氏分布于空穴玻氏分布

9、简并系统和非简并系统

10、导带电子浓度和价带空穴浓度的表达式是什么?

11、影响平衡时电子浓度和空穴浓度的因素?(有效质量、温度、E F)

12、平衡态电子、空穴浓度积及其影响因素是什么?(有效质量、温度、E g)

13、本征半导体费米能级的位置及其定性推倒

14、杂质能级上的电子和空穴浓度表达式及其理解

15、杂质半导体的电中性条件是什么?

16、杂质半导体在不同温度区域的电导性能(n0、p0)和费米能级的变化及主导

机制是什么?(低温弱电离、中间电离、强电离、过渡区、本征激发)17、已知工作温度,如何确定材料的掺杂范围?已知材料的掺杂范围,如何确定

其工作温度?

18、简并半导体的载流子浓度分布

19、杂质能带、杂质带导电、禁带变窄效应、

第四章:半导体导电性

1、电阻率、电导率、电流密度、电场强度、漂移速度以及迁移率之间的关系

2、载流子散射的定义

3、平均自由程的定义

4、平均自由时间与散射几率的关系

5、迁移率、电导率与平均自由时间的关系

6、载流子输运过程中遇到的散射机构有哪些?电离杂质、晶格散射

7、横波、纵波、光学波、声学波的理解

8、对于不同类型晶体受到散射的机构不同,原子晶体是纵声学波,离子晶体是

纵光学波散射。

9、温度不同时候的主要散射机构不同。低温是电离杂质散射、高温是晶格散射

10、温度、杂质浓度以及电子有效质量怎样影响迁移率的

11、半导体电阻率与温度和杂质浓度的关系

12、什么是强电场效应

13、什么是霍尔效应

第五章:非平衡载流子

1、什么是非平衡条件,产生非平衡载流子的集中可能非平衡条件是什么?

2、什么是注入?大注入与小注入的区别是什么?

3、非平衡载流子随时间变化的规律是什么?

4、理解非平衡载流子的平均寿命

5、什么是准费米能级?准费米能级反映了什么物理含义?

6、半导体由平衡态过渡到非平衡态的过程之中,统一费米能级与准费米能级有

什么区别或联系?

7、非平衡态载流子浓度乘积与平衡态时候的区别,及其导致这些区别的原因

8、非平衡载流子的复合种类

9、直接复合的复合率和产生率的理解

10、直接复合的净复合率和非子寿命

11、间接复合的俘获率、电子产生率

12、间接复合的复合率和寿命

13、什么是有效的复合中心

14、表面复合的理解

15、俄歇复合的理解

16、陷阱效应的理解

17、什么是飘移运动和扩散运动

18、扩散流密度的概念

19、扩散电流密度和扩散流密度的关系?非平衡载流子的扩散电流密度怎么

表示?

20、漂移电流密度的表达式是什么?

21、半导体中总电流密度由什么构成?

22、爱因斯坦关系式是什么?怎么推导?

23、电流连续性方程考虑了哪些因素?它的表达式是什么?

24、根据实际情况,化简电流连续性方程

第六章:PN结

1、平衡PN结的特点是什么?

2、平衡PN结的能带图,并且画出耗尽区宽度、势垒高度。

3、接触电势差的表达式,及区影响因素

4、少子和多子在PN结内部的表达式,及其中各项的物理含义

5、非平衡状态下的PN结

6、理想pn结模型及其电流-电压

7、影响pn结电流-电压特性偏离理想方程的各种因素

8、PN结电容的来源和种类

9、突变结和缓变结的势垒电容

10、扩散电容

11、PN结击穿的几种类型(雪崩、隧道、热电击穿)

12、隧道结的原理,形成隧道结的条件是什么?

第七章:金属和半导体的接触

1、功函数、电子亲和势的概念

2、金属-半导体接触(接触电势差、阻挡层、反阻挡层)及其能带图

3、表面态对接触势垒的影响(费米钉扎)

4、金属-半导体接触形成的肖特基势垒具有整流效应,为什么?

5、热电子发射理论

6、少数载流子的注入

7、金属-半导体接触形成的欧姆接触不具有整流效应,为什么?

8、欧姆接触和肖特基接触形成的前提条件是什么?

第八章:半导体表面与MIS结构

1、理想表面与实际表面的理解

2、施主表面态和受主表面态的理解

3、在MIS结构中,半导体形成表面电场的原因是什么?表面态、功函数差、

氧化层中的杂质离子

4、MIS结构在施加不同栅极电压的情况下,将经过几种不同的状态?半导体表

面的能带、空间电荷、表面势以及空间的载流子浓度将发生什么变化?

5、在理想MIS结构的C-V特性曲线中,说明各个区域分别对应于MOS二极

管的什么状态(堆积、耗尽、反型)?以及在各个时刻为什么电容会有这些变化趋势?

6、实际MIS结构C-V特性曲线的平移和什么因素有关系?他们的关系是什

么?

第九章:半导体异质结

1、半导体异质结的分类

2、半导体异质结的能带情况和什么因素有关系?如何绘制异质结的能带图?

半导体物理带图

施主与受主:半导体中掺入施主杂质后,施主电离后将成为带正电离子,并同时向导带提供电子,这种杂质就叫施主;半导体中掺入受主杂质后,受主电离后将成为带负电的离子,并同时向价带提供空穴,这种杂质就叫受主.直接带隙与间接带隙:直接带隙半导体材料就是导带最小值(导带底)和满带最大值在k 空间中同一位置.间接带隙半导体材料导带最小值(导带底)和满带最大值在k 空间中不同位置.简并与非简并半导体:简并半导体:掺杂浓度高,对于n 型半导体,其费米能级EF 接近导带或进入导带中;对于p 型半导体,其费米能级EF 接近价带或进入价带中的半导体.非简并半导体:掺杂浓度较低,其费米能级EF 在禁带中的半导体.少子与多子:半导体中有电子和空穴两种载流子.半导体材料中某种载流子占大多数,则称它为多子,另一种为少子.表面重构与表面弛豫:其表面的分子链、链段和基团会随着环境改变而重新排列以适应环境的变化,使界面能最低达到稳定状态.表面为了适应环境从一个状态到另一个状态的变化过程,称表面重构.空穴与空位:在电子挣脱价键的束缚成为自由电子后,其价键中所留下的空位.一个空穴带一个单位的正电子电量.空位:晶体中的原子或离子由于热运动离开了原来的晶格位置后而留下的.少子寿命与扩散长度:非平衡载流子的平均生存时间,扩散长度则是非平衡载流子深入样品的平均距离.杂质与杂质能级:杂质,半导体中存在的于本体元素不同的其他元素.半导体材料的电磁性质可以通过掺入不同类型和浓度的杂质而加以改变,半导体中的杂质或缺陷可以在禁带中形成电子的束缚能级,称为杂质能级.本征半导体:纯净的,不含任何杂质和缺陷的半导体.杂质带导电:杂质能带中的电子通过杂质电子之间的共有化运动参加导电的现象称为杂质导电.电中性条件:电中性条件是半导体在热平衡情况下,它的内部所必须满足的一个基本条件.电中性条件即是说半导体内部总是保持为电中性的,其中没有多余的空间电荷,即处处正电荷密度等于负电荷密度.禁带窄化效应:杂质能带进入导带或价带,并与导带或价带相连,形成新的简并能带,使能带的状态密度发生了变化,简并能带的尾部伸入到禁带中,称为带尾,导致禁带宽度由Eg 减小到Eg ’,所以重掺杂时,禁带宽度变窄了,称为禁带变窄效应.负阻效应 直接复合与间接复合:直接复合:导带电子和价带空穴之间直接跃迁复合.间接复合:导带电子通过复合中心(禁带中的能级)和价带空穴间接复合. 什么叫浅能级杂质?它们电离后有何特点?答:浅能级杂质是指杂质电离能远小于本征半导体的禁带宽度的杂质.它们电离后将成为带正电(电离施主)或带负电(电离受主)的离子,并同时向导带提供电子或向价带提供空穴.漂移运动与扩散运动之间有什么联系?非简并半导体的迁移率与扩散系数之间有什么联系?解:漂移运动与扩散运动之间通过迁移率与扩散系数相联系.而非简并半导体的迁移率与扩散系数则通过爱因斯坦关系相联系,二者的比值与温度成反比关系,即q 0=μ.何谓非平衡载流子?非平衡状态与平衡状态的差异何在?解:半导体处于非平衡 态时,附加的产生率使载流子浓度超过热平衡载流子浓度,额外产生的这部分载流子就是非平衡载流子.通常所指的非平衡载流子是指非平衡少子.热平衡状态下半导体的载流子浓度是一定的,产生与复合处于动态平衡状态,跃迁引起的产生、复合不会产生宏观效应.在非平衡状态下,额外的产生、复合效应会在宏观现象中体现出来.何谓迁移率?影响迁移率的主要因素有哪些?解:迁移率是单位电场强度下载流子所获得的漂移速率.影响迁移率的主要因素有能带结构(载流子有效质量)温度和各种散射机构.何谓本征半导体?为什么制造半导体器件一般都用含有适当杂质的半导体材料?完全不含杂质且无晶格缺陷的纯净半导体称为本征半导体.杂质能够为半导体提供载流子,对半导体材料的导电率影响极大.简要说明什么是载流子的漂移运动,扩散运动和热运动?他们有何不同?解:载流子因浓度差而引起的扩散运动;在电场力作用下载流子的漂移运动;由外加温度引起的载流子的热运动等.热运动:在没有任何电场作用时,一定温度下半导体中的自由电子和空穴因热激发所产生的运动是杂乱无障的,好像空气中气体的分子热运动一样.由于是无规则的随机运动,合成后载流子不产生定向位移,从而也不会形成电流.漂移运动:在半导体的两端外加一电场E,载流子将会在电场力的作用下产生定向运动.电子载流子逆电场方向运动,而空穴载流子顺着电场方向运动.从而形成了电子电流和空穴电流,它们的电流方向相同.所以,载流子在电场力作用下的定向运动称为漂移运动,而漂移运动产生的电流称漂移电流.扩散运动: 在半导体中,载流子会因浓度梯度产生扩散.如在一块半导体中,一边是N 型半导体,另一边是P 型半导体,则N 型半导体一边的电子浓度高,而P 型半导体一边的电子浓度低.反之,空穴载流子是P 型半导体一边高,而N 型半导体一边低.由于存在载流子浓度梯度而产生的载流子运动称为扩散运动.就你在任何知识渠道所获得的信息,举出一个例子来说明与半导体物理相关的最新知识进展。简述pn 结的形成及平衡pn 结的特点.将P 型半导体与N 型半导体制作在同一块硅片上,在它们的交界面就形成PN 结.PN 结具有单向导电性.在半导体中,费米能级标志了什么?它与哪些因素有关?系统处于热平衡状态,也不对外做功时,系统中增加一个电子所引起系统自由能的变化.其标志了电子填充能级的水平.温度,半导体材料的导电类型,杂质的含量,能量零点的选取等.简述浅能级杂质和深能级杂质的主要区别.解:深能级杂质在半导体中起复合中心或陷阱的作用.浅能级杂质在半导体中起施主或受主的作用.浅能级杂质就是指在半导体中、其价电子受到束缚较弱的那些杂质原子,往往就是能够提供载流子—电子或空穴的施主、受主杂质;它们在半导体中形成的能级都比较靠近价带顶或导带底,因此称其为浅能级杂质.深能级杂质:杂质电离能大,施主能级远离导带底,受主能级远离价带顶.深能级杂质有三个基本特点:一是不容易电离,对载流子浓度影响不大.二是一般会产生多重能级,甚至既产生施主能级也产生受主能级.三是能起到复合中心作用,使少数载流子寿命降低.四是深能级杂质电离后以为带电中心,对载流子起散射作用,使载流子迁移率减小,导电性能下降.简述金半结的形成过程及金半结接触的类型.轻掺杂半导体上的金属与半导体形成整流接触,其接g 半导体中出现成对的电子-空穴对.如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中. 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因.解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带.温度升高,则电子的共有化运动加剧,导致允带进一步分裂,变宽;允带变宽,则导致允带与允带之间的禁带相对变窄.反之,温度降低,将导致禁带变宽.因此,Ge 、Si 的禁带宽度具有负温度系数. 试指出空穴的主要特征.解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子.主要特征如下:A 、荷正电:+q;B 、空穴浓度表示为p (电子浓度表示为n );C 、E P =-E n ;D 、m P *=-m n *.简述Ge 、Si 和GaAS 的能带结构的主要特征.解: Ge 、Si: a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ; b )间接能隙结构c )禁带宽度E g 随温度增加而减小; GaAs a )E g (300K )= 1.428eV ,Eg (0K) = 1.522eV ;b )直接能隙结构;c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ;什么叫浅能级杂质?它们电离后有何特点?解:浅能级杂质是指其杂质电离能远小于本征半导体的禁带宽度的杂质.它们电离后将成为带正电(电离施主)或带负电(电离受主)的离子,并同时向导带提供电子或向价带提供空穴. 什么叫施主?什么叫施主电离?施主电离前后有何特征?试举例说明之,并用能带图表征出n 型半导体.解:半导体中掺入施主杂质后,施主电离后将成为带正电离子,并同时向导带提供电子,这种杂质就叫施主.施主电离成为带正电离子(中心)的过程就叫施主电离.施主电离前不带电,电离后带正电.例如,在Si 中掺P,P 为Ⅴ族元素,本征半导体Si 为Ⅳ族元素,P 掺入Si 中后,P 的最外层电子有四个与Si 的最外层四个电子配对成为共价电子,而P 的第五个外层电子将受到热激发挣脱原子实的束缚进入导带成为自由电子.这个过程就是施主电离.n 型半导体的能带图如图所示:其费米能级位于禁带上方. 什么叫受主?什么叫受主电离?受主电离前后有何特征?试举例说明之,并用能带图表征出p 型半导体.解:半导体中掺入受主杂质后,受主电离后将成为带负电的离子,并同时向价带提供空穴,这种杂质就叫受主.受主电离成为带负电的离子(中心)的过程就叫受主电离.受主电离前带不带电,电离后带负电.例如,在Si 中掺B,B 为Ⅲ族元素,而本征半导体Si 为Ⅳ族元素,P 掺入B 中后,B 的最外层三个电子与Si 的最外层四个电子配对成为共价电子,而B 倾向于接受一个由价带热激发的电子.这个过程就是受主电离.p 型半导体的能带图如图所示:其费米能级位于禁带下方.掺杂半导体与本征半导体之间有何差异?试举例说明掺杂对半导体的导电性能的影响.解:在纯净的半导体中掺入杂质后,可以控制半导体的导电特性.掺杂半导体又分为n 型半导体和p 型半导体.例如,在常温情况下,本征Si 中的电子浓度和空穴浓度均为1.5╳1010cm -3.当在Si 中掺入1.0╳1016cm -3 后,半导体中的电子浓度将变为1.0╳1016cm -3,而空穴浓度将近似为2.25╳104cm -3.半导体中的多数载流子是电子,而少数载流子是空穴.两性杂质和其它杂质有何异同?解:两性杂质是指在半导体中既可作施主又可作受主的杂质.如Ⅲ-Ⅴ族GaAs 中掺Ⅳ族Si.如果Si 替位Ⅲ族As,则Si 为施主;如果Si 替位Ⅴ族Ga,则Si 为受主.所掺入的杂质具体是起施主还是受主与工艺有关.深能级杂质和浅能级杂质对半导体有何影响?解:深能级杂质在半导体中起复合中心或陷阱的作用.浅能级杂质在半导体中起施主或受主的作用.何谓杂质补偿?杂质补偿的意义何在?当半导体中既有施主又有受主时,施主和受 画出Si 和GaAs 的能带结构简图,并分析其能带结构特点Ge 、Si: a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ; b )间接能隙结构c )禁带宽度E g 随温度增加而减小; GaAs : a )E g (300K )= 1.428eV ,Eg (0K) = 1.522eV ;b )直-4段温度很低,本征激发可忽略。 半导体接触形成阻 其接触后的能带图如图

2014年全国计算机等级考试二级MS_Office高级应用考试大纲

全国计算机等级考试二级MS Office高级应用考试大纲 (2014年新版) 基本要求 1.掌握计算机基础知识及计算机系统组成。 2.了解信息安全的基本知识,掌握计算机病毒及防治的基本概念。 3.掌握多媒体技术基本概念和基本应用 4.了解计算机网络的基本概念和基本原理,掌握因特网网络服务和应用。 5.正确采集信息并能在文字处理软件Word、电子表格软件Excel、演示文稿制作软件Powerpoint中熟练应用。 6.掌握Word的操作技能,并熟练应用编制文档。 7.掌握Excel的操作技能,并熟练应用进行数据计算及分析。 8.掌握Powerpoint的操作技能,并熟练应用制作演示文稿。 考试内容 一、计算机基础知识 1. 计算机的发展、类型、特点及其应用领域。 计算机的发展:1943年美国宾夕法尼亚大学的教授莫克利和他的研究生埃克特开始研制电子数字积分计算机(ENIAC),1946年研制成功。 发展的四个阶段: 阶段部件第一阶段 (1946-1959) 第二阶段 (1959-1964) 第三阶段 (1964-1972) 第四阶段 (1972年至今) 主机电子器件电子管晶体管中小规模集成电 路大规模,超大规模集成电路 内存汞延迟线磁芯存储器半导体存储器半导体存储器 外存储器穿孔卡片,纸 袋磁带磁带,磁盘磁带,磁盘,挂 盘等大容量存 储器 处理速度几千条几万至几十 万条几十万至几百万上千万至万亿 条 计算机的类型: 按处理数据的类型分:模拟计算机,数字计算机,数字和模拟计算机 按用途分:通用计算机,专用计算机 按计算机的性能、规模、处理能力分:巨型机、大型通用机、微型计算机、工作站及服

高等半导体物理讲义

高等半导体物理 课程内容(前置课程:量子力学,固体物理) 第一章能带理论,半导体中的电子态 第二章半导体中的电输运 第三章半导体中的光学性质 第四章超晶格,量子阱 前言:半导体理论和器件发展史 1926 Bloch 定理 1931 Wilson 固体能带论(里程碑) 1948 Bardeen, Brattain and Shokley 发明晶体管,带来了现代电子技术的革命,同时也促进了半导体物理研究的蓬勃发展。从那以后的几十年间,无论在半导体物理研究方面,还是半导体器件应用方面都有了飞速的发展。 1954半导体有效质量理论的提出,这是半导体理论的一个重大发展,它定量地描述了半导体导带和价带边附近细致的能带结构,给出了研究浅能级、激子、磁能级等的理论方法,促进了当时的回旋共振、磁光吸收、自由载流子吸收、激子吸收等实验研究。 1958 集成电路问世 1959 赝势概念的提出,使得固体能带的计算大为简化。利用价电子态与原子核心态正交的性质,用一个赝势代替真实的原子势,得到了一个固体中价电子态满足的方程。用赝势方法得到了几乎所有半导体的比较精确的能带结构。 1962 半导体激光器发明 1968 硅MOS器件发明及大规模集成电路实现产业化大生产 1970 * 超晶格概念提出,Esaki (江歧), Tsu (朱兆祥)

* 超高真空表面能谱分析技术相继出现,开始了对半导体表面、界面物理的研究 1971 第一个超晶格Al x Ga 1-x As/GaAs 制备,标志着半导体材料的发展开始进入人 工设计的新时代。 1980 德国的Von Klitzing发现了整数量子Hall 效应——标准电阻 1982 崔崎等人在电子迁移率极高的Al x Ga 1-x As/GaAs异质结中发现了分数量子 Hall 效应 1984 Miller等人观察到量子阱中激子吸收峰能量随电场强度变化发生红移的量子限制斯塔克效应,以及由激子吸收系数或折射率变化引起的激子光学非线性效应,为设计新一代光双稳器件提供了重要的依据。 1990 英国的Canham首次在室温下观测到多孔硅的可见光光致发光,使人们看到了全硅光电子集成技术的新曙光。 近年来,各国科学家将选择生成超薄层外延技术和精细束加工技术密切结合起来,研制量子线与量子点及其光电器件,预期能发现一些新的物理现象和得到更好的器件性能。在器件长度小于电子平均自由程的所谓介观系统中,电子输运不再遵循通常的欧姆定律,电子运动完全由它的波动性质决定。人们发现电子输运的Aharonov-Bohm振荡,电子波的相干振荡以及量子点的库仑阻塞现象等。以上这些新材料、新物理现象的发现产生新的器件设计思想,促进新一代半导体器件的发展。 半导体材料分类: ?元素半导体, Si, Ge IV 族金刚石结构 Purity 10N9, Impurity concentration 10-12/cm3 ,

计算机网络及应用期末复习提纲

《计算机网络及应用》期末复习提纲 第一章计算机网络基础知识 1. 计算机网络发展的4个阶段及每个阶段的特点。 2. 计算机网络的定义及功能:数据通信和资源共享 3. 计算机网络的二级结构:通信子网与资源子网 4. 计算机网络的分类:LAN、MAN、WAN的含义 5. 网络的拓扑结构:星型、环型、网状、总线型,其中广域网采 用的是网状结构 6. 数据传输速率的定义、单位 7. 通信的方式:单工、半双工、全双工 8. 传输介质的类型(双绞线、同轴电缆、光纤、无线介质),其 中带宽最大、信号传输衰减最小、抗干扰能力最强的是光纤。 9. 数据交换:(1)电路交换的优、缺点;(2)分组交换的优、 缺点;(3)当通信子网采用电路交换方式时,需要首先在通信 双方之间建立起物理链路;而采用虚电路分组交换方式时,则 首先在在通信双方之间建立起逻辑链路。(4)所有交换方式 中,实时性最好的是电路交换。 10. 三种多路复用技术:频分多路复用、时分多路利用、波分多路 复用。 11. 网络体系结构:(1)网络协议的三要素:语法、语义和时序; (2)开放系统互连参考模型OSI分为七层:物理层、数据链路 层、网络层、传输层、会话层、表示层和应用层。(3)各层传 递的数据单元:传输层————报文,网络层————分组, 数据链路层————帧。 第二章局域网 1. 局域网的体系结构:IEE 802标准对应OSI参考模型的最低两 层:物理层和数据链路层。其中数据链路层分为:介质访问控 制子层MAC和逻辑链路控制子层LLC。

2. 局域网的硬件组成:网络服务器、工作站、集线器/交换机、网 卡等。其中网卡以插件板的形式插在微机主板的扩展槽中,另 一端连接传输介质。 3. 以太网技术 1) 共享式以太网的介质访问控制方式CSMA/CD,掌握其工作原 理。 2) 传统以太网(使用同轴电缆)的数据传输速率是 10Mbps 3) 粗缆总线的最大长度为500m,采用中继器来扩大局域网的覆盖 范围,最大传输距离可达2500m。细缆总线的最大长度为185m, 最大传输距离为925m。 4) 双绞线以太网用集线器代替总线,物理拓扑结构为星形,但其 逻辑结构仍为总线型。使用非屏蔽双绞线组建以太网时,网卡上 必须有RJ-45 插口。 4. 令牌环网:(1)拓扑结构:环形,属于共享介质的局域网; (2)工作原理; 5. 令牌总线:在物理上是总线型网,在逻辑上是环形网; 6. 共享式局域网包括:传统以太网、令牌网、令牌总线 7. 交换式局域网:(1)工作原理;(2)以太网交换机的两种交 换方式:直接交换方式和存储转发交换方式。 8. 虚拟局域网:(1)用软件方法实现;(2)一定要有交换机。 9. FDDI:(1)基本结构:两个信息流向相反的环结构;(2)传 输速率:100Mb/s 第三章网络互连与Internet技术 1. 网络互连的常用设备分别用于互连OSI参考模型的哪一层?共有 4种,(1)中继器,用于物理层互连;(2)网桥,用于数据链 路层互连、;(3)路由器,用于网络层互连;(4)网关,用 于高层互连。通常我们所说的高层是指传输层及以上各层的互 连。

半导体物理知识点总结

半导体物理知识点总结 本章主要讨论半导体中电子的运动状态。主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。阐述本征半导体的导电机构,引入了空穴散射的概念。最后,介绍了Si、Ge和GaAs的能带结构。 在1.1节,半导体的几种常见晶体结构及结合性质。(重点掌握)在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。(重点掌握)在1.3节,引入有效质量的概念。讨论半导体中电子的平均速度和加速度。(重点掌握)在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。(重点掌握)在1.5节,介绍回旋共振测试有效质量的原理和方法。(理解即可)在1.6节,介绍Si、Ge的能带结构。(掌握能带结构特征)在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。(掌握能带结构特征)本章重难点: 重点: 1、半导体硅、锗的晶体结构(金刚石型结构)及其特点; 三五族化合物半导体的闪锌矿型结构及其特点。 2、熟悉晶体中电子、孤立原子的电子、自由电子的运动有何不同:孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,而晶体中的电子是在严格周期性重复排列的原子间运动(共有化运动),单电子近似认为,晶体中的某一个电子是在周期性排列且固定不动的原子核的势场以及其它大量电子的平均势场中运动,这个势场也是周期性变化的,而且它的周期与晶格周期相同。 3、晶体中电子的共有化运动导致分立的能级发生劈裂,是形成半导体能带的原因,半导体能带的特点: ①存在轨道杂化,失去能级与能带的对应关系。杂化后能带重新分开为上能带和下能带,上能带称为导带,下能带称为价带②低温下,价带填满电子,导带全空,高温下价带中的一部分电子跃迁到导带,使晶体呈现弱导电性。

第七版计算机网络复习提纲.pdf

考点1:internet和Internet的区别。(1章) nternet是互联网,泛指由多个计算机网络互连而成的网络,网络间的通信协议是任意的。Internet是因特网,指当前全球最大的、开放的、由众多网络相互连接的特定的计算机网络,使用TCP/IP协议作为通信规则。 考点2:因特网的核心部分。 核心部分:核心部分:由大量网络和连接这些网络的路由器组成,负责为边缘部分提供高速远程分组交换。 考点3:计算机网络的类别。 按范围:(1)广域网WAN:远程、高速、是Internet的核心网。(2)城域网:城市范围,链接多个局域网。(3)局域网:校园、企业、机关、社区。(4)个域网PAN:个人电子设备按用户:公用网:面向公共营运。专用网:面向特定机构。 考点4:计算机网络的性能指标。 速率,带宽,吞吐量,时延,时延带宽积,往返时间RTT,利用率 考点5:计算机网络体系结构。五层协议。 1.物理层 2.数据链路层 3.网络层 4.运输层 5.应用层 作业:1、计算机网络向用户可以提供那些服务?答:连通性和共享 3、比较电路交换、报文交换和分组交换的主要优缺点: (1)电路交换:端对端通信质量因约定了通信资源获得可靠保障,对连续传送大量数据效率高。 (2)报文交换:无须预约传输带宽,动态逐段利用传输带宽对突发式数据通信效率高,通信迅速。 (3)分组交换:具有报文交换之高效、迅速的要点,且各分组小,路由灵活,网络生存性能好。 17、收发两端之间的传输距离为1000km,信号在媒体上的传播速率为2×108m/s。试计算以下两种情况的发送时延和传播时延: (1)数据长度为107bit,数据发送速率为100kb/s (2)数据长度为103bit,数据发送速率为1Gb/s。 从上面的计算中可以得到什么样的结论? 解:(1)发送时延:ts=107/105=100s。传播时延:tp=106/(2×108)=0.005s (2)发送时延:ts =103/109=1μs。传播时延:tp=106/(2×108)=0.005s 结论:若数据长度大而发送速率低,则在总的时延中,发送时延往往大于传播时延。但若数据长度短而发送速率高,则传播时延就可能是总时延中的主要成分。 1-20 网络体系结构为什么要采用分层次的结构?试举出一些与分层体系结构的思想相似的日常生活。答:分层的好处: ①各层之间是独立的。某一层可以使用其下一层提供的服务而不需要知道服务是如何实现的。②灵活性好。当某一层发生变化时,只要其接口关系不变,则这层以上或以下的各层均不受影响。③结构上可分割开。各层可以采用最合适的技术来实现④易于实现和维护。⑤能促进标准化工作。 与分层体系结构的思想相似的日常生活有邮政系统,物流系统。 考点6:有关信道的几个基本概念。(2章)

半导体物理

半导体物理思考题 第一章半导体中的电子状态 1、为什么内壳层电子能带窄,外层电子能带宽? 答:内层电子处于低能态,外层电子处于高能态,所以外层电子的共有化运动能力强,因此能带宽。(原子的内层电子受到原子核的束缚较大,与外层电子相比,它们的势垒强度较大。) 2、为什么点阵间隔越小,能带越宽? 答:点阵间隔越小,电子共有化运动能力越强,能带也就越宽。3、简述半导体的导电机构 答:导带中的电子和价带中的空穴都参与导电。 4、什么是本征半导体、n型半导体、p型半导体? 答:纯净晶体结构的半导体称为本征半导体;自由电子浓度远大于空穴浓度的杂质半导体称为n型半导体;空穴浓度远大于自由电子浓度的杂质半导体称为p型半导体。 5、什么是空穴?电子和空穴的异同之处是什么? 答:(1)在电子脱离价键的束缚而成为自由电子后,价键中所留下的空位叫空穴。 (2)相同点:在真实空间的位置不确定;运动速度一样;数量 一致(成对出现)。 不同点:有效质量互为相反数;能量符号相反;电子带负 电,空穴带正电。

6、为什么发光器件多半采用直接带隙半导体来制作? 答:直接带隙半导体中载流子的寿命很短,同时,电子和空穴只要一相遇就会发生复合,这种直接复合可以把能量几乎全部以光的形式放出,因此发光效率高。 7、半导体的五大基本特性 答:(1)负电阻温度效应:温度升高,电阻减小。 (2)光电导效应:由辐射引起的被照射材料的电导率改变的现象。 (3)整流效应:加正向电压时,导通;加反向电压时,不导通。 (4)光生伏特效应:半导体和金属接触时,在光照射下产生电动势。 (5)霍尔效应:通有电流的导体在磁场中受力的作用,在垂直于电 流和磁场的方向产生电动势的现象。 第二章半导体中杂质和缺陷能级 1、简述实际半导体中杂质与缺陷来源。 答:①原材料纯度不够;②制造过程中引入;③人为控制掺杂。 2、什么是点缺陷、线缺陷、面缺陷? 答:(1)点缺陷:三维尺寸都很小,不超过几个原子直径的缺陷; (2)线缺陷:三维空间中在二维方向上尺寸较小,在另一维方 向上尺寸较大的缺陷; (3)面缺陷:二维尺寸很大而第三维尺寸很小的缺陷。 3、点缺陷类型有哪些? 答:①空位;②基质原子的填隙;③杂质原子的填隙与替位。

2020年计算机网络考试大纲

2020 年华南农业大学珠江学院本科插班生招生入学考试 《计算机网络》课程考试大纲 I.考试性质 普通高等学校本科插班生招生考试是由专科毕业生参加的选拔性考试。高等学校根据考生的成绩,按已确定的招生计划,德、智、体全面衡量,择优录取。因此,本科插班生考试应有较高的信度、效度、必要的区分度和适当的难度。 本大纲适用于所有需要参加《计算机网络》考试的各专业考生。 n.考试内容 一、考试基本要求《计算机网络》是计算机技术与通信技术相互渗透、密切结合而形成的一门交叉科 学, 是计算机专业、电子信息类专业的一门主干专业课程。课程目标是使学生掌握计算机网络的体系结构、网络的基本工作原理、Internet 网络服务的建构与应用。 二、考核知识点及考核要求要求学生从了解、理解、掌握三个层次学习相关内容。了解:指对所列 知识要熟悉其内容及含义。(单项选择题)理解:指对所列知识要理解其确切含义及与其他知识的联系。(单项选择题、问答题)掌握:指对所列知识能深入理解,并能够进行叙述和解释,能在实际问题的分析、推理和 判断等过程中综合运用。(单项选择题、问答题、综合应用题) 第一部分计算机网络概述 1. 考试内容 (1)网络发展阶段的划分; (2)计算机网络的定义与分类; (3)计算机网络的组成; (4)线路交换、存储转发交换及其特点,数据报与虚电路交换特点; 2. 考试要求 (1)了解计算机网络的形成与发展; (2)掌握计算机网络定义、分类、组成; (3)掌握数据交换技术。 第二部分网络体系结构与网络协议 1. 考试内容 (1)什么是网络协议,协议的三要素是什么; (2)网络体系结构为什么要分层,什么是接口,网络体系机构的定义; (3)OSI参考模型的分层及其各层的主要功能; ( 4 )什么是面向连接的服务和无连接的服务; (5)TCP/IP模型的分层及其各层的主要功能,TCP/IP体系结构的主要协议。 2. 考试要求 (1)掌握网络协议、层次、接口等概念; (2)掌握OS、TCP/IP体系结构及其各层功能; (3)了解网络体系结构在网络通信中的作用。

半导体物理知识点梳理

半导体物理考点归纳 一· 1.金刚石 1) 结构特点: a. 由同类原子组成的复式晶格。其复式晶格是由两个面心立方的子晶格彼此沿其空间对角线位移1/4的长度形成 b. 属面心晶系,具立方对称性,共价键结合四面体。 c. 配位数为4,较低,较稳定。(配位数:最近邻原子数) d. 一个晶体学晶胞内有4+8*1/8+6*1/2=8个原子。 2) 代表性半导体:IV 族的C ,Si ,Ge 等元素半导体大多属于这种结构。 2.闪锌矿 1) 结构特点: a. 共价性占优势,立方对称性; b. 晶胞结构类似于金刚石结构,但为双原子复式晶格; c. 属共价键晶体,但有不同的离子性。 2) 代表性半导体:GaAs 等三五族元素化合物均属于此种结构。 3.电子共有化运动: 原子结合为晶体时,轨道交叠。外层轨道交叠程度较大,电子可从一个原子运动到另一原子中,因而电子可在整个晶体中运动,称为电子的共有化运动。 4.布洛赫波: 晶体中电子运动的基本方程为: ,K 为波矢,uk(x)为一个与晶格同周期的周期性函数, 5.布里渊区: 禁带出现在k=n/2a 处,即在布里渊区边界上; 允带出现在以下几个区: 第一布里渊区:-1/2a

计算机网络期末考试复习提纲

计算机网络及应用复习提纲 2012-5 1、网络有哪些分类方法?按拓扑结构分为几类?按覆盖范围分为几类? 计算机网络可以依据网络用途、网络的拓扑结构、网络覆盖的地域范围、信息传输交换方式、采用的网络协议等属性来进行分类(p15) 计算机网络拓扑结构主要有总线型、环形、星形、树形、回路形、不规则形、网状等(p14) 按覆盖范围可以分为:局域网(local area network,LAN)、城域网(metropolitan area network,MAN)和广域网(wide area network,WAN)(p16) 2、构成网络边缘部分的设备是什么?构成网络核心部分的设备是什么? 网络边缘:应用和主机核心:路由器和网络的网络(百度,参见p17)3、网络延迟有哪几种类型? 最不确定的延迟是哪种?为什么? 主要涉及传播时延和传输时延(p56) 最不确定的时延为传输时延,因为传播时延只与信号的传输距离有关,而传输时延则与传输的数据量和数据传输率有关(p56、p57) 4、在数据通信中,交换技术主要有哪三种?各有何特点? 传统的交换技术有电路交换、报文交换和分组交换。计算机网络中较多使用的交换技术是分组交换和信元交换(p77) 电路交换:电路交换是面向连接的,通信双方在通信之前先建立一条连接,然后在建立的连接上传输数据,数据传输完后释放连接。在通信的过程中,通信的双方独占这一连接。(p77) 报文交换:报文交换与网络节点的存储、转发相联系。收发双方通信的数据组成报文的格式,报文是节点之间传输的数据。节点先接收报文进行存储,然后根据线路的情况决定通过线路向其他节点转发。报文交换是无连接的,报文的大小是不固定的。(p77) 分组交换:分组交换也与存储转发相联系,把需要传输的数据(报文)分

考研《计算机网络》考试大纲

考研《计算机网络》考试大纲 西安邮电大学2016考研《计算机网络》考试大纲 科目代码:827 科目名称:《计算机网络》 一、课程性质和任务 本课程是计算机科学与技术、网络工程和软件工程专业的专业基础课,通过本课程的学习,让学生了解计算机网络的发展现状与技术发展动向,掌握计算机网络的基本概念、基本原理和基本方法,理解典型网络协议的工作原理,掌握常用网络设备的连接与配置方法。旨在培养学生具备良好的计算机网络技术理论基础,较好的网络应用操作能力,以及基本的网络系统分析和设计能力。 二、课程教学内容和要求 第一章概述 基本要求:了解网络发展及标准化工作,掌握网络组成、了解网络分类,熟练掌握网络性能指标,掌握网络体系结构。 教学内容: 1.1计算机网络在信息时代中的作用 1.2因特网概述 网络的概念、因特网发展阶段、因特网的标准化工作、计算机网络在我国的发展。 1.3因特网的组成 因特网的边缘部分、因特网的核心部分 1.4计算机网络在我国的发展 1.5计算机网络的类别 1.6计算机网络的性能(重点) 速率、带宽、吞吐量、时延、时延带宽积等计算机网络性能指标 1.7计算机网络的体系结构(重点) 协议与划分层次、五层协议的体系结构、协议与服务、TCP/IP体系结构。 第二章物理层 基本要求:掌握物理层的基本概念,了解数据通信的基础知识、了解网络传输媒体,掌握信道复用技术,数字传输系统及宽带接入技术。 教学内容: 2.1物理层的基本概念 2.2数据通信的基础知识 数据通信系统的模型、有关信道的基本概念、信道的极限容量、信道的极限信息传输速率。 2.3物理层下面的传输媒体 导向传输媒体、非导向传输媒体 2.4信道复用技术(重点) 频分复用、时分复用和统计时分复用、波分复用、码分复用

高等半导体物理讲义

高等半导体物理 课程内容(前置课程: 量子力学,固体物理) 第一章能带理论,半导体中得电子态 第二章半导体中得电输运 第三章半导体中得光学性质 第四章超晶格,量子阱 前言:半导体理论与器件发展史 1926 Bloch 定理 1931 Wilson 固体能带论(里程碑) 1948 Bardeen, Brattain and Shokley 发明晶体管,带来了现代电子技术得革命,同时也促进了半导体物理研究得蓬勃发展。从那以后得几十年间,无论在半导体物理研究方面,还就是半导体器件应用方面都有了飞速得发展。 1954半导体有效质量理论得提出,这就是半导体理论得一个重大发展,它定量地描述了半导体导带与价带边附近细致得能带结构,给出了研究浅能级、激子、磁能级等得理论方法,促进了当时得回旋共振、磁光吸收、自由载流子吸收、激子吸收等实验研究。 1958 集成电路问世 1959 赝势概念得提出,使得固体能带得计算大为简化。利用价电子态与原子核心态正交得性质,用一个赝势代替真实得原子势,得到了一个固体中价电子态满足得方程。用赝势方法得到了几乎所有半导体得比较精确得能带结构。1962 半导体激光器发明 1968 硅MOS器件发明及大规模集成电路实现产业化大生产 1970 * 超晶格概念提出,Esaki (江歧), Tsu (朱兆祥) * 超高真空表面能谱分析技术相继出现,开始了对半导体表面、界面物理得研究 1971 第一个超晶格Al x Ga1x As/GaAs 制备,标志着半导体材料得发展开始进入人工设计得新时代。 1980 德国得V on Klitzing发现了整数量子Hall 效应——标准电阻 1982 崔崎等人在电子迁移率极高得Al x Ga1x As/GaAs异质结中发现了分数量子Hall 效应 1984 Miller等人观察到量子阱中激子吸收峰能量随电场强度变化发生红移得量子限制斯塔克效应,以及由激子吸收系数或折射率变化引起得激子光学非线性效应,为设计新一代光双稳器件提供了重要得依据。 1990 英国得Canham首次在室温下观测到多孔硅得可见光光致发光,使人们瞧到了全硅光电子集成技术得新曙光。近年来,各国科学家将选择生成超薄层外延技术与精细束加工技术密切结合起来,研制量子线与量子点及其光电器件,预期能发现一些新得物理现象与得到更好得器件性能。在器件长度小于电子平均自由程得所谓介观系统中,电子输运不再遵循通常得欧姆定律,电子运动完全由它得波动性质决定。人们发现电子输运得AharonovBohm振荡,电子波得相干振荡以及量子点得库仑阻塞现象等。以上这些新材料、新物理现象得发现产生新得器件设计思想,促进新一代半导体器件得发展。 半导体材料分类: ?元素半导体, Si, Ge IV 族金刚石结构 Purity 10N9, Impurity concentration 1012/cm3 , Dislocation densities <103 /cm3 Size 20 inches (50 cm) in diameter P V 族 S, Te, Se VI 族 ?二元化合物, 1.IIIV族化合物: GaAS系列,闪锌矿结构, 电荷转移 GaAs, 1、47 eV InAs 0、36 eV GaP, 2、23 eV GaSb, 0、68 eV GaN, 3、3 eV BN 4、6 eV AlN 3、8 eV

计算机网络复习大纲

1、计算机网络的分类:电信网络、有线电视网络、计算机网络 2奈氏准则,波特和比特率的关系:实际的信道所能传输的最高码元速率,要明显地低于奈氏准则给出上限数值。波特(Baud)和比特(bit)是两个不同的概念。波特是码元传输的速率单位(每秒传多少个码元)。码元传输速率也称为调制速率、波形速率或符号速率。比特是信息量的单位。若1 个码元只携带 1 bit 的信息量,则“比特/秒”和“波特”在数值上相等。若1 个码元携带n bit 的信息量,则M Baud 的码元传输速率所对应的信息传输速率为M n b/s。 3香农公式:信道的带宽或信道中的信噪比越大,则信息的极限传输速率就越高。只要信息传输速率低于信道的极限信息传输速率,就一定可以找到某种办法来实现无差错的传输。若信道带宽W 或信噪比S/N 没有上限(当然实际信道不可能是这样的),则信道的极限信息传输速率 C 也就没有上限。实际信道上能够达到的信息传输速率要比香农的极限传输速率低不少。对于频带宽度已确定的信道,如果信噪比不能再提高了,并且码元传输速率也达到了上限值,那么还有办法提高信息的传输速率。这就是用编码的方法让每一个码元携带更多比特的信息量。 4常见的物理传输媒体:双绞线、同轴电缆、光缆、 5双绞线的应用:同种设备使用交叉线,非同中设备使用平行线。 6信息复用的种类及特征:最基本的复用是频分复用(FDM)和时分复用(TDM)。频分复用的所有用户在同样的时间占用不同的宽带资源,用户在分配到一定的频带后,在通信过程中自始至终都占用这个频带。时分复用的所有用户在不同的时间占用同样的频带宽度,每一个用户所占用的时隙是周期性地出现。STDM统计时分复用,波分复用WDM,码分复用CDM。 7宽带接入技术:xDSL技术,光纤同轴混合网(HFC网),FTTx技术。 其他:物理层的作用是要尽可能的屏蔽掉差异,是物理层上面的数据链路层感觉不到这些差异,这样就可使数据链路层只需考虑如何完成本层的协议和服务,而不必考虑网络具体的传输媒介是什么。物理层的特性:机械性,电气特性,功能特性,过程特性。信息交互的方式:单向通信(单工通信),双向交互通信(半双工通信),双向同时通信(全双工通信)。传输媒体不属于物理层。 8点到点协议PPP及透明传输的实现:PPP协议是计算机和ISP进行通信时所使用的数据链路层协议。PPP协议只支持全双工链路。PPP协议应满足的要求:封装成帧,透明性,多种网络层协议,多种类型链路,差错检测,检测连接状态,最大传送单元,网络层地址协商,数据压缩协商。PPP协议的三个组成部分:一个将IP 数据报封装到串行链路的方法。PPP即支持异步链路,也支持面向比特的同步链路。链路控制协议LCP (Link Control Protocol)。用来建立、配置和测试数据链路连接。网络控制协议NCP (Network Control Protocol)。可支持IP、OSI网络层、DECnet,AppleTalk等。PPP 有一个 2 个字节的协议字段。当PPP 用在同步传输链路时,协议规定采用硬件来完成比特填充。当PPP 用在异步传输时,就使用一种特殊的字符填充法。O比特填充:在发送端,只要发现有5 个连续1,则立即填入一个0。接收端对帧中的比特流进行扫描。每当发现5 个连续1时,就把这 5 个连续1 后的一个0 删除。 9以太网的拓扑类型:星形网,环形网,树形网,网状结构。现在常用的以太网为星形(在物理上星形,在逻辑上总线型)。以太网协议标准:DIX Ethernet V2(正规标准)和IEEE 802.3(定义总线型)。 10CSMA/CD协议的工作过程:多点接入、载波监听、碰撞检测。(先听先发,边听边发,冲突停止,等待重发)。多点接入表明此协议为总线型,载波监听指在发送数据之前先监听,检测一下总线上是否有其他站在发送数据,如果有则暂时不要发送数据。碰撞检测是边发送边监听,即配适器在发送数据的同时监听总线上是否有其他站也在发送数据,如果有则停止发送。争用期(Contention Period)就是以太网端到端往返时间2τ。经过争用期这段时间还没有检测到碰撞,才能肯定这次发送不会发生碰撞。传统以太网的争用期:51.2us,可发送512bt 即64字节。信道利用率的公式:Smax=To/(To+τ)=1/1+a。以太网在发送数据时,如果帧的前64字节没有发生冲突,那么后续的数据就不会发生冲突,做一以太网的最短有效帧长即为64字节。凡长度小于64字节的帧都是由于冲突而异常终止的无效帧。 11网桥和交换机的基本工作原理,转发过程:网桥工作在数据链路层,它根据MAC帧的目的地址对收到的帧进行转发和过滤,当网桥收到一个帧时,并不是向所有的接口转发此帧,而是先检测此帧的目的MAC地址,然后再确定将该帧转发到那个接口,或者把它丢弃。网桥是通过内部的接口管理软件和网桥协议实体来实现操作的。P92。12、集线器和交换机对带宽的影响:集线器不管有多少个端口,所有端口都共享一条带宽,在同一时刻只能有两个端口传送数据,其他端口只能等待;同时集线器只能工作在半双工模式下。而对于交换机而言,每个端口都有一条独占的带宽,当两个端口工作时并不影响其他端口的工作,同时交换机不但可以工作在半双工模式下也可以工作在全双工模式下。集线器是一种广播工作模式,所有的端口都可以接受到信息,而交换机只有当某端口发送请求时才工作,只发送到目的端口。 13VLAN的概念及应用:虚拟局域网VLAN 是由一些局域网网段构成的与物理位置无关的逻辑组。这些网段具有某些共同的需求。每一个VLAN 的帧都有一个明确的标识符,指明发送这个帧的工作站是属于哪一个VLAN。虚拟局域网协议允许在以太网的帧格式中插入一个4个字节的标识符,成为VLAN标记。用来指明发送该帧的工作站属于哪个虚拟局域网。 其他:数据链路层使用的信道主要有以下两种类型:点对点信道,广播信道。以帧为单位进行传输。 字符填充:在发送端的SOH或EOT前面插入一个转义字符"ESC",而在接收端的数据链路层再将数据送往网络层之前删除这个插入的转义字符,这种方法成为字节填充或字符填充。 CRC运算就是在数据M的后面添加供差错检测用的N位冗余码,然后构成一个帧发送出去,一共发送(k+n)位。 零比特填充:在发送端,先扫描整个信息子顿,只要发现5个连续1,则立即填入一个0,因此不会出现连续地6个1,接收端在收到一个帧时,先找到标志字段F以确定一个帧的边界,接着再用硬件对其中的比特流进行扫描。每当发现五个连续1时,就把这5个连续1后边的一个0删除,以还原成原来的信息比特流,这样就保证了透明传输;在所传送的数据比特流中可以传送任意组合的比特流而不会引起对帧边界的错误判断。MAC地址:48比特,6字节 扩展的以太网仍然是处于同一个网络。 虚拟局域网只能建立在交换机上。 14 IP地址和硬件地址的关系:IP地址放在IP数据报的首部,而硬件地址则放在MAC 帧的首部。在网络层和网络层以上使用的是IP地址,而数据链路层及以下使用的是硬件地址。数据链路层看不见数据报的IP地址。 IP地址的特点:1)每一个IP地址都由网络号和主机号两部分组成。2)实际上IP地址是标志一个主机和一个链路的接口。3)按照因特网的观点,一个网络是指具有相同网络号的主机的集合。4)在IP地址中,所有分配到网络号的网路都是平等的。 15子网的划分:划分子网的方法是从网络的主机号借用若干位作为子网号当然主机号也就相应的减少了同样的位数,于是两级IP地址在本单位内部就变为三级IP地址:网络号、子网号和主机号。IP地址=网络号,子网号,主机号。A类地址的默认子网掩码是255.0.0.0,B类是255.255.0.0,C类是255.255.255.0。P133例4—2 例4—3 16无分类编址CIDR(构造超网)的基本概念和应用:CIDR 消除了传统的A 类、B 类和C 类地址以及划分子网的概念,因而可以更加有效地分配IPv4 的地址空间。CIDR 把32位的IP地址划分为两个部分,前面的部分是“网络前缀”,用来指明网络,后面的部分则用来指明主机,因此CIDR使IP地址从三位又回到了两级编址。CIDR 把网络前缀都相同的连续的IP 地址组成“CIDR 地址块”。一个CIDR 地址块可以表示很多地址,这种地址的聚合常称为路由聚合,它使得路由表中的一个项目可以表示很多个(例如上千个)原来传统分类地址的路由。CIDR 地址块中的地址数一定是 2 的整数次幂。地址块的分配:P137。P138图4—25 求地址数: 17ICMP:网际控制报文协议。为了提高IP 数据报交付成功的机会,在网际层使用了网际控制报文协议ICMP。ICMP 允许主机或路由器报告差错情况和提供有关异常情况的报告。ICMP 不是高层协议,而是IP 层的协议。ICMP 报文作为IP 层数据报的数据,加上数据报的首部,组成IP 数据报发送出去。ICMP 报文的种类有两种,即ICMP 差错报告报文和ICMP 询问报文。ICMP的应用:PING应用:PING 用来测试两个主机之间的连通性。P143图4—29.Traceroute应用:P144 图4—30。 18路由器的转发分组流程:(1) 从数据报的首部提取目的主机的IP 地址D, 得出目的网络地址为N。(2) 若网络N 与此路由器直接相连,则把数据报直接交付目的主机D;否则是间接交付,执行(3)。(3) 若路由表中有目的地址为 D 的特定主机路由,则把数据报传送给路由表中所指明的下一跳路由器;否则,执行(4)。(4) 若路由表中有到达网络N 的路由,则把数据报传送给路由表指明的下一跳路由器;否则,执行(5)。 (5) 若路由表中有一个默认路由,则把数据报传送给路由表中所指明的默认路由器;否则,执行(6)。(6) 报告转发分组出错。 19路由算法的含义和应用(RIP和OSPF):理想的路由算法:1)算法必须是正确的和完整的。2)算法在计算上应简单。3)算法应能适应通信量和网络拓扑的变化,这就是说,要有自适应性。4)算法应具有稳定性。5)算法应是公平的。6)算法应是最佳的。RIP内部网关协议:是一种分布式的基于距离向量的路由选择协议,最大的优点是简单。RIP对直接连接的路由器的距离定义为1,然后经过其他非直接连接的路由时加1。一条路径最多只能包含15个路由器,因此距离等于16相当于不可到达,所以只适用于小型互联网。RIP协议只关心路由器个数,不关心时延问题。RIP算法中路由表更新的原则是找出到每个目的网络的最短距离。算法:P149 例4—5。OSPF开放最短路径优先协议。OSPF协议不仅要考虑最短路径,还需要考虑时延,费用,距离,带宽等。 20 VPN和NA T的含义:VPN:利用公用的因特网作为本机构各专用网之间的通信载体,这样的专用网又称为虚拟专用网VPN。VPN只是在效果上跟专用网一样,它用的还是公用网。VPN包括全球地址(即公用地址)和私有地址(专有地址)。网络地址转换NA T:所有使用本地地址的主机在和外界通信时,都要在NA T路由器上将本地地址转换成全球IP地址,才能和因特网(公用网)连接,NA T既是从私网到公网的转换。 其他:网际IP协议是用来使互连起来的许多计算机网络能够进行通信,因此TCP/IP体系中的网络层常常称为网际层,或IP层。 IP地址为32位,全球唯一。 A类地址前一位网络号为0,B类为10,C类为110。 所有经过因特网传送的数据都必须加密。 21运输层的两个主要协议的特点:用户数据报协议UDP和传输控制协议TCP。TCP的特点:1)TCP 提供面向连接的运输层协议。2)每个TCP 只能有两个端点。3)TCP 提供可靠交付的服务4)TCP停工全双工通信5)面向字节流。UDP的特点:1)UDP 是无连接的。2)UDP使用尽最大努力交付3)UDP是面向报文的4)UDP没有拥塞控制。5)UDP支持一对一、一对多、多对一和多对多的交互通信。6)UDP的首部开销小,只有八个字节。 22、端口,套接字,网络中通信一端的标识:端口只具有本地意义,在网络中用IP地址+端口号。套接字:TCP连接的端点叫套接字或插口。每一个TCP连接唯一地被通信两端的两个端点(套接字)所确定。 23、流量控制的含义和方法:所谓的流量控制就是让发送方的发送速率不要太快,要让接收方来的及接受。 24、TCP的流量控制与确认机制:利用滑动窗口机制可以很方便的在TCP连接上实现对发送方的流量控制。发送方的发送窗口不能超过接收方给出的接受窗口的数值。TCP 的窗口单位是字节,不是报文段。具体流程:P203图5—22。确认机制:确认TCP基本的传输单元是TCP段,而这些段的长度是可变的.由于TCP要进行可靠的数据传输,所以TCP在接到数据段后要对其进行校验,并且向发送方反馈确认消息.如果发送方没有接受到这样的确认消息,TCP将尝试重新发送数据.TCP接受方发送的确认信号ACK是对其已经接受的、连续的最后一个字节的确认。ACK信号包含在TCP段的头信息中,发送方将从序号的ACK+1开始发送后面的数据。

相关主题
文本预览
相关文档 最新文档