当前位置:文档之家› 韦达定理在圆锥曲线综合题中的应用

韦达定理在圆锥曲线综合题中的应用

韦达定理在圆锥曲线综合题中的应用
韦达定理在圆锥曲线综合题中的应用

韦达定理在圆锥曲线综合题中的应用

【注意】应用韦达定理的前提是:二次项系数不为零,判别式大于(或等于)零.一、弦长问题

【韦达特征】AB==

例1顶点在坐标原点,焦点在x轴上的抛物线截直线240

x y

--=

所得弦长为,则抛

物线方程为.

二、弦的中点问题

【韦达特征】1212

00

,

22

x x y y

x y

++

==

例2已知直线l与椭圆

22

1

164

x y

+=交于A、B两点,且线段A B的中点为(2,1)

P-,则直线

l的方程是.

三、垂直问题

【韦达特征】

(1)若O A O B

⊥,则:

1212

x x y y

+=

(2)若,(,)

PA PB P m n

⊥,则:

1122

(,),(,)

PA x m y n PB x m y n

=--=--

1212

()()()()

PA PB x m x m y n y n

?=-?-+-?-

22

12121212

()()

x x m x x m y y n y y n

=-+++-++

例3若直线l:1

y ax

=+与双曲线22

31

x y

-=交于A、B两点,且以A B为直径的圆过原

点,求a的值.(1

a=±)

例4已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,

最小值为1.

(Ⅰ)求椭圆C的标准方程;

22

1

43

x y

+=

(Ⅱ)若直线:l y kx m

=+与椭圆C相交于A,B两点(A、B不是左右顶点),且以A B为

直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.

2

(,0)

7

例5设椭圆

22

22

1(0)

x y

a b

a b

+=>>的左、右焦点分别为

12

F F A

,,是椭圆上的一点,

212

AF F F

⊥,原点O到直线

1

A F的距离为

1

1

3

O F.

(Ⅰ)证明a=;

(Ⅱ)求(0)

t b

∈,使得下述命题成立:设圆222

x y t

+=上任意点

00

()

M x y

,处的切线交椭圆

1

Q,

2

Q两点,则

12

OQ OQ

⊥.

例6 设动点P 到点(10)A -,和(10)B ,的距离分别为1d 和2d ,2A P B θ∠=,且存在常数

(01)λλ<<,使得2

12sin d d θλ=.

(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;

(2)过点B 作直线双曲线C 的右支于M N ,两点,试确定λ的范围,使0OM ON ?=

,其中点O 为坐标原点.

四、对称问题(即垂直平分问题)

【韦达特征】实际上是转化为问题二(中点问题)、问题三(垂直问题).

例7 如图,倾斜角为α的直线经过抛物线28y x =的焦点F ,且与抛物线交于A 、B 两点.

(Ⅰ)求抛物线的焦点F 的坐标及准线l 的方程;

(Ⅱ)若α为锐角,作线段AB 的垂直平分线m 交x 轴于点P ,证明:cos 2FP FP α-为定值,并求此定值.8

五、线段相等

【韦达特征】若,(,)PA PB P m n =,A B 中点为00(,)M x y ,则:

12

12

00,2

2

x x y y x y ++==且12

122112

PM AB AB

y y n PM AB k k k x x m +-

⊥?=-?

=-+-

. 实际上是转化为问题二(中点问题)、问题三(垂直问题).

例8 已知椭圆的一个顶点为(0,1)A -,焦点在x 轴上,且右焦点到直线0x y -+=的距离为3,试问能否找到一条斜率为k (0)k ≠的直线l ,使l 与已知椭圆交于不同两点M 、N 且

满足AM AN =.

六、数量积问题 【韦达特征】(同问题三——垂直问题) 例9 设F 1、F 2分别是椭圆

2

2

14

x

y +=的左、右焦点.

(Ⅰ)若P 是第一象限内该椭圆上的一点,且125

4

P F P F ?=- ,求点P 的坐标;

(Ⅱ)设过定点(0,2)M 的直线l 与椭圆交于同的两点A 、B ,且∠AOB 为锐角(其中

O 为坐

标原点),求直线l 的斜率k 的取值范围.

y

例10 已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A 、B 两点.

(Ⅰ)若动点M 满足1111F M F A F B F O =++

(其中O 为坐标原点),求点M 的轨迹方程;

(Ⅱ)在x 轴上是否存在定点C ,使C A ? C B

为常数?若存在,求出点C 的坐标;若不存在,请说明理由.

七、面积问题

例11 直线y kx b =+与椭圆

2

2

14

x

y +=交于A 、B 两点,记△AOB 的面积为S .

(Ⅰ)求在0k =,01b <<的条件下,S 的最大值;

(Ⅱ)当2AB =,1S =时,求直线AB 的方程.

例12 已知椭圆C :

222

2

1x y a

b

+

=(0)a b >>的离心率为

3

6,短轴一个端点到右焦点的距离

为3.

(Ⅰ)求椭圆C 的方程;

(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为2

3,求△AOB 面

积的最大值.

例13 设F 是抛物线G :24x y =的焦点.

(Ⅰ)过点(0,4)P -作抛物线G 的切线,求切线方程;

(Ⅱ)设A 、B 为势物线G 上异于原点的两点,且满足0FA FB ?=

,延长AF 、BF 分别交抛物线G 于点C 、D ,求四边形ABCD 面积的最小值. 例14 已知抛物线2

4x y =的焦点为F ,A 、B 是抛物线上的两动点,且AF FB λ=

(0)λ>.过

A 、

B 两点分别作抛物线的切线,设其交点为M.

(Ⅰ)证明FM AB ?

为定值;

(Ⅱ)设A B M ?的面积为S ,写出()S f λ=的表达式,并求S 的最小值.

八、有关比例问题 例15 已知点(10)F ,,直线l :1x =-,P 为平面上的动点,过P 作直线l 的垂线,垂足为点

Q ,且Q P Q F FP FQ ?=? .

(Ⅰ)求动点P 的轨迹C 的方程;

(Ⅱ)过点F 的直线交轨迹C 与A 、B 两点,交直线l 于点M ,已知1M A AF λ=

,2M B BF λ=

,求12λλ+的值;

韦达定理在解析几何中的应用

韦达定理在解析几何中的应用 陈历强 一,求弦长 在有关解析几何的高考题型中不乏弦长问题以及直线与圆锥曲线相交的问题。求直线与圆锥曲线相交所截得的弦长,可以联立它们的方程,解方程组求出交点坐标,再利用两点间距离公式即可求出,但计算比较麻烦。能否另擗捷径呢?能!仔细观察弦长公式: ∣AB ∣=∣x 1-x 2∣21k +?=)1](4)[(221221k x x x x +-+ 或∣AB ∣=∣y 1-y 2∣2 11k + ? =) 11](4)[(2 21221k y y y y + -+ , 立刻发现里面藏着韦达定理(其中x 1、x 2分别表示弦的两个端点的横坐标,y 1、y 2分别表示弦的两个端点的纵坐标)。请看下面的例子: 例1,已知直线 L 的斜率为2,且过抛物线y 2=2px 的焦点,求直线 L 被抛物线截得的弦长。 解:易知直线的方程为y=2(x-2 p ). 联立方程组y 2=2px 和y=2(x- 2 p ) 消去x 得 y 2-py-p 2=0.∵△=5p 2>0,∴直线与抛物线有两个不同的交点。由韦达定理得y 1+y 2=p,y 1y 2=-p 2.故弦长d= 2 5p 例2,直线y=kx-2交椭圆x 2+4y 2=80交于不同的两点P 、Q ,若PQ 中点的横坐标为2,则∣PQ ∣等于___________. 分析:联立方程组y=kx-2和x 2+4y 2=80消去y 得(4k 2+1)x 2-16kx-64=0 设P(x 1,y 1),Q(x 2,y 2). 由韦达定理得 x 1+x 2= 1 4162 +k k = 4得k= 2 1.x 1x 2= -32∣PQ ∣=6 . 练习1:过抛物线 y 2=4x 的焦点作直线交抛物线A(x 1,y 1),B(x 2,y 2)两点,如果x 1+x 2=6, 那么|AB|=( ) (A)10 (B)8 (C)6 (D)4 (文尾有提示.下同) 二,判定曲线交点的个数

(完整word版)圆锥曲线经典练习题及答案

一、选择题 1. 圆锥曲线经典练习题及解答 大足二中 欧国绪 直线I 经过椭圆的一个顶点和一个焦点,若椭圆中心到 1 l 的距离为其短轴长的丄,则该椭圆 4 的离心率为 1 (A ) ( B ) 3 (C ) I (D ) 2. 设F 为抛物线 c : y 2=4x 的焦点, 曲线 k y= ( k>0)与C 交于点P , PF 丄x 轴,则k= x (B )1 3 (C)— 2 (D )2 3?双曲线 2 x C : T a 2 y_ 1(a 0,b 0)的离心率为2,焦点到渐近线的距离为 '、3,贝U C 的 焦距等于 A. 2 B. 2、2 C.4 D. 4?已知椭圆 C : 0)的左右焦点为 F i ,F 2,离心率为 丄3,过F 2的直线l 3 交C 与A 、 B 两点, 若厶AF i B 的周长为4、、3,则 C 的方程为() 2 A. x_ 3 B. 2 x 2彳 xr y 1 C. 2 x 12 D. 2 x 12 5. y 2 b 2 线的一个焦点在直线 2 A.— 5 6.已知 已知双曲线 2 x ~2 a 1( a 0, b 0)的一条渐近线平行于直线 I : y 2x 10,双曲 2 B — 20 2 为抛物线y 2 ' 1 20 F l 上, 2 y 5 则双曲线的方程为( 也 1 100 A , B 在该抛物线上且位于x 轴的两侧, c 3x 2 1 C.— 25 占 八、、 的焦点, uu uuu OA OB A 、2 (其中O 为坐标原点),则 - 1^/2 8 7.抛物线 =X 2的准线方程是 4 (A) y (B) 2 (C) ) D M 辽 .100 25 ABO 与 AFO 面积之和的最小值是( ) x 1 (D)

圆锥曲线的综合问题(答案版)讲课教案

圆锥曲线的综合问题 【考纲要求】 1.考查圆锥曲线中的弦长问题、直线与圆锥曲线方程的联立、根与系数的关系、整体代入 和设而不求的思想. 2.高考对圆锥曲线的综合考查主要是在解答题中进行,考查函数、方程、不等式、平面向 量等在解决问题中的综合运用. 【复习指导】 本讲复习时,应从“数”与“形”两个方面把握直线与圆锥曲线的位置关系.会判断已知直线与曲线的位置关系(或交点个数),会求直线与曲线相交的弦长、中点、最值、定值、点的轨迹、参数问题及相关的不等式与等式的证明问题. 【基础梳理】 1.直线与圆锥曲线的位置关系 判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A 、B 不同时 为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或 变量y )的一元方程. 即?? ?==++0 ),(0y x F c By Ax ,消去y 后得02 =++c bx ax (1)当0≠a 时,设方程02 =++c bx ax 的判别式为Δ,则Δ>0?直线与圆锥曲线C 相交;Δ=0?直线与圆锥曲线C 相切;Δ<0?直线与圆锥曲线C 无公共点. (2)当0=a ,0≠b 时,即得一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点, 此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线, 则直线l 与抛物线的对称轴的位置关系是平行. 2.圆锥曲线的弦长 (1)定义:直线与圆锥曲线相交有两个交点时,这条直线上以这两个交点为端点的线段叫做 圆锥曲线的弦(就是连接圆锥曲线上任意两点所得的线段),线段的长就是弦长. (2)圆锥曲线的弦长的计算 设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB | =1+k 2 |x 1-x 2|=]4))[(1(212212x x x x k -++=a k ? ? +2 1=1+1 k 2·|y 1-y 2|. (抛物线的焦点弦长|AB |=x 1+x 2+p =2p sin 2 θ ,θ为弦AB 所在直线的倾斜角). 3、一种方法 点差法:在求解圆锥曲线并且题目中交代直线与圆锥曲线相交和被截的线段的中点坐标时,设出直线和圆锥曲线的两个交点坐标,代入圆锥曲线的方程并作差,从而求出直线的斜率,

圆锥曲线常见题型与答案

圆锥曲线常见题型归纳 一、基础题 涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。此类题在考试中最常见,解此类题应注意: (1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况; (3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中 222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=; 例题: (1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( ) A .421=+PF PF B .6 21=+PF PF C .1021=+PF PF D .122 2 2 1 =+PF PF (答:C ); (2) 方程8=表示的曲线是_____ (答:双曲线的左支) (3)已知点)0,22(Q 及抛物线4 2 x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2) (4)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值围为____ (答:11(3,)(,2)22---U ); (5)双曲线的离心率等于25 ,且与椭圆14 922=+y x 有公共焦点,则该双曲线的方程_______(答:2 214x y -=); (6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为 _______(答:226x y -=) 二、定义题 对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。常用到的平面几何知识有:中垂线、角平分线的性质,勾股定理,圆的性质,解三角形(正弦余弦定理、三角形面积公式),当条件是用向量的形式给出时,应由向量的几何形式而用平面几何知识;涉及圆的解析几何题多用平面几何方法处理; 圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例): ①围:,a x a b y b -≤≤-≤≤; ②焦点:两个焦点(,0)c ±; ③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为 2a ,短轴长为2b ; ④准线:两条准线2 a x c =±; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。 p e c b a ,,,,

最新高考数学二轮专题综合训练-圆锥曲线(分专题-含答案)

圆锥曲线综合训练题 一、求轨迹方程: 1、(1)已知双曲线1C 与椭圆2C :22 13649 x y +=有公共的焦点,并且双曲线的离心率1e 与椭 圆的离心率2e 之比为7 3,求双曲线1C 的方程. (2)以抛物线2 8y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程. (1)解:1C 的焦点坐标为(0, 27e = 由127 3 e e = 得13e =设双曲线的方程为2 2 221(,0)y x a b a b -=>则22222 13 139a b a b a ?+=??+=? ? 解得229,4a b == 双曲线的方程为 22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00 62 2 x x y y +? =????=??,∴00262x x y y =-??=?. 代入2008y x =得:2 412y x =-.此即为点P 的轨迹方程. 2、(1)ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=5 3 sinA,求点A 的轨迹方程. 解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a , 8=c ,有6=b ,故其方程为 ()0136 1002 2≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有???????='='33 y y x x ,代入①,得A 的轨迹方程为 ()01324 9002 2≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).

圆锥曲线非对称问题

圆锥曲线非对称问题 韦达定理是初中要求的基本知识,到了高中,他的作用日趋明显,在解析几何的解答题中,有着不可或缺的地位,对于直接运用韦达定理的运算,学生已非常熟练,但在有些问题中会遇到两根不对称的情形,一定要学会找关系,用性质 问题导入 已知椭圆C:的左右焦点分别是F1(-c,0),F2(c,0),M,N为左右顶点,直线l:x=ty+1与椭圆C交于两点A,B且当m=?√33时,A是椭圆C的点,且△AF1F2的周长为6. (1)求椭圆C的方程; (2)设点A在x轴上方,设AM,BN,交于一点T,求证点T的横坐标为定值 变式训练 已知椭圆C:的左右顶点为M,N,过定点p(-3,0)且斜率不为零的动直线与椭圆c交于A,B 两点,设A(x1,y1)B(x2,y2)从左往右依次为P,A,B (1)求x1x2+4x1+x2的值 (2)设直线AN与直线BM交于点E,求证点E的横坐标为定值

一,共线向量问题型 例1:如图所示,已知圆M A y x C ),0,1(,8)1(:2 2定点=++为圆上一动点,点P 在AM 上,点N 在CM 上,且满足N AM NP AP AM 点,0,2=?=的轨迹为曲线E. 1)求曲线E 的方程; 2)若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足FH FG λ=,求λ的取值范围. 例2:已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线214 y x =的焦点,离心率为5.(1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若1MA AF λ= , 2MB BF λ= ,求证:1210λλ+=-. 例3设双曲线C :)0(1222>=-a y a x 与直线L :x+y=1相交于两个不同的点A 、B ,直线L 与y 轴交于点P ,且PA=PB 125,求a 的值

圆锥曲线基础测试题大全

(北师大版)高二数学《圆锥曲线》基础测试试题 一、选择题 1.已知椭圆 116 252 2=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .7 2. 椭圆32x 2+16 y 2 =1的焦距等于( )。 A .4 B 。8 C 。16 D 。123 3.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( ) A . 116922=+y x B .1162522=+y x C .1162522=+y x 或125 162 2=+y x D .以上都不对 4.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是 ( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线 5.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于 ( ) A .2 B .3 C .2 D .3 6.抛物线x y 102=的焦点到准线的距离是 ( ) A .25 B .5 C .2 15 D .10 7. 抛物线y 2=8x 的准线方程是( )。 (A )x =-2 (B )x =2 (C )x =-4 (D )y =-2 8.已知抛物线的焦点是F (0,4),则此抛物线的标准方程是( ) (A )x 2=16y (B )x 2=8y (C )y 2=16x (D )y 2=8x 9.经过(1,2)点的抛物线的标准方程是( ) (A )y 2=4x (B )x 2= 21y (C ) y 2=4x 或x 2=2 1 y (D ) y 2=4x 或x 2=4y 10.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( ) A .(7, B .(14, C .(7,± D .(7,-±

解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型 总论:常用的八种方法 1、定义法 2、韦达定理法 3、设而不求点差法 4、弦长公式法 5、数形结合法 6、参数法(点参数、K 参数、角参数) 7、代入法中的顺序 8、充分利用曲线系方程法 七种常规题型 (1)中点弦问题 (2)焦点三角形问题 (3)直线与圆锥曲线位置关系问题 (4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题 1.曲线的形状已知--------这类问题一般可用待定系数法解决。 2.曲线的形状未知-----求轨迹方程 (6) 存在两点关于直线对称问题 (7)两线段垂直问题 常用的八种方法 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、设而不求法 解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 02 20=+k b y a x 。(其中K 是直线AB 的斜率) (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有 020 20=-k b y a x (其中K 是直线AB 的斜率) (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. (其中K 是直线AB 的斜率) 4、弦长公式法 弦长公式:一般地,求直线与圆锥曲线相交的弦AB 长的方法是:把直线方程y kx b =+代入圆锥曲线方程中,得到型如ax bx c 2 0++=的方程,方程的两根设为x A ,x B ,判别式为△,则||||AB k x x A B =+-=12·| |12a k △ ·+,若直接用结论,能减少配方、开方等运算过程。 5、数形结合法 解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

圆锥曲线(韦达定理的使用)

圆锥曲线中韦达定理的使用 例:已知椭圆 116 252 2=+y x ,过左焦点1F 作一条直线交椭圆于A 、B 两点,D (,0)a 为1F 右侧一点,连AD 、BD 分别交椭圆左准线于M 、N 。若以MN 为直径的圆恰过1F ,求 a 的值。 解: 25 小结:解析几何综合题中最典型的直线与曲线交于两点,考查二次方程韦达定理的应用。一般地解题的框架为: 1、直线方程代入曲线方程,准备好韦达定理; 2、主要目标分析,合理转化; 3、韦达定理代入,整理求解。

练习题: 1、已知不过原点的直线L 与椭圆14 22 =+y x 交于点A 、B ,且直线OA 、AB 、OB 的斜率依次成等比数列,求△OAB 的面积的取值范围。 解:设直线AB :()0≠+=m m kx y ,代入14 22 =+y x 整理得 直线OA 、AB 、OB 的斜率依次成等比数列=??2 2 11x y x y 韦达定理代入: 解得 =?= ?d AB S AOB 2 1 2、直线1y kx =+与双曲线221x y -=的左支交于A 、B 两点,直线l 经过点(2,0)-和AB 的中点,求直线l 在y 轴的截距b 的取值范围. 解:将直线1y kx =+代入2 2 1x y -=化简得 由“与左支交于两点”得 AB 的中点为 直线l 方程为 ,其在y 轴的截距b = 所以b 的取值范围是 。 3、过椭圆222 2=+y x 的右焦点F 作弦PQ ,A (0,1),直线AP 、AQ 分别交直线0 2=--y x 于点M 、N ,求当|MN|最小时直线PQ 的方程。 4、椭圆222 2 =+y x 的左、右焦点为F 1、F 2,弦AB 的中点在直线012=+x 上, 求B F A F 22?的取值范围。

2017高三数学一轮复习圆锥曲线综合题(拔高题-有标准答案)

2017年高三数学一轮复习圆锥曲线综合题(拔高题) 一.选择题(共15小题) 1.(2014?成都一模)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若=3, 则||=( ) A.B.2 C.D.3 2.(2014?鄂尔多斯模拟)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=() A.B. C. D. 3.(2014?和平区模拟)在抛物线y=x2+ax﹣5(a≠0)上取横坐标为x1=﹣4,x2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,则抛物线顶点的坐标为() A.(﹣2,﹣9)B.(0,﹣5)C.(2,﹣9)D.(1,6) 4.(2014?焦作一模)已知椭圆(a>b>0)与双曲线(m>0,n>0)有相同的焦点(﹣c,0) 和(c,0),若c是a、m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是( ) A.B. C. D. 5.(2014?焦作一模)已知点P是椭圆+=1(x≠0,y≠0)上的动点,F1,F2是椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且?=0,则||的取值范围是() A.[0,3) B.(0,2)C.[2,3)D.[0,4] 6.(2014?北京模拟)已知椭圆的焦点为F1、F2,在长轴A1A2上任取一点M,过M作垂直于A1A2的直线交椭圆于P,则使得的M点的概率为() A.B.C.D. 7.(2014?怀化三模)从(其中m,n∈{﹣1,2,3})所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中 任取一个,则此方程是焦点在x轴上的双曲线方程的概率为() A.B.C. D.

圆锥曲线弦长公式

圆锥曲线弦长公式 关于直线与圆锥曲线相交求弦长,通用方法是将直线代入曲线方程,化为关于x的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。. 椭圆的焦点弦长若椭圆方程为,半焦距为,焦点,设过的直线的倾斜角为交椭圆于A、B两点,求弦长。解:连结,设,由椭圆定义得,由余弦定理得 ,整理可得,同理可求得,则弦长 同理可求得焦点在y轴上的过焦点弦长为(a为长半轴,b为短半轴,c为半焦距) 结论:椭圆过焦点弦长公式: 二

. 双曲线的焦点弦长 设双曲线,其中两焦点坐标为 ,过的直线的倾斜角为,交双曲线于A、B两点,求弦长|AB|。 。 解:(1)当时,(如图2)直线与双曲线的两个交点A、B在同一交点上,连,设,由双曲线定义可得,由余弦定理可得 整理可得,同理,则可求得弦长

(2)当或时,如图3,直线l与双曲线交点A、B在两支上,连,设,则,,由余弦定理可得, 整理可得,则 因此焦点在x轴的焦点弦长为 同理可得焦点在y轴上的焦点弦长公式 三

其中a为实半轴,b为虚半轴,c为半焦距,为AB的倾斜角。. 抛物线的焦点弦长 若抛物线与过焦点的直线相交于A、B两点,若的倾斜角为,求弦长|AB|(图4) 解:过A、B两点分别向x轴作垂线为垂足,设,,则点A的横坐标为,点B横坐标为,由抛物线定义可得 即 则 同理的焦点弦长为

的焦点弦长为,所以抛物线的焦点弦长为 由以上三种情况可知利用直线倾斜角求过焦点的弦长,非常简单明确,应予以掌握。 一

圆锥曲线练习题(附答案)

) 圆锥曲线 一、填空题 1、对于曲线C ∶1 42 2-+-k y k x =1,给出下面四个命题: ①由线C 不可能表示椭圆; ②当1<k <4时,曲线C 表示椭圆; ③若曲线C 表示双曲线,则k <1或k >4; ④若曲线C 表示焦点在x 轴上的椭圆,则1<k <2 5 其中所有正确命题的序号为_____________. ? 2、已知椭圆)0(122 22>>=+b a b y a x 的两个焦点分别为21,F F ,点P 在椭圆上,且满 足021=?PF PF ,2tan 21=∠F PF ,则该椭圆的离心率为 3.若0>m ,点?? ? ??25,m P 在双曲线15422=-y x 上,则点P 到该双曲线左焦点的距离为 . 4、已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 . 5、已知点P 是抛物线24y x =上的动点,点P 在y 轴上的射影是M ,点A 的坐标是 (4,a ),则当||a >4时,||||PA PM +的最小值是 . 6. 在ABC 中,7 ,cos 18 AB BC B ==- .若以A ,B 为焦点的椭圆经过点C ,则该椭圆的离心率e = . 7.已知ABC ?的顶点B ()-3,0、C ()3,0,E 、F 分别为AB 、AC 的中点,AB 和AC 边上的中线交于G ,且5|GF |+|GE |=,则点G 的轨迹方程为 8.离心率3 5 = e ,一条准线为x =3的椭圆的标准方程是 .

9.抛物线)0(42<=a ax y 的焦点坐标是_____________; 10将抛物线)0()3(42≠-=+a y a x 按向量v =(4,-3)平移后所得抛物线的焦点坐标为 . ^ 11、抛物线)0(12 <=m x m y 的焦点坐标是 . 12.已知F 1、F 2是椭圆2 2 22)10(a y a x -+=1(5<a <10=的两个焦点,B 是短轴的一个端 点,则△F 1BF 2的面积的最大值是 13.设O 是坐标原点,F 是抛物线)0(22>=p px y 的焦点,A 是抛物线上的一点, 与x 轴正向的夹角为60°,则||为 . 14.在ABC △中,AB BC =,7 cos 18 B =-.若以A B ,为焦点的椭圆经过点 C ,则该椭圆的离心率e = . 二.解答题 15、已知动点P 与平面上两定点(A B 连线的斜率的积为定值1 2 -. . (Ⅰ)试求动点P 的轨迹方程C. (Ⅱ)设直线1:+=kx y l 与曲线C 交于M 、N 两点,当|MN |=3 2 4时,求直线l 的方程.

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

圆锥曲线的综合问题(含答案)

课题:圆锥曲线的综合问题 【要点回顾】 1.直线与圆锥曲线的位置关系 判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y (或x )得关于变量 x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0). 若a ≠0,可考虑一元二次方程的判别式Δ,有: Δ>0?直线与圆锥曲线相交; Δ=0?直线与圆锥曲线相切; Δ<0?直线与圆锥曲线相离. 若a =0且b ≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题 设直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2), 则弦长|AB |= 1+k 2|x 1-x 2|或 1+1 k 2|y 1-y 2|. 【热身练习】 1.(教材习题改编)与椭圆 x 212+y 2 16=1焦点相同,离心率互为倒数的双曲线方程是( ) A .y 2- x 2 3 =1 B. y 2 3 -x 2=1 C.34x 2-38 y 2=1 D. 34 y 2- 38 x 2=1 解析:选A 设双曲线方程为y 2a 2- x 2 b 2 =1(a >0,b >0), 则????? a 2+ b 2= c 2, c a =2, c =2, 得a =1,b = 3.故双曲线方程为y 2- x 2 3 =1. 2.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 2 4 =1的位置关系是( )

A .相交 B .相切 C .相离 D .不确定 解析:选A 由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交. 3.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条 B .2条 C .3条 D .4条 解析:选C 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0). 4.过椭圆x 2a 2+ y 2 b 2 =1(a >b >0)的左顶点A 且斜率为1的直线与椭圆的另一个交点为M ,与y 轴的交 点为B ,若|AM |=|MB |,则该椭圆的离心率为________. 解析:由题意知A 点的坐标为(-a,0),l 的方程为y =x +a ,所以B 点的坐标为(0,a ),故M 点的坐 标为? ?? ??-a 2,a 2,代入椭圆方程得a 2=3b 2,则c 2=2b 2,则c 2a 2=23,故e =6 3. 5.已知双曲线方程是x 2-y 2 2=1,过定点P (2,1)作直线交双曲线于P 1,P 2两点,并使P (2,1)为P 1P 2 的中点,则此直线方程是________________. 解析:设点P 1(x 1,y 1),P 2(x 2,y 2),则由 x 21- y 21 2 =1,x 22- y 22 2 =1,得k = y 2-y 1x 2-x 1 = 2x 2+x 1y 2+y 1 = 2×4 2 =4,从而所求方程为4x -y -7=0.将此直线方程与双曲线方程联立得14x 2-56x +51=0,Δ>0,故此直线满足条件.答案:4x -y -7=0 【方法指导】 1.直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题中要充分重视根与系数的关系和判别式的应用. 2.当直线与圆锥曲线相交时:涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目中的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”. 【直线与圆锥曲线的位置关系】

圆锥曲线联立及韦达定理

圆锥曲线联立及韦达定理 1、圆锥曲线与直线的关系 椭圆与双曲线与给定直线的关系通过联立方程所得解的情况来判定: 椭圆:22 221x y a b +=(0)a b 双曲线:22 221x y a b -=(0)a b 、 直线:y kx m =+ (PS :这里并没有讨论椭圆的焦点在y 轴、双曲线的焦点在y 轴及直线斜率不存的情况,做题需要补充) (1)椭圆与双曲线联立: 2 2 2222212()10k km m x x a b b b +++-= (PS :联立时选择不通分,原因?看完就知道了) 类一元二次方程:2 0Ax Bx C ++= 2 221()k A a b =+,所以0A ,即方程为一元二次方程。 判别式:24B AC ?=- 22 2222221()4()(1)km k m b a b b ?=-+- 化解得:22 222214()k m a b a b ?=+- 1) 当0?,方程无实根,直线与椭圆没有交点; 2) 当0?=,方程有两个相同的根,直线与椭圆相切; (相切是因为重根,而不是只有一个根) 3) 当0? ,方程有两个不同的实根,直线与椭圆相交.

(2)双曲线与直线联立: 2 2 2222212()10k km m x x a b b b ----= 类一元二次方程中,2221()k A a b =-,22()km B b =- 22 222214()k m a b a b ?=-+ 1) 当0,0A B ==时,方程为10-=,无解,直线与双曲线相离;(此时为渐近线) 2) 当0,0A B =≠时,方程为一元一次方程,只有一个解,直线与双曲线只有一个交点(此时为渐近线 的平行线) 3) 当0,0A ≠?时,一元二次方程无实数解,直线与双曲线相离; 4) 当0,0A ≠?=时,一元二次方程有两个相同实数解,直线与双曲线相切; 5) 当0,0A ≠? 时,一元二次方程有两个不同实数解,直线与双曲线相交. PS :注意双曲线与直线联立和椭圆与直线联立的方程及最后判定的异同!

圆锥曲线综合练习试题(有答案)

圆锥曲线综合练习 一、 选择题: 1.已知椭圆221102 x y m m +=--的长轴在y 轴上,若焦距为4,则m 等于( ) A .4 B .5 C .7 D .8 2.直线220x y -+=经过椭圆22 221(0)x y a b a b +=>>的一个焦点和一个顶点,则该椭圆的离心率为( ) A B .12 C .2 3 3.设双曲线22 219 x y a -=(0)a >的渐近线方程为320x y ±=,则a 的值为( ) A .4 B .3 C .2 D .1 4.若m 是2和8的等比中项,则圆锥曲线2 2 1y x m +=的离心率是( ) A B C D 5.已知双曲线22 221(00)x y a b a b -=>>,,过其右焦点且垂直于实轴的直线与双曲线交于M N , 两点,O 为坐标原点.若OM ON ⊥,则双曲线的离心率为( ) A B 6.已知点12F F ,是椭圆2 2 22x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +u u u r u u u u r 的最小值是( ) A .0 B .1 C .2 D .7.双曲线221259 x y -=上的点到一个焦点的距离为12,则到另一个焦点的距离为( ) A .22或2 B .7 C .22 D .2 8.P 为双曲线22 1916 x y -=的右支上一点,M N ,分别是圆22(5)4x y ++=和22(5)1x y -+= 上的点, 则||||PM PN -的最大值为( ) A .6 B .7 C .8 D .9 9.已知点(8)P a ,在抛物线24y px =上,且P 到焦点的距离为10,则焦点到准线的距离为( ) A .2 B .4 C .8 D .16 10.在正ABC △中,D AB E AC ∈∈,,向量12DE BC =u u u r u u u r ,则以B C ,为焦点,且过D E ,的双曲线离心率为( ) A B 1 C 1 D 1 11.两个正数a b ,的等差中项是92,一个等比中项是a b >,则抛物线2b y x a =-的焦点坐标是( ) A .5(0)16- , B .2(0)5-, C .1(0)5-, D .1 (0)5 , 12.已知12A A ,分别为椭圆22 22:1(0)x y C a b a b +=>>的左右顶点,椭圆C 上异于12A A ,的点P

利用韦达定理及对称解决圆锥曲线大题

1. 已知动圆P 过定点A(-3,0),并且在定圆B(x-3)2+y 2=64的内部与之相切,求动圆圆心P 的轨迹方程. 答案: 22 1167x y += 2. 已知:点A(4,0),点B 在2 2 4x y +=上运动,求线段AB 的中点P 的轨迹方程. 答案:2 2 (2)1x y -+= 3. 已知椭圆C:22 143x y +=.确定m 的取值范围,使得对于直线4y x m =+,C 上有两个两个不同的点关于该直线对称. 答案: 213213 1313m - ≤≤ 4. 设曲线C :13 22 =+y x 与直线m kx y +=相交于不同的两点M 、N ,又点A (0,-1),当||||AN AM =时,求实数m 的取值范围. 答案:(0.5,2) 5. 椭圆2222:1(0)x y C a b a b +=>>的两个焦点为12,F F ,点P 在椭圆C 上,且112PF F F ⊥,12414,33 PF PF ==。 (Ⅰ)求椭圆C 的方程; (Ⅱ)若直线l 过圆2 2 420x y x y ++-=的圆心M ,交椭圆C 于A 、B 两点,且A 、B 关于点M 对称,求直线l 的方程. 解法一: (1)因为点P 在椭圆C 上,所以6221=+=|PF ||PF |a ,.a 3= 在Rt △21F PF 中,522 12221=-=|PF ||PF ||F F |,故椭圆的半焦距,c 5= 从而42 22=-=c a b ,所以椭圆C 的方程为14 922=+y x (2)设A , B 的坐标分别为)y ,x (),y ,x (2211. 已知圆的方程为5122 2 =-++)y ()x (,所以圆心M 的坐标为),(12- 从而可设直线l 的方程为12++=)x (k y 代入椭圆C 的方程得02736361836942 222=-+++++k k x )k k (x )k ( 因为A,B 关于点M 对称 所以29491822 221-=++-=+k k k x x 解得98= k ,所以直线l 的方程为=y 129 8 ++)x (,即02598=+=y x 6.已知椭圆C 的左、右焦点坐标分别是(2,0)-,(2,0),离心率是6 3 ,直线y=t 椭圆C 交与不同的两点M ,N ,以线段为直径作圆P,圆心为P 。 (Ⅰ)求椭圆C 的方程; (Ⅱ)若圆P 与x 轴相切,求圆心P 的坐标; 解:(Ⅰ)因为 63 c a = ,且2c =,所以22 3,1a b a c ==-= 所以椭圆C 的方程为2 213 x y += (Ⅱ)由题意知(0,)(11)p t t -<< 由22 13 y t x y =???+=?? 得2 3(1)x t =±- 所以圆P 的半径为2 3(1)t - 解得32t =± 所以点P 的坐标是(0,32 ±) 7. 已知O :2 2 1x y +=和定点(2,1)A ,由O 外一点(,)P a b 向O 引切线PQ ,切点为Q ,且满足||||PQ PA =. (Ⅰ) 求实数a b 、间满足的等量关系; (Ⅱ) 求线段PQ 长的最小值; (Ⅲ) 若以P 为圆心所作的P 与O 有公共点,试求半径取最小值时的P 方程. 答案:(Ⅰ)连,OP Q 为切点,PQ OQ ⊥,由勾股定理有222 PQ OP OQ =- 又由已知PQ PA =,故22PQ PA =.即:22222()1(2)(1)a b a b +-=-+-. 化简得实数a 、b 间满足的等量关系为:230a b +-=. (Ⅱ)由230a b +-=,得23b a =-+. 22221(23)1PQ a b a a =+-=+-+-2 5128a a =-+=2645()55 a -+. 故当6 5 a = 时,min 2 5.5PQ =即线段PQ 长的最小值为2 5.5 (Ⅲ)设 P 的半径为R , P 与 O 有公共点, O 的半径为1, 1 1.R OP R ∴-≤≤+即1R OP ≥-且1R OP ≤+. 而222226 9(23)5()55 OP a b a a a =+=+-+=-+, 故当6 5a = 时,min 3 5.5 OP =此时, 3235b a =-+=,min 3515R =-.

相关主题
文本预览
相关文档 最新文档