当前位置:文档之家› §5-7晶体中电子的能态密度

§5-7晶体中电子的能态密度

§5-7晶体中电子的能态密度
§5-7晶体中电子的能态密度

§5-7 晶体中电子的能态密度

5.7.1 带底附近的能态密度

在本章第一节中,我们已经得到自由电子的态密度N (E ),

3

212

22()4m N E V E π??= ???

h …………………………………………

…………………………………(5-7-1) 而且N(E)~E 的关系曲线已由图5-7-1给出。晶体中电子受到周期性势场的作用,其能量E(k )与波矢的关系不再是抛物线性质,因此式(5-7-1)不再适用于晶体中电子。下面以紧束缚理论的简立方结构晶格的s 态电子状态为例,分析晶体中电子态密度的知识。

由前面的紧束缚理论,我们已经得到简立方结构晶格的s 能带的E(k )形式为:

()()012cos cos cos s x y z E J J k a k a k a ε=--++k …………………………………………………(5-7-2)

其中能量极小植在Γ点k =(0, 0, 0)处,其能量为()016s E J J ε=--k ,所以在Γ点附近的能量,可以通过将()E k 展开为在k =0处的泰勒级数而得到,以2

cos 12x x =-+L ,取前两项代入,可以得到:

()()()2222222

2011123()2s x y z s x y z E J J a k k k E J a k k k ε??=---++=Γ-++ ???

k …………………(5-7-3)

在第五节,我们已经根据有效质量的定义,算得简立方晶格s 带Γ点处的有效质量为一个标量,

2

21

*02m a J =>h ……………………………………………………………………………………………

(5-7-4) 代入后,可得到

()22

*

()2s k E E m =Γ+h k …………………………………………………………………………………(5-7-5)

式(5-7-5)表明:在能带底k =0附近,等能面是球面,如果以()()s E E -Γk 及*

m 分别代替自由电子的能量E 及质量m ,就可得到晶体中电子在能带底附近的能态密度函数:

*312

222()4()[()()]s m N E V E E π=-Γh

k ……………………………………………………………(5-7-6)

5.7.2 带顶附近的能态密度

能带顶在(,,)a a a πππ=k 的R 点处,容易知道,其能量为()016s E J J ε=-+k 。以R 点附近的

图5-7-1 自由电子能态密度

波矢(,,)x y z k k k a

a

a

π

π

π

+?±

+?±

+?k 代入E(k )表达式中,就得到在能量极大值附近的能量表达式:

()012[cos()cos()cos()]s x y z E J J k a k a k a επππ=--±+?+±+?+±+?k ………………(5-7-7)

再利用(cos()cos cos sin sin αβαβαβ+=-,就可得到:

01()2(cos cos cos )s x y z E J J k a k a k a ε=-+?+?+?k …………………………………………(5-7-8)

将式中余弦函数展开为2

cos 12x x =-+L 后,上式变成:

222

2011()2[3()]2

s x y z E J J a k k k ε=-+-?+?+?k

()()()2222

*()[]2s x y z E R k k k m

=-?+?+?h …………………………………………………(5-7-9)

或写成

()()()2222

*()()[]2s x y z E R E k k k m

-=-?+?+?h k ………………………………………………(5-7-10)

式中2

*

21

2m a J =h ,i k ?是波矢k 与能带顶R 的波矢之差。所以,若以R 点为原点建立坐标系,,x y z k k k 轴,

则i k ?的意义就与i k 的意义是一样的。因此,式(5-7-10)表示能量极大值附近的等能面是一些以R 点为球心的球面。这样,我们就得到能带极大值附近的态密度函数:

*312

222()4()[()()]s m N E V E R E π=-h

k …………………………………………………………(5-7-11)

虽然,式(5-7-10)和式(5-7-11)是从一个特例出发得到的,但却具有普遍意义。也就是说,当能带极值处的有效质量是各向同性的,等能面是球面时,式(5-7-10)和(5-7-11)均适用。

5.7.3 非极值点处能态密度

当能量远离极值点时,晶体电子的等能面不再是球面。图

5-7-2给出在0z k =截面上的简立方晶格电子等能面示意图。从图看出,从原点(Γ点,是能带底)向外,等能面基本上保持为球面的原因在于周期性场的作用,使晶体电子能量下降,为得到与自由电子相同的能量E ,晶体电子的波矢k 就必然要大。当能量超过边界上的A 点的能量A E 时,等能面将不再是完整的闭合面。在顶角C 点(能量极大值处)附近,等能面是被分割在顶角附近的球面,到达C 点时,等能面缩成几个顶角点。

在能量接近A E 时,等能面向外突出,所以,这些等能面之

图5-7-2 紧束缚近似等能面

A

C

间的体积显然比球面之间的体积大,因而所包含的状态代

表点也较多,使晶体电子的态密度在接近A E 时比自由电子的显著增大(见图5-7-3)。当能量超过A E 时,由于等能面开始残破,它们之间的体积愈来愈小,最后下降为零。

因此,能量在A E 到C E 之间的态密度将随能量增加而逐渐

减小,最后下降为零,如图5-7-3所示。

如果考虑两个没有交叠的能带的态密度,下面一个带的态密度曲线亦如图5-7-3所示,在能带顶处态密度为零。在禁带内亦一直保持为零(因禁带内无电子的量子态存在),当能量到达上面能带的带底时,态密度才又随能量的增加而增加,如图5-7-4(a )所示。如果所考虑的能带

有交叠,则两能带态密度也会发生交叠,态密度函数如图5-7-4(b )所示。可见,交叠能带与不交叠能带的态密度函数是很不相同的,这一点,可以从软X 射线发射谱中得到证明。

当晶体受到能量约为2

3

10~10电子伏

特的电子撞击时,低能带中的一些电子被激发,因而在能带中留下空能级。由于低能带是很窄的,可近似看作是分立能级。当高能带中的电子落入低能带中的空能级上时,就发射出x 射线。因这种X 射线的波长较长(约100?),所以,称之为软x 射线.软x 射线发射谱的强度I(E)与能量等于E 处的态密度

N(E)成正比,亦与能量为E 的电子向空能级跃迁的几率W(E)(或称发射几率)成正比,即 I (E)∝W (E)N(E) 上式中的W(E)是一个随E 连续缓变的函数,所以,可以认为,I(E)主要由E (E)

随E 的变化来决定。也就是说,软x 射线发射谱的形状直接反映出晶体电子态密度的特征。图5-7-5是几种典型的金属与非金属的X 射线发射谱.由图看出,各晶体的发射谱在低能方面都是随能量增加而逐渐上

升的,说明从能带底起,随着电子能量的增加,态密度逐渐增大;在高能端,金属的x 射线发射谱是突然下降的,所对应的能量大致与费米能相同;非金属的发射增则随能量增加而逐渐下降为零.这正好反映了金属与非金届的电子填充能带的状况。金属中的电子没有填满能带,电子填

充的最高能级的能量约为F E ,态密度

()0N E ,所以,发射谱就突然下降。

镁及铝的发射谱与图5-7-4(b)的形状相似,说明这两种金属的能带有交叠。石墨及硅的发射谱的形状则与图5-7-4(a )相

图5-7-5 金属与非金属的X 射线发射谱

(a ) (b ) 图5-7-4 (a )不交叠能带(b )交叠能带

图5-7-3 自由电子与晶体中电子态密度

E

C

E

A

E 自由电子

近自由电子

似,说明这些晶体中的价电子刚好填满一个能带。价电子处于满带之中,所以,这些晶体是绝缘体。

界面缺陷态密度与衬底电阻率取值对硅异质结光伏电池性能的影响

界面缺陷态密度与衬底电阻率取值 对硅异质结光伏电池性能的影响? 周骏1,2, 邸明东2, 孙铁囤3,孙永堂2,汪昊2 (1. 宁波大学理学院光学与光电子技术研究所, 浙江 宁波315211) (2. 江苏大学机械工程学院光信息科学与技术系, 江苏 镇江 212013) (3. 常州亿晶光电科技有限公司, 江苏 常州 213223) 在不同的异质结前界面缺陷态密度(D it1)和异质结背界面缺陷态密度(D it2)条件下,对P 型单 晶硅(c-Si(p))为衬底的硅异质结太阳能电池(TCO / a–Si: H (n +) / c–Si (p) / a–Si: H (p +) / TCO ) 的衬底电阻率R 与电池性能的关系进行数值研究。结果表明:衬底电阻率R 的取值不仅决定于异 质结前界面缺陷态,也与异质结背界面缺陷态有关,即前界面缺陷态密度D it1决定衬底电阻率的 最优值R op ,且R op 随着D it1的增大而增大; R>R op 时, 背界面缺陷态密度D it2对衬底电阻率的可取值 范围具有较大影响,D it2越大可取衬底电阻率的范围越小。 关键词:SHJ 太阳能电池;c–Si (p)衬底电阻率;c–Si (p)/(a–Si: H )界面缺陷;AFORS_HET PACC: 7340L, 8630J, 6185 1 引 言 对于以c-Si(p)为衬底的硅异质结(SHJ)太阳能电池,异质结界面特性对电 池的性能有显著影响[1-2],如衬底电阻率与异质结界面c–Si 耗尽区厚度的关系, 以及由此引起的硅异质结太阳能电池性能的变化[3]等。然而,对于c-Si(p)衬底 电阻率与硅异质结太阳能电池性能的关系,目前研究的还不够深入,长期以来都 是将R =1.0Ω为衬底的最佳电阻率,而将R =1.0~25.0cm 作Ωcm 视为可用的衬底 电阻率[4-5]。最近,文献[6]研究不同前异质结界面缺陷态密度情况下衬底电阻率 与电池性能的关系,指出衬底电阻率最优值R op 的取值将随着前界面缺陷态密度 D it1的降低而减少,突破了人们一直以来认为R =1.0Ωcm 底的最佳电阻率的 观点。但是,文献[6]设计的电池结构有一些缺点,如采用的铝背面场要在高于 800c 的温度下制备,对SHJ 太阳能电池的能量转换效率的提高产生一定限制。此 外,文献[6]对衬底电阻率与背异质结界面缺陷态密度的关系和对电池性能的影 响没有研究。实际上,氢化非晶硅(a–Si:H )和氢化微晶硅(μc-Si:H )因其低温 为衬0 ?国家自然科学基金(批准号:60977048)资助课题,浙江省“钱江人才”项目(2007R10015)、宁波市重点实验 室基金项目(2007A22006),江苏大学与常州亿晶光电科技有限公司联合研发项目和宁波大学王宽成幸福基 金资助课题。 通讯作者:周骏(1958-),男,教授,安徽马鞍山人,主要从事光电子功能材料与器件制备研究。 E-mail :ejzhou@https://www.doczj.com/doc/6c3859527.html,

规则晶体的密度计算

规则晶体的密度计算 本节我们将着重讨论如何来计算其密度。先来了解一下有关密度的问题吧。 【讨论】在初中物理中,我们学习了密度概念。密度是某一物质单位体积的质量,就是某一物质质量与体积的比值。密度是物质的一种属性,我们无限分割某一物质,密度是不变的(初中老师说过)。这儿请注意几个问题:其一,密度受环境因素,如温度、压强的影响。“热胀冷缩”引起物质体积变化,同时也改变了密度。在气体问题上,更是显而易见。其二,从宏观角度上来看,无限分割的确不改变物质的密度;但从微观角度来看呢,当把物质分割到原子级别时,我们拿出一个原子和一块原子间的空隙,或在一个原子中拿出原子核与核外部分,其密度显然都是不一样的。在化学中有关晶体密度的求算,我们是从微观角度来考虑的。宏观物质分到何时不应再分了呢?我们只要在微观角度找到一种能代表该宏观物质的密度的重复单位。一般我们都是选取正方体型的重复单位,它在三维空间里有规则地堆积(未留空隙),就构成宏观物质了,也就是说这个正方体重复单位的密度代表了该物质的密度。我们只要求出该正方体的质量和体积,不就是可以求出其密度了吗?现在,我们先主要来探讨一下正方体重复单位的质量计算。 【例题1】如图2-1所示为高温超导领域Array里的一种化合物——钙钛矿的结构。该结构 是具有代表性的最小重复单元。确定该晶体 结构中,元素钙、钛、氧的个数比及该结构 单元的质量。(相对原子质量:Ca 40.1 Ti 47.9 O 16.0;阿佛加德罗常数:6.02×1023) 【分析】我们以右图2-1所示的正方体结 构单元为研究对象,讨论钙、钛、氧这三种 图2-1 元素属于这个正方体结构单元的原子(或离 子)各有几个。首先看钙原子,它位于正方体的体心,自然是1;再看位于顶点上的钛原子,属于这个正方体是1/8吗?在第一节中,我们曾将一个大正方体分割成八个小正方体,原来在大正方体的一个原子被分割成了八个,成为小正方体的顶点。因此,位于正方体顶点上的原子属于这个正方体应为1/8。再看位于棱心上的氧原子,将它再对分就成为顶点(或者可认为两个顶点拼合后成为棱心)。因此,位于正方体棱心上的原子属于这个正方体应为1/4。最后再看位于面心上的原子,属于这个正方体的应是1/2吗?好好想一想,怎样用上面的方法去考虑呢? 通过上面的分析,我们应该可以考虑出钙、钛、氧三种原子各为1个、1个、3个,由于不知道它们原子的质量,怎么能计算出这个结构单元的质量呢?但我们知道它们的相对原子质量,再通过联系宏观和微观的量——阿佛 第 1 页共4 页

初学VASP中电子态密度计算设置参考

初学VASP中电子态密度计算基本设置参考主要分成三步:一、结构优化;二、静态自洽计算;三、非自洽计算以Al-FCC为例子 第一步结构优化 输入文件(INCAR, POTCAR, POSCAR, KPOINT) INCAR文件 System=Al ISTART=0 ISMEAR=1 SIGMA=0.2 ISPIN=2 GGA=91; VOSKOWN=1; EDIFF=0.1E-05; EDIFFG=-0.01 IBRION=2 NSW=50 ISIF=2 (OR 3) NPAR=10 POTCAR 文件直接在势库中拷贝 POSCAR文件 Al 4.05 1.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 1.0 4 Direct 0.0 0.0 0.0 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 KPOINT 文件 Automatic generation Mohkorst Pack 15 15 15 0.0 0.0 0.0 第二步静态自洽计算 INCAR:PREC = Medium,ISTART = 0,ICHARG = 2,ISMEAR = -5输入文件(INCAR, POTCAR, POSCAR, KPOINT) INCAR文件 System=Al ISTART=0 ISMEAR=1 SIGMA=0.2 ISPIN=2

GGA=91; VOSKOWN=1; EDIFF=0.1E-05; EDIFFG=-0.01 #IBRION=2 #NSW=50 #ISIF=2 (OR 3) NPAR=10 POTCAR 文件直接在势库中拷贝 POSCAR文件 Al 4.05 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 4 Selective Dynamic Direct 0.0 0.0 0.0 T T T 0.5 0.5 0.0 T T T 0.5 0.0 0.5 T T T 0.0 0.5 0.5 T T T KPOINT 文件 Automatic generation

晶体密度计算总结

晶体密度计算总结1.某离子晶体的晶胞结构如图所示, X()位于立方 体的顶点,Y(○)位于立方体的中心。试分析: (1) 晶体中每个Y同时吸引________个X。 (2) 该晶体的化学式为__________。 (3) 设该晶体的摩尔质量为M g·mol-1,晶体的密度为ρg·cm-3,阿 伏加德罗常数的值为N A,则晶体中两个距离最近的X之间的距离为________cm。 2. 面心立方最密堆积,金属原子之间的距离为面对角线的一半,为金属原子的直径。 如果边长为acm,半径r=(2/4)acm , 3. 体心立方最密堆积,金属原子之间的距离为体心对角线的一半,为金属原子的直径。 如果边长为acm,则半径r=(3/4)acm 4.六方最密堆积 5.简单立方堆积 立方体的边长为acm,则r=a/2 cm。 6.金刚石 图中原子均为碳原子,这种表示为更直观。如边长为acm,碳原子的半径为(3/8)acm。

晶胞的密度=nM /N A v n 为每mol 的晶胞所含有的原子(离子)的物质的量。M 为原子或离子的原子量,v 是N A 个晶胞的体积。已知原子半径求边长,已知边长可求半径。 晶胞的空间利用率=每mol 的晶胞中所含原子认为是刚性的球体,球体的体积除以晶胞的体积。 例:1. 戊元素是周期表中ds 区的第一种元素。回答下列问题: (1 )甲能形成多种常见单质,在熔点较低的单质中,每个分子周围紧邻的分子数为 ;在熔点很高的两种常见单质中,X 的杂化方式分别为 、 。 (2)14g 乙的单质分子中π键的个数为___________。 (3)+1价气态基态阳离子再失去一个电子形成+2价气态基态阳 离子所需要的能量称为 第二电离能I 2,依次还有I 3、I 4、I 5…,推测丁元素的电离能突增应出现在第 电离能。 (4)戊的基态原子有 种形状不同的原子轨道; (5)丙和丁形成的一种离子化合物的晶胞结构如右图,该晶体中阳离子的配位数为 。距一个阴离子周围最近的所有阳离子为顶点构成的几何体为 。已知该晶胞的密度为ρ g/cm 3,阿伏加德罗常数为N A ,求晶胞边长a =__________cm 。 (用含ρ、N A 的计算式表示) (6)甲、乙都能和丙形成原子个数比为1:3的常见微粒,推测这两种微粒的空间构型为 。 2.(15分)LiN 3与NaN 3在军事和汽车安全气囊上有重要应用. ⑴N 元素基态原子电子排布图为 . ⑵熔点LiN 3 NaN 3(填写“>”、“<”或“=”),理由是 . ⑶工业上常用反应 NaNO 2+N 2H 4=NaN 3+2H 2O 制备NaN 3. ①该反应中出现的第一电离能最大的元素是 (填元素符号,下同),电负性最大的元素是 . ②NO 2-空间结构是 . ③N 2H 4中N 原子的杂化方式为 .N 2H 4极易溶于水,请用氢键表示式写出N 2H 4水溶液中存在的 所有类型的氢键 . ⑷LiN 3的晶胞为立方体,如右图所示.若已知LiN 3的密度 为ρ g/cm 3,摩尔质量为M g/mol ,N A 表示阿伏伽德罗常数. 则LiN 3晶体中阴、阳离子之间的最近距离为 pm. 3.氢能被视作连接化石能源和可再生能源的重要桥梁。 (1)水是制取H 2的常见原料,下列有关水的说法正确的是 。 a .水分子是一种极性分子 b .H 2O 分子中有2个由s 轨道与sp 3杂化轨道形成的 键 c .水分子空间结构呈V 型 d .CuSO 4·5H 2O 晶体中所有水分子都是配体 (2)氢的规模化制备是氢能应用的基础。在光化学电池中,以紫外线照钛酸锶电极时,可分解水:顶点、面心 :面心

半导体物理与器件公式以及全参数

半导体物理与器件公式以及参数 KT =0.0259ev N c =2.8?1019N v =1.04?1019 SI 材料的禁带宽度为:1.12ev. 硅材料的n i =1.5?1010 Ge 材料的n i =2.4?1013 GaAs 材料的n i =1.8?106 介电弛豫时间函数:瞬间给半导体某一表面增加某种载流子,最终达到电中性的时间,ρ(t )=ρ(0)e ?(t /τd ),其中τd =?σ,最终通过证明这个时间与普通载流子的寿命时间相比十分的短暂,由此就可以证明准电中性的条件。 E F 热平衡状态下半导体的费米能级,E Fi 本征半导体的费米能级,重新定义的E Fn 是存在过剩载流子时的准费米能级。 准费米能级:半导体中存在过剩载流子,则半导体就不会处于热平衡状态,费米能级就会发生变化,定义准费米能级。 n 0+?n =n i exp (E Fn ?E Fi kT )p 0+?p =n i exp [?(E Fp ?E Fi )kT ] 用这两组公式求解问题。 通过计算可知,电子的准费米能级高于E Fi ,空穴的准费米能级低于E Fi ,对于多子来讲,由于载流子浓度变化不大,所以准费米能级基本靠近热平衡态下的费米能级,但是对于少子来讲,少子浓度发生了很大的变化,所以费米能级有相对比较大的变化,由于注入过剩载流子,所以导致各自的准费米能级都靠近各自的价带。

过剩载流子的寿命: 半导体材料:半导体材料多是单晶材料,单晶材料的电学特性不仅和化学组成相关而且还与原子排列有关系。半导体基本分为两类,元素半导体材料和化合物半导体材料。 GaAs主要用于光学器件或者是高速器件。 固体的类型:无定型(个别原子或分子尺度内有序)、单晶(许多原子或分子的尺度上有序)、多晶(整个范围内都有很好的周期性),单晶的区域成为晶粒,晶界将各个晶粒分开,并且晶界会导致半导体材料的电学特性衰退。 空间晶格:晶格是指晶体中这种原子的周期性排列,晶胞就是可以复制出整个晶体的一小部分晶体,晶胞的结构可能会有很多种。原胞就是可以通过重复排列形成晶体的最小晶胞。三维晶体中每一个等效的格点都可以采用矢量表示为r=pa?+qb?+sc?,其中矢量a?,b?,c?称为晶格常数。晶体中三种结构,简立方、体心立方、面心立方。 原子体密度=每晶胞的原子数每晶胞的体积

晶胞计算习题

1、回答下列问题 (1)金属铜晶胞为面心立方最密堆积,边长为a cm。又知铜的密度为ρ g·cm-3,阿伏加德罗常数为_______。(2)下图是CaF2晶体的晶胞示意图,回答下列问题: ①Ca2+的配位数是______,F-的配位数是_______。②该晶胞中含有的Ca2+数目是____,F-数目是_____,③CaF2晶体的密度为a g·cm-3,则晶胞的体积是_______(只要求列出算式)。 2、某些金属晶体(Cu、Ag、Au)的原子按面心立方的形式紧密堆积,即在晶体结构中可以划出一块正立方体的结构单元,金属原子处于正立方体的八个顶点和六个侧面上,试计算这类金属晶体中原子的空间利用率。(2)(3) 3、单晶硅的晶体结构与金刚石一种晶体结构相似,都属立方晶系晶胞,如图: (1)将键联的原子看成是紧靠着的球体,试计算晶体硅的空间利用率(计算结果保留三位有效数字,下同)。(2)已知Si—Si键的键长为234 pm,试计算单晶硅的密度是多少g/cm3。 4、金晶体的最小重复单元(也称晶胞)是面心立方体,如图所示,即在立方体的8个顶点各有一个金原子,各个面的中心有一个金原子,每个金原子被相邻的晶胞所共有。金原子的直径为d,用N A表示阿伏加德罗常数,M表示金的摩尔质量。请回答下列问题: (1)金属晶体每个晶胞中含有________个金原子。 (2)欲计算一个晶胞的体积,除假定金原子是刚性小球外,还应假定_______________。 (3)一个晶胞的体积是____________。(4)金晶体的密度是____________。 5、1986年,在瑞士苏黎世工作的两位科学家发现一种性能良好的金属氧化物超导体,使超导工作取得突破性进展,为此两位科学家获得了1987年的诺贝尔物理学奖,实验测定表明,其晶胞结构如图所示。 (4)(5)(6) (1)根据所示晶胞结构,推算晶体中Y、Cu、Ba和O的原子个数比,确定其化学式。(2)根据(1)所推出的化合物的组成,计算其中Cu原子的平均化合价(该化合物中各元

三维化学 规则晶体的密度计算

高中化学竞赛辅导专题讲座——三维化学 第二节规则晶体的密度计算 在第一节中,我们学习了空间正方体与正四面体的关系,能把四面体型的碳化硅原子晶体(或金刚石)用正方体模型表示出来。本节我们将着重讨论如何来计算其密度。先来了解一下有关密度的问题吧。 【讨论】在初中物理中,我们学习了密度概念。密度是某一物质单位体积的质量,就是某一物质质量与体积的比值。密度是物质的一种属性,我们无限分割某一物质,密度是不变的(初中老师说过)。这儿请注意几个问题:其一,密度受环境因素,如温度、压强的影响。“热胀冷缩”引起物质体积变化,同时也改变了密度。在气体问题上,更是显而易见。其二,从宏观角度上来看,无限分割的确不改变物质的密度;但从微观角度来看呢,当把物质分割到原子级别时,我们拿出一个原子和一块原子间的空隙,或在一个原子中拿出原子核与核外部分,其密度显然都是不一样的。在化学中有关晶体密度的求算,我们是从微观角度来考虑的。宏观物质分到何时不应再分了呢?我们只要在微观角度找到一种能代表该宏观物质的密度的重复单位。一般我们都是选取正方体型的重复单位,它在三维空间里有规则地堆积(未留空隙),就构成宏观物质了,也就是说这个正方体重复单位的密度代表了该物质的密度。我们只要求出该正方体的质量和体积,不就是可以求出其密度了吗?现在,我们先主要来探讨一下正方体重复单位的质量计算。 【例题1】如图2-1所示为高温超导领域里的一种化合物——钙钛矿的结构。该结构是具有代表性的最小重复单元。确定该晶体结构中,元素钙、钛、氧的个数比及该结构单元的质量。(相对原子质量:Ca 40.1 Ti 47.9 O 16.0;阿佛加德罗常数:6.02×1023 ) 【分析】我们以右图2-1所示的正方体结 构单元为研究对象,讨论钙、钛、氧这三种 元素属于这个正方体结构单元的原子(或离 子)各有几个。首先看钙原子,它位于正方体的体心,自然是1;再看位于顶点上的钛原子,属于这个正方体是1/8吗?在第一节中,我们曾将一个大正方体分割成八个小正方体,原来在大正方体的一个原子被分割成了八个,成为小正方体的顶点。因此,位于正方体顶点上的原子属于这个正方体应为1/8。再看位于棱心上的氧原子,将它再对分就成为顶点(或者可认为两个顶点拼合后成为棱心)。因此,位于正方体棱心上的原子属于这个正方体应为1/4。最后再看位于面心上的原子,属于这个正方体的应是1/2吗?好好想一想,怎样用上面的方法去考虑呢? 图2-1 第 1 页共4 页

晶体密度计算总结

晶体密度计算周周清 1.如图2-1所示为高温超导领域里的一种化合物——钙钛矿的结构。该结构是具有代表性的最小重复单元。确定该晶体结构中,元素钙、钛、氧的个数比及该结构单元的质量。(相对原子质量:Ca 40.1 Ti 47.9 O 16.0;阿佛加德罗常数:6.02×1023) 2.最近发现一种由钛原子和碳原子构成的气态团簇分子,如 图2-2所示,顶角和面心的原子是钛原子,棱的中心和体心的原 子是碳原子,它的化学式是① 3.某离子晶体的晶胞结构如图所示,X( )位于立方体的顶点, Y(○)位于立方体的中心。试分析: (1) 晶体中每个Y同时吸引________个X。 (2) 该晶体的化学式为__________。 (3) 设该晶体的摩尔质量为M g·mol-1,晶体的密度为ρg·cm-3,阿伏 加德罗常数的值为N A,则晶体中两个距离最近的X之间的距离为 ________cm。 4. 面心立方最密堆积,金属原子之间的距离为面对角线的一半,为金属原子的直径。 如果边长为acm,半径r= cm ,

★5. 计算如图2-3所示三种常见AB 型离子化合物晶体的密度。(设以下各正方体的边长分别为a cm 、b cm 、c cm ,Na 、S 、Cl 、Zn 、Cs 的相对原子质量分别为M 1、M 2、M 3、M 4、M 5) ★★6.Fe x O 晶体晶胞结构为NaCl 型,由于晶体缺陷,x 值小于1。测知Fe x O 晶体为ρ为5.71g/cm ,晶胞边长(相当于NaCl 晶体正方体结构单元的边长)为 4.28×10-10m (相对原子质量:Fe 5 5.9 O 1 6.0)。求: (1).Fe x O 中x 值为 (精确至0.01)。 (2).晶体中Fe 分别为Fe 2+、Fe 3+,在Fe 2+和Fe 3+的总数中,Fe 2+所占分数为 (用小数表示,精确至0.001)。 (3).此晶体的化学式为 。 (4).Fe 在此晶系中占据空隙的几何形状是 (即与O 2-距离最近且等距离的铁离子围成的空间形状)。 (5).在晶体中,铁元素的离子间最短距离为 m 。 (6)Fe 原子或离子外围有较多能量相近的空轨道,因此能与一些分子或离子形成配合物,则与之形成配合物的分子的配位原子应具备的结构特征是________。Fe(CO)3一种配合物,可代替四乙基铅作为汽油的抗爆震剂,其配体是CO 分子。写出CO 的一种常见等电子体分子的结构式________;两者相比较,沸点较髙的是________填分子式)。 (7)1183K 以下纯铁晶体的晶胞如图1所示,1183K 以上则转变为图2所示晶胞,在两种晶体中最邻近的铁原子间距离相 同。 ①图1和图2中,铁原子的配位数之比为 ________。 ★★★②空间利用率是指构成晶体的原子.离 子或分子在整个晶体空间中占有的体积百分 比,则图1和图2中,铁原子的空间利用率之比为________。 图 2-3

DOS态密度

态密度(Density of States,简称DOS) 在DOS结果图里可以查瞧就就是导体还就就是绝缘体还就就是半导体,请问怎么瞧。理论就就是什么?或者哪位老师可以告诉我这方面得知识可以通过学习什么获得。不胜感激。 查瞧就就是导体还就就是绝缘体还就就是半导体,最好还就就是用能带图DOS得话瞧费米能级两侧得能量差 谢希德。复旦版得《固体能带论》一书中有,请参阅!另外到网上或者学校得数据库找找“第一性原理”方面得论文,里面通常会有一些计算分析。下面有一篇可以下载得:ZnO得第一性原理计算 hoffman得《固体与表面》对态密度得理解还就就是很有好处得。 下面这个就就是在版里找得,多瞧瞧吧: 如何分析第一原理得计算结果 用第一原理计算软件开展得工作,分析结果主要就就是从以下三个方面进行定性/定量得讨论:1 ?、电荷密度图(charge density); 2、能带结构(EnergyBand Structure);?3、态密度(Density ofStates,简称DOS)。??电荷密度图就就是以图得形式出现在文章中,非常直观,因此对于一般得入门级研究人员来讲不会有任何得疑问。唯一需要注意得就就就是这种分析得种种衍生形式,比如差分电荷密图(def-ormationchargedensity)与二次差分图(difference chargedensity)等等,加自旋极化得工作还可能有自旋极化电荷密度图(spin-polarizedc harge density)。所谓“差分”就就是指原子组成体系(团簇)之后电荷得重新分布,“二次”就就是指同一个体系化学成分或者几何构型改变之后电荷得重新分布,因此通过这种差分图可以很直观地瞧出体系中个原子得成键情况。通过电荷聚集(accumulation)/损失(depl etion)得具体空间分布,瞧成键得极性强弱;通过某格点附近得电荷分布形状判断成键得轨道(这个主要就就是对d轨道得分析,对于s或者p轨道得形状分析我还没有见过)。分析总电荷密度图得方法类似,不过相对而言,这种图所携带得信息量较小。?能带结构分析现在在各个领域得第一原理计算工作中用得非常普遍了。但就就是因为能带这个概念本身得抽象性,对于能带得分析就就是让初学者最感头痛得地方。关于能带理论本身,我在这篇文章中不想涉及,这里只考虑已得到得能带,如何能从里面瞧出有用得信息。首先当然可以瞧出这个体系就就是金属、半导体还就就是绝缘体。判断得标准就就是瞧费米能级与导带(也即在高对称点附近近似成开口向上得抛物线形状得能带)就就是否相交,若相交,则为金属,否则为半导体或者绝缘体。对于本征半导体,还可以瞧出就就是直接能隙还就就是间接能隙:如果导带得最低点与价带得最高点在同一个k点处,则为直接能隙,否则为间接能隙。在具体工作中,情况要复杂得多,而且各种领域中感兴趣得方面彼此相差很大,分析不可能像上述分析一样直观与普适。不过仍然可以总结出一些经验性得规律来。主要有以下几点: 1) 因为目前得计算大多采用超单胞(supercell)得形式,在一个单胞里有几十个原

能带结构分析、态密度和电荷密度的分析

电荷密度图、能带结构、态密度的分析 能带图的横坐标是在模型对称性基础上取的K点。为什么要取K点呢?因为晶体的周期性使得薛定谔方程的解也具有了周期性。按照对称性取K点,可以保证以最小的计算量获得最全的能量特征解。能带图横坐标是K点,其实就是倒格空间中的几何点。纵坐标是能量。那么能带图应该就是表示了研究体系中,各个具有对称性位置的点的能量。我们所得到的体系总能量,应该就是整个体系各个点能量的加和。 主要是从以下三个方面进行定性/定量的讨论: 1、电荷密度图(charge density); 2、能带结构(Energy Band Structure); 3、态密度(Density of States,简称DOS)。 电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员来讲不会有任何的疑问。唯一需要注意的就是这种分析的种种衍生形式,比如差分电荷密图(def-ormation charge density)和二次差分图(difference charge density)等等,加自旋极化的工作还可能有自旋极化电荷密度图(spin-polarized charge density)。所谓“差分”是指原子组成体系(团簇)之后电荷的重新分布,“二次”是指同一个体系化学成分或者几何构型改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子的成键情况。通过电荷聚集(accumulation)/损失(depletion)的具体空间分布,看成键的极性强弱;通过某格点附近的电荷分布形状判断成键的轨道(这个主要是对d轨道的分析,对于s或者p轨道的形状分析我还没有见过)。分析总电荷密度图的方法类似,不过相对而言,这种图所携带的信息量较小。 成键前后电荷转移的电荷密度差。此时电荷密度差定义为:delta_RHO = RHO_sc - RHO_atom 其中RHO_sc 为自洽的面电荷密度,而RHO_atom 为相应的非自洽的面电荷密度,是由理想的原子周围电荷分布堆彻得到的,即为原子电荷密度的叠加(a superposition of atomic charge densities)。需要特别注意的,应保持前后两次计算(自洽和非自洽)中的FFT-mesh 一致。因为,只有维数一样,我们才能对两个RHO作相应的矩阵相减。 能带结构分析现在在各个领域的第一原理计算工作中用得非常普遍了。首先当然可以看出这个体系是金属、半导体还是绝缘体。对于本征半导体,还可

DOS态密度

态密度(Density of States,简称DOS) 在DOS结果图里可以查看是导体还是绝缘体还是半导体,请问怎么看。理论是什么?或者哪位老师可以告诉我这方面的知识可以通过学习什么获得。不胜感激。 查看是导体还是绝缘体还是半导体,最好还是用能带图 DOS的话看费米能级两侧的能量差 谢希德。复旦版的《固体能带论》一书中有,请参阅!另外到网上或者学校的数据库找找“第一性原理”方面的论文,里面通常会有一些计算分析。 下面有一篇可以下载的: ZnO的第一性原理计算 hoffman的《固体与表面》对态密度的理解还是很有好处的。 下面这个是在版里找的,多看看吧: 如何分析第一原理的计算结果 ? ?? ?用第一原理计算软件开展的工作,分析结果主要是从以下三个方面进行定性/定量的讨论: ??1、电荷密度图(charge density); ??2、能带结构(Energy Band Structure); ??3、态密度(Density of States,简称DOS)。 ? ? ? ???电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员来讲不会有任何的疑问。唯一需要注意的就是这种分析的种种衍生形式,比如差分电荷密图(def-ormation charge density)和二次差分图(difference charge density)等等,加自旋极化的工作还可能有自旋极化电荷密度图(spin-polarized charge density)。所谓“差分”是指原子组成体系(团簇)之后电荷的重新分布,“二次”是指同一个体系化学成分或者几何构型改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子的成键情况。通过电荷聚集(accumulation)/损失(depletion)的具体空间分布,看成键的极性强弱;通过某格点附近的电荷分布形状判断成键的轨道(这个主要是对d轨道的分析,对于s或者p轨道的形状分析我还没有见过)。分析总电荷密度图的方法类似,不过相对而言,这种图所携带的信息量较小。 ? ?? ?能带结构分析现在在各个领域的第一原理计算工作中用得非常普遍了。但是因为能带这个概念本身的抽象性,对于能带的分析是让初学者最感头痛的地方。关于能带理论本身,我在这篇文章中不想涉及,这里只考虑已得到的能带,如何能从里面看出有用的信息。首先

物质结构晶体密度计算专项练习及答案

高考微专题复习——晶体密度计算 1、Ge单晶具有金刚石型结构,已知Ge单晶的晶胞参数a=565.76 pm,其密度为_________________________g·cm?3(列出计算式即可)。 2 Cu Ni 某镍白铜合金的立方晶胞结构如图所示。 ①晶胞中铜原子与镍原子的数量比为_______________________。 ②若合金的密度为d g·cm–3,晶胞参数a=_____________________nm。 3 、 GaAs的熔点为1238℃,密度为ρg·cm?3,其晶 胞结构如图所示。该晶体的类型为___________,Ga与As以________键键合。Ga 和As的摩尔质量分别为M Ga g?mol?1和M As g?mol?1,原子半径分别为r Ga pm和r As pm,阿伏加德罗常数值为N A,则GaAs晶胞中原子的体积占晶胞体积的百分率为____________________。 4 Y M Y(Cu)与M(Cl)形成的一种化合物的立方晶胞 如图所示。①该化合物的化学式为______________________,已知晶胞参数a=0.542 nm,此晶体的密度为______________________g·cm–3。(写出计算式,不要求计算结果。阿伏加德罗常数为N A)

5、 (O)和B(Na)能够形成化合物F,其晶胞结构如 图所示,晶胞参数,a=0.566nm,F的化学式为____________;晶胞中A原子的配位数为____________;列式计算晶体F的密度(g·c mˉ3)___________________________________。 6、Al单质为面心立方晶体,其晶胞参数a=0.405nm,晶胞中铝原子的配位数为_________,列式表示Al单质的密度为________________________g·cmˉ3(不必计算出结果) 7、金刚石晶胞含有_______个碳原子。若碳原子半径为r,金刚石晶胞的边长为a,根据硬球接触模型,则r=_________a,列式表示碳原子在晶胞中的空间占有率________________________(不要求计算结果)。 8 (F)、B(K)和C(Ni)三种元素责成的 一个化合物的晶胞如图所示。 ①该化合物的化学式为__________;C的配位数为__________; ②cmˉ3。 9在荧光体、光导体材料、涂料、颜

§5-7晶体中电子的能态密度

§5-7 晶体中电子的能态密度 5.7.1 带底附近的能态密度 在本章第一节中,我们已经得到自由电子的态密度N (E ), 3 212 22()4m N E V E π??= ??? h ………………………………………… …………………………………(5-7-1) 而且N(E)~E 的关系曲线已由图5-7-1给出。晶体中电子受到周期性势场的作用,其能量E(k )与波矢的关系不再是抛物线性质,因此式(5-7-1)不再适用于晶体中电子。下面以紧束缚理论的简立方结构晶格的s 态电子状态为例,分析晶体中电子态密度的知识。 由前面的紧束缚理论,我们已经得到简立方结构晶格的s 能带的E(k )形式为: ()()012cos cos cos s x y z E J J k a k a k a ε=--++k …………………………………………………(5-7-2) 其中能量极小植在Γ点k =(0, 0, 0)处,其能量为()016s E J J ε=--k ,所以在Γ点附近的能量,可以通过将()E k 展开为在k =0处的泰勒级数而得到,以2 cos 12x x =-+L ,取前两项代入,可以得到: ()()()2222222 2011123()2s x y z s x y z E J J a k k k E J a k k k ε??=---++=Γ-++ ??? k …………………(5-7-3) 在第五节,我们已经根据有效质量的定义,算得简立方晶格s 带Γ点处的有效质量为一个标量, 2 21 *02m a J =>h …………………………………………………………………………………………… (5-7-4) 代入后,可得到 ()22 * ()2s k E E m =Γ+h k …………………………………………………………………………………(5-7-5) 式(5-7-5)表明:在能带底k =0附近,等能面是球面,如果以()()s E E -Γk 及* m 分别代替自由电子的能量E 及质量m ,就可得到晶体中电子在能带底附近的能态密度函数: *312 222()4()[()()]s m N E V E E π=-Γh k ……………………………………………………………(5-7-6) 5.7.2 带顶附近的能态密度 能带顶在(,,)a a a πππ=k 的R 点处,容易知道,其能量为()016s E J J ε=-+k 。以R 点附近的 图5-7-1 自由电子能态密度

能带,态密度图分析

能带结构和态密度图的绘制及初步分析 前几天在QQ的群中和大家聊天的时候,发现大家对能带结构和态密度比较感兴趣,我做计算已经有一年半了,有一些经验,这里写出来供大家参考参考,希望能够对初学者有所帮助,另外写的这些内容也不可能全都正确,只希望通过表达出来和大家进行交流,共同提高。 MS这个软件的功能确实是比较强,但是也有一些地方不尽如人意的地方。(也可能是我对一些结果不会分析所致,有些暂时不能解决的问题在最后一部分提出,希望大家来研究 研究,看看有没有实现的可能性)。 能带结构、态密度和布居分析是很重要的内容,在 分析能带结构和态密度的时候,往往是先作图,然后分 析。 软件本身提供的作图功能并不是很强,比如说能带结构 (只能带只能做point图和line图),不美观不说,对于 每一个能带的走势也不好观察,感觉无从下手。所以我 一般用origin作图(右图是用origin做的能带图)。能带 结构和态密度的作图过程请参考我给大家提供的动画。 接下来我们先开看看能带结构的分析和制作! 第一部分:能带结构 这个部分打算先简单的介绍一下能带的基础知识,希望能对大家有所帮助,如果对能带了解比较深入的朋友,可以跳过这个部分内容,之中不当之处请勿见笑。^_^ 第一个问题是: 1、能带是怎样形成——轨道和一维体系的能带。 这是最基本的一个问题,我们要对能带结构进行分析,首先要知道它是如何来的。其实能带是一种近似的结果(可以看成一种近似),是周期边界条件(bloch函数)下的一种近似。先来看看一个最简单的问题,非周期体系有没有能带结构?答案是没有的,大家可以试试: ①建一个周期的晶胞②选择build菜单下的symmetry子菜单下的none periodic superstructure去掉周期边界条件性③看看还能够运行吗?运行(run)按钮变灰了,不能提交作业了。这说明什么问题?这说明这个CASTEP这个模块不能计算非周期的体系,另外可以参考MS中的DMOL模块,它可以计算非周期系统,虽然可以计算周期系统,但是仍不能计算能带,大家可以试试,看看property中的band structure能不能选上,一定不能!!^_^ 从这里,我们可以得到一个结论,对于单个原子(分子、单胞)如果不加上周期边界条件,是无法获得能带结构的。所以计算小分子体系,或者采用团簇模型的朋友,这部分内容或许对你们没有帮助!那么,非周期体系的态密度能够计算吗?这应该是能够计算的,曾经开到过文献采用团簇模型,计算出态密度的(phys. Rev. 上的文章)。 那么非周期体系为什么没有能带结构呢? 看一个例子:一个H2分子有能带吗?没有,因为它没有周期边界条件,也就是说在x,y,z方向上没有重复,所以它没有能带结构。那H2分子有什么东西呢?有两个轨道,两个 1s原子轨道,或者说两个轨道能级,它们成键参考右图。 再看另外一个例子:一维无限H原子链 H H H H H H 在一维无限H原子链体系中,产生了能带。 为什么在一维无限H原子链体系中能够产生能带呢?

期末ref清华大学固体物理王燕

填空三十分 格波和平面波的区别 八道简答四十分 固体物理中的绝热近似是什么意思 从能带理论解释为什么存在导体、半导体、绝缘体 波矢空间和倒格空间有什么关系?为什么说波矢空间可以看作准连续 三道计算各十分 1.画正三角形晶格的倒格子 h-bar^2 7 1 2.已知E(k)=————(— - coska + — cos2ka) ma^2 8 8 求能带宽度和能带顶底的有效质量 3.已知omiga=cq^2,求频谱? 07邹建平考题 一填空(30分) 固体物理中常用_________边界条件 理想状态中导热能力最好的是___________ 热膨胀系数与格林爱森常数的关系 金属导电载体?半导体导电载体? 考虑了散射后的运动方程 1.准自由电子近似,把_____作为0级波函数,把_______作为微扰项;紧束缚近似把____作为0级波函数,把____作为微扰项 2.一维单原子链,如果已知色散关系w=c*q^2,求G(w) 3. 3.准经典近似下,速度v=_____ ,有效质量的表达式________ 4.一维单原子链,晶格常数a,N个原子,求紧束缚近似下的E(k)=______ 5.低温条件,晶格比热和____成正比,电子比热和_____成正比 6.半导体中,载流子在外场力作用下是__运动,考虑了散射后的运动方程__,低场条件下的迁移率__ 7.一维N原子链,一个能带中有多少能级?容纳多少电子? 二简答(30分) 1.晶体膨胀时,费米能级如何变化,温度升高时,费米能级如何变化? 2.波矢空间与倒格空间有何关系?为什么说波矢空间内的状态点是准连续的? 3.布里渊区边界上的能级 4.什么叫简正振动模式,简正振动数目,格波数目,格波振动模式数目是否是一回事? 5.极性,非极性晶体晶格散射机制,驰豫时间与温度的关系 6.温度很低时时,对于无限长的晶体,是热超导材料还是热绝缘材料? 三(15') 1.一维单原子链的态密度

DOS态密度

如何分析第一原理的计算结果 用第一原理计算软件开展的工作,分析结果主要是从以下三个方面进行定性/定量的讨论: 1、电荷密度图(charge density); 2、能带结构(Energy Band Structure); 3、态密度(Den sity of States,简称DOS)。 电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员来讲不会有任何的疑问。唯一需要注意的就是这种分析的种种衍生形式,比如差分电荷密图(d ef-ormation charge density)和二次差分图(differenee charge density)等等,加自旋极化的工作还可能有自旋极化电荷密度图(spin-polarized charge density)。所谓差分”是指原子组成体系(团簇)之后电荷的重新分布,二次”是指同一个体系化学成分或者几何构型 改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子的成键情况。通过电荷聚集(accumulation)/损失(depletion )的具体空间分布,看成键的极性强弱;通过某格点附近的电荷分布形状判断成键的轨道(这个主要是对d轨道的分析,对于s 或者p轨道的形状分析我还没有见过)。分析总电荷密度图的方法类似,不过相对而言,这种图所携带的信息量较小。 能带结构分析现在在各个领域的第一原理计算工作中用得非常普遍了。但是因为能带这个概念本身的抽象性,对于能带的分析是让初学者最感头痛的地方。关于能带理论本身,我在这篇文章中不想涉及,这里只考虑已得到的能带,如何能从里面看出有用的信息。首先当然可以看出这个体系是金属、半导体还是绝缘体。判断的标准是看费米能级和导带(也即在高对称点附近近似成开口向上的抛物线形状的能带)是否相交,若相交,则为金属,否则

计算态密度

态密度计算 态密度:表示单位能量范围内所允许的电子数,也就是说电子在某一能量范围的分布情况。因为原子轨道主要是以能量的高低去划分的,所以态密度图能反映出电子在各个轨道的分布情况,反映出原子与原子之间的相互作用情况,并且还可以揭示化学键的信息。态密度有分波态密度(PDOS)和总态密度(TDOS)形式。 原则上讲,态密度可以作为能带结构的一个可视化结果。很多分析和能带的分析结果可以一一对应,很多术语也和能带分析相通。但是因为它更直观,因此在结果讨论中用得比能带分析更广泛一些。 计算过程:主要分成三步:一、结构优化;二、静态自洽计算;三、非自洽计算。 1,结构优化:原子弛豫,确定体系内每个原子位置。常用INCAR。2,静态自洽计算:(得到自洽的电荷密度CHG、CHGCAR和E-fermi,提供给下一步非自洽计算用) INCAR设置注意,ICHARG = 2 3,非自洽计算(准确计算电荷分布) INCAR设置:ISTART=1(若存在WAVECAR文件时取1);ICHARG=11(表示从CHGCAR中读入电荷分布,并且在计算中保持不变);RWIGS (或LORBIT=11(或10),这时可不设RWIGS); 计算完成时,生成DOSCAR,采用spit_dos.dl小程序把dos分开(注意vp.dl要拷到同目录下),会生成N+1个文件,DOS0为总态密度,DOS1到DOSN为N个原子的分态密度。每个分态密度共7列分布为

—能量→Sup→Sdown→Pup→Pdown→Dup→Ddown 不知道从态密度能否定性分析出来,因为态密度越尖,则电子的局域性越强, 修正版的splitdos有三个文件:vp、sumdos和split_dos.ksh INCAR设置: ISTART = 1;ICHARG = 11 LORBIT = 10 【对于PAW势,可设置LORBIT = 10,此时可不用设置RWIGS参数】或者设置RWIGS参照POTCAR

相关主题
文本预览
相关文档 最新文档