当前位置:文档之家› 1.7.2定积分在物理中的应用(学、教案)

1.7.2定积分在物理中的应用(学、教案)

1.7.2定积分在物理中的应用(学、教案)
1.7.2定积分在物理中的应用(学、教案)

1. 7.2定积分在物理中的应用

课前预习学案

【预习目标】

能熟练利用定积分求变速直线运动的路程.会用定积分求变力所做的功.

【预习内容】

一、知识要点:作变速直线运动的物体在时间区间[]b a ,上所经过的路程S ,等于其速度函数)0)()((≥=t v t v v 在时间区间[]b a ,上的 ,即 .

例1已知一辆汽车的速度——时间的函数关系为:(单位:).(),/(s t s m v )

???

????≤≤+-≤≤≤≤=.6040,905.1;4010,30;100,

103)(2t t t t t t v

求(1)汽车s 10行驶的路程;(2)汽车s 50行驶的路程;(3)汽车min 1行驶的路程.

变式1:变速直线运动的物体速度为,1)(2t t v -=初始位置为,10=x 求它在前s 2内所走的路程及s 2末所在的位置.

二、要点:如果物体在变力)(x F 的作用下做直线运动,并且物体沿着与)(x F 相同方向从a x =移动到),(b a b x <=则变力)(x F 所作的功W = .

例2 在弹性限度内,将一弹簧从平衡位置拉到离平衡位置lm 处,求克服弹力所作的功.

变式2:一物体在变力25)(x x F -=作用下,沿与)(x F 成?30方向作直线运动,则由1=x 运动到2

=x 时)(x F 作的功为 .

课内探究学案

一、学习目标:

1. 了解定积分的几何意义及微积分的基本定理.

2.掌握利用定积分求变速直线运动的路程、变力做功等物理问题。

二、学习重点与难点:

1. 定积分的概念及几何意义

2. 定积分的基本性质及运算的应用

三、学习过程

(一)变速直线运动的路程

1.物本做变速度直线运动经过的路程s ,等于其速度函数v = v (t ) (v (t )≥0 )在时间区间[a ,b ]上的 定积分 ,即?=b

a dt t v s )(. 2.质点直线运动瞬时速度的变化为v (t ) = – 3sin t ,则 t 1 = 3至t 2 = 5时间内的位移是

()dt t ?-5

3sin 3.(只列式子) 3.变速直线运动的物体的速度v (t ) = 5 – t 2,初始位置v (0) = 1,前2s 所走过的路程为 325 . 例1.教材P58面例3。

练习:P59面1。

(二)变力作功 1.如果物体沿恒力F (x )相同的方向移动,那么从位置x = a 到x = b 变力所做的功W = F (b —a ).

2.如果物体沿与变力F (x )相同的方向移动,那么从位置x = a 到x = b 变力所做的

功W =?b

a dx x F )(.

例2.教材例4。

课后练习与提高

1、 设物体以速度)/(3)(2s m t t t v +=作直线运动,则它在s 4~0内所走的路程为( ) m A 70.

m B 72. m C 75. m D 80.

2、设列车从A 点以速度)/(2.124)(s m t t v -=开始拉闸减速,则拉闸后行驶m 105所需时间为( )

s A 5. s B 10. s C 20. s D 35.

3、以初速s m /40竖直向上抛一物体,ts 时刻的速度,10402

t v -=则此物体达到最高时的高度为( ) m A 3160. m B 380. m C 340. m D 3

20.

4、质点由坐标原点出发时开始计时,沿x 轴运动,其加速度t t a 2)(=,当初速度0)0(=v 时,质点出发后s 6所走的路程为( )

12.A 54.B 72.C 96.D

5、如果N 1能拉弹簧cm 1,为了将弹簧拉长cm 6,所耗费的功为( )

J A 18.0. J B 26.0. J C 12.0. J D 28.0.

6、一物体在力523)(2+-=x x x F (力:N ;位移:m )作用下沿与力)(x F 相同的方向由m x 5=直线运动到m x 10=处作的功是( )

J A 925. J B 850. J C 825. J D 800.

7、将一弹簧压缩x 厘米,需要x 4牛顿的力,将它从自然长度压缩5厘米,外力作的功是

8、一列火车在平直的铁轨上行驶,由于遇到紧急情况,火车以速度t

t t v ++

-=1555)((单位:s m /)紧急刹车至停止.求

(1)从开始紧急刹车至火车完全停止所经过的时间;

(2)紧急刹车后火车运行的路程.

1.7.2 定积分在物理中的应用

一、教学目标:

1. 了解定积分的几何意义及微积分的基本定理.

2.掌握利用定积分求变速直线运动的路程、变力做功等物理问题。

二、教学重点与难点:

1. 定积分的概念及几何意义

2. 定积分的基本性质及运算的应用

三教学过程:

(一)练习

1.曲线y = x 2 + 2x 直线x = – 1,x = 1及x 轴所围成图形的面积为( B ).

A .38

B .2

C .34

D .3

2 2.曲线y = cos x 3(0)2

x π≤≤与两个坐标轴所围成图形的面积为( D ) A .4 B .2 C .52 D .3

3.求抛物线y 2 = x 与x – 2y – 3 = 0所围成的图形的面积.

解:如图:由2230y x x y ?=?--=?

得A (1,– 1),B (9,3). 选择x 作积分变量,则所求面积为

10011[()][(3)]2S x x dx x x dx =--+--??=199011

121(3)2dx xdx x dx +--??? =3321992201142332||()|33423

x x x x +--=. (二)新课

变速直线运动的路程

1.物本做变速度直线运动经过的路程s ,等于其速度函数v = v (t ) (v (t )≥0 )在时间区间[a ,b ]上的 定积分 ,即?=b

a dt t v s )(. 2.质点直线运动瞬时速度的变化为v (t ) = – 3sin t ,则 t 1 = 3至t 2 = 5时间内的位移是

()dt t ?-5

3sin 3.(只列式子) 3.变速直线运动的物体的速度v (t ) = 5 – t 2,初始位置v (0) = 1,前2s 所走过的路程为 325 . 例1.教材P58面例3。 练习:P59面1。

变力作功

1.如果物体沿恒力F (x )相同的方向移动,那么从位置x = a 到x = b 变力所做的功W = F (b —a ).

2.如果物体沿与变力F (x )相同的方向移动,那么从位置x = a 到x = b 变力所做的

功W =?b

a dx x F )(.

例2.教材例4。

练习:

1.教材P59面练习2

2.一物体在力F (x ) =10(02)34(2)x x x ≤≤??

+>?(单位:N )的作用下沿与力F (x )做功为( B ) A .44J B .46J C .48J D .50J

3.证明:把质量为m (单位kg )的物体从地球的表面升高h (单位:m )处所做的功W = G ·

()Mmh k k h +,其中G 是地球引力常数,M 是地球的质量,k 是地球的半径.

证明:根据万有引力定律,知道对于两个距离为r ,质量分别为m 1、m 2的质点,它们之间的引力f 为f = G ·122

m m r ,其中G 为引力常数. 则当质量为m 物体距离地面高度为x (0≤x ≤h )时,地心对它有引力f (x ) = G ·

2()Mm k x +故该物体从地面升到h 处所做的功为

0()h W f x =?d x =20()

h Mm G k x ?+?·d x = GMm 201()h k x +? d (k + 1) = GMm 01()|h k x -+ =11()()

Mnh GMm k G k h k k h -+=?++. (三)、作业《习案》作业二十

《定积分》教学设计与反思

《定积分》教学设计与反思 学习目标 1、通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分. 2、通过实例体会用微积分基本定理求定积分的方法. 教学重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分. 教学难点:了解微积分基本定理的含义. 一、自主学习: 1.定积分的定义:, 2.定积分记号: 思想与步骤 几何意义. 3.用微积分基本定理求定积分 二、新知探究 新知1:微积分基本定理: 背景:我们讲过用定积分定义计算定积分,但如果要计算,其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 探究问题1:变速直线运动中位置函数S(t)与速度函数v(t)之间的联系 设一物体沿直线作变速运动,在时刻t时物体所在位移为S(t),速度为v(t)(), 则物体在时间间隔内经过的位移记为,则 一方面:用速度函数v(t)在时间间隔求积分,可把位移= 另一方面:通过位移函数S(t)在的图像看这段位移还可以表示为 探究问题2: 位移函数S(t)与某一时刻速度函数v(t)之间的关系式为 上述两个方面中所得的位移可表达为 上面的过程给了我们启示 上式给我们的启示:我们找到了用的原函数(即满足)的数值差来计算在上的定积分的方法。 定理如果函数是上的连续函数的任意一个原函数,则

该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法。 例1.计算下列定积分: 新知2:用定积分几何意义求下列各式定积分: 若求 新知3:用定积分求平面图形的面积 1、计算函数在区间的积分 2、计算函数在区间的积分 3、求与在区间围成的图形的面积 通过此题的计算你发现了什么? 教学反思 本课的教学设计,是在新课程标准理念指导下,根据本班学生实际情况进行设计的。从实施情况来看,整堂课学生情绪高涨、兴趣盎然。在教学中,教师一改往日应用题教学的枯燥、抽象之面貌,而是借用学生已有的知识经验和生活实际,有效地理解了微积分的基本定理,具体反思如下: 1、改变定理的表述形式,丰富信息的呈现方式。 根据高中学生的认知特点,我在教学过程中,出示例题、习题时,呈现形式力求多样、新颖,让学生多种感官一起参与,以吸引学生的注意力,培养对数学的兴趣。本课的教学中,我大胆地改变了教材中实例分析顺序,重组和创设了这样一个情境,从而引入速度关于时间的定积分背景,即切合学生的生活实际,又让学生发现了定理的实际意义,理解了定理的本质,激发了学生学习的兴趣。并更好地为下一环节的自主探索、主动发展作好充分的准备。 2、突出数学应用价值,培养学生的应用意识和创新能力 《数学课程标准》中指出,要让学生能够“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。”本课的设计充分体现了这一理念,例题中涉及路程和速度,让学生感受到数学与生活的密切联系,通过自己的探究,运用数学的思维方式解决问题,又能运用掌握的知识去研究解决生活的其它数学问题,,培养了学生的应用意识。

定积分在物理学中的应用

数学与计算科学学院 学年论文 题目定积分在物理学中的应用 姓名邓花蝶 学号 1209403047 专业年级 2012级数学与应用数学 指导教师耿平 2015年 9 月 1 日

定积分在物理学中的应用 ——求刚体的转动惯量 摘要 众所周知,物理学是一门综合性极高的学科,我们在学习的过程常都 会将课堂理论知识和实践活动有机的结合在一起,然而,在物理学中,我 们通常都会遇到很多难题,比如解积分困难等。因此当前我们在对物理学 的学习中,就要将定积分应用到其中。定积分是高等数学的重要组成部分, 在物理学中也有广泛的应用。微元法是将物理问题抽象成定积分非常实用 的方法。本文主要利用"微元法"的思想求物理学中几种常见均匀刚体的 转动惯量。 关键词 定积分;物理应用;微元法; 转动惯量;均匀刚体 The application of definite integral in physics ——For the moment of inertia of rigid body Abstract As we all know, physics is a comprehensive high discipline, in the learning process We will usually make the classroom theoretical knowledge and practical activity of organic unifies in together, however, in physics, we often encounter some problems, such as the difficulty of solving integral. So in physics learning, we should apply definite integral to it. The integral is an important part of higher mathematics, they are widely used in physics. The differential method is a practical method that physical problems are abstracted integral.In this paper, using the ideas of "micro element method" to solve inertia of several common uniform rigid body in physics.

定积分的应用教案

第六章定积分的应用 教学目的 1、理解元素法的基本思想; 2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体 积及侧面积、平行截面面积为已知的立体体积)。 3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。教学重点: 1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知 的立体体积。 2、计算变力所做的功、引力、压力和函数的平均值等。 教学难点: 1、截面面积为已知的立体体积。 2、引力。 §6. 1 定积分的元素法 回忆曲边梯形的面积: 设y=f (x)≥0 (x∈[a,b]).如果说积分, ?=b a dx x f A) (是以[a,b]为底的曲边梯形的面积,则积分上限函数 ?=x a dt t f x A)( ) ( 就是以[a,x]为底的曲边梯形的面积.而微分dA(x)=f (x)dx表示点x处以dx为宽的小曲边梯形面积的近似值?A≈f (x)dx, f (x)dx称为曲边梯形的面积元素. 以[a,b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式,以 [a,b]为积分区间的定积分: ?=b a dx x f A) (. 一般情况下,为求某一量U,先将此量分布在某一区间[a,b]上,分布在[a,x]上的量用函数U(x)表示,再求这一量的元素dU(x),设dU(x)=u(x)dx,然后以u(x)dx为被积表达式,以[a,b]为积分区间求定积分即得 ?=b a dx x f U) (.用这一方法求一量的值的方法称为微元法(或元素法).

§6. 2 定积分在几何上的应用 一、平面图形的面积 1.直角坐标情形 设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成, 则面积元素为[f 上(x )- f 下(x )]dx , 于是平面图形的面积为 dx x f x f S b a ?-=)]()([下上. 类似地, 由左右两条曲线x =?左(y )与x =?右(y )及上下两条直线y =d 与y =c 所围成设平面图形的面积为 ?-=d c dy y y S )]()([左右??. 例1 计算抛物线y 2=x 、y =x 2所围成的图形的面积. 解 (1)画图. (2)确定在x 轴上的投影区间: [0, 1]. (3)确定上下曲线: 2)( ,)(x x f x x f ==下上. (4)计算积分 31]3132[)(10323102=-=-=?x x dx x x S . 例2 计算抛物线y 2=2x 与直线y =x -4所围成的图形的面积. 解 (1)画图. (2)确定在y 轴上的投影区间: [-2, 4]. (3)确定左右曲线: 4)( ,2 1)(2+==y y y y 右左??. (4)计算积分 ?--+=422)2 14(dy y y S 18]61421[4232=-+=-y y y . 例3 求椭圆12222=+b y a x 所围成的图形的面积. 解 设整个椭圆的面积是椭圆在第一象限部分的四倍, 椭圆在第一象限部分在x 轴上的投影区间为[0, a ]. 因为面积元素为ydx , 所以 ?=a ydx S 04. 椭圆的参数方程为: x =a cos t , y =b sin t , 于是 ?=a ydx S 04?=0 )cos (sin 4πt a td b

定积分在物理中的应用

定积分在物理中的应用 目录: 一.摘要 二.变力沿直线所作的功 三.液体的侧压力 四.引力问题 五.转动惯量

摘要: 伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分。 微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。 微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。 微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。微积分堪称是人类智慧最伟大的成就之一。在高中物理中,微积分思想多次发挥了作用。

定义: 设函数f(x)在[a,b]上有界,在[a ,b]中任意插入若干个分点 a=X0

定积分的概念教案知识讲解

定积分的概念教案

人教A版必修一教材 教材内容分析微积分的出现和发展,极大的推动了数学的发展,同时也推动了天文学、力学、物理学、化学、生物学等自然科学、社会科学及应用科学各个分支中的发展。本节课是定积分概念的第一节课,教材借助求曲边梯形的面积和物理中变速直线运动的路程,通过直观具体的实例引入到定积分的学习中,为定积分概念构建认知基础,为理解定积分概念及几何意义起到了铺垫作用,同时也为今后进一步学习微积分打下基础。 学生情况分析 本节课的教学对象是本校实验班学生,学生思维比较活跃,理解能力、运算能力和学习交流能力较强。学生前面已经学习了导数,并利用导数研究函数的单调性、极值及生活中的优化问题等,渗透了微分思想。从学生的思维特点看,比较容易把刘徽的“割圆术”与本节课知识联系到一起,能够初步了解到“以直代曲”和“无限逼近”的重要数学思想,但是在具体的“以直代曲”过程中,如何选择适当的直边图形来代替曲边梯形会有一些困难。在对“极限”和“无限逼近”的理解,即理解为什么将直边图形面积和取极限正好是曲边梯形面积的精确值及在对定积分定义的归纳中符号的理解上也会有一些困难。 教学目标 1.从物理问题情境中了解定积分概念的实际背景,初步掌握求曲边梯形的面积的方法和步骤:分割、近似代替、求和、取极限; 2.经历求曲变梯形面积的过程,借助几何直观体会“以直代曲”和“逼近”的思想,学习归纳、类比的推理方式,体验从特殊到一般、从具体到抽象、化归与转化的数学思想; 3.认同“有限与无限的对立统一”的辩证观点,感受数学的简单、简洁之美. 教学重点直观体会定积分的基本思想方法:“以直代曲”、“无限逼近”的思想; 初步掌握求曲边梯形面积的方法步骤——“四步曲”(即:分割、近似代替、求和、取 极限) 教学难点对“以直代曲”、“逼近” 思想的形成过程的理解. 教学方式教师适时引导和学生自主探究发现相结合. 辅助工具投影展台,几何画板. 教学过程 引入新课问题:汽车以速度v做匀速直线运动时,经过时间t所行驶的路程为 S vt =.如果汽车作变速直线运动,在时刻t的速度为()2 v t t=(单 位:km/h),那么它在0≤t≤1(单位:h)这段时间内行驶的路程S (单位:km)是多少? 创设情境,引入 这节课所要研究的 问题. 类比探究,形成方法如图,阴影部分类似于一个梯形,但有一边是曲线() y f x =的一 段,我们把由直线,(),0 x a x b a b y ==≠=和曲线() y f x =所围 成的图形称为曲边梯形. 如何计算这个曲边梯形的面积? (1)温故知新,铺垫思想 问题1:我们在以前的学习经历中有没有用直边 图形的面积计算曲边图形面积这样的例子? 问题2:在割圆术中为什么用正多边形的面积计算圆的面积?为什么 要逐次加倍正多边形的边数? (2)类比迁移,分组探究 问题3:能不能类比割圆术的思想和操作方法把曲边梯形的面积问题 转化为直边图形的面积问题? 学生活动:学生进行分组讨论、探究。 (3)汇报比较,形成方法 学生需要用原有的 知识与经验去同化 或顺应当前要学习 的新知识,所以问 题1引导学生回忆 割圆术的作法,通 过问题2引导学生 思考割圆术中的思 想方法----“以直代 曲”,和“无限逼 近”。 通过问题3激 发学生探索的愿 望,明确解决问题 的方向。

北师大版数学高二定积分的简单应用教案 选修2-2

高中数学 定积分的简单应用教案 选修2-2 一:教学目标 知识与技能目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 过程与方法 情感态度与价值观 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 1、复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、(1,1),面积S=1 1 20 0xdx x dx = -? ?,所以 ?1 20S =(x -x )dx 32 1 3023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。 巩固练习 计算由曲线3 6y x x =-和2 y x =所围成的图形的面积. 例2.计算由直线4y x =-,曲线2y x = 以及x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯 2 x y =y x A B C D O

《定积分在几何中的应用》教学教案

1.7.1定积分在几何中的应用 学习目标: 1.体会“分割、以直代曲、求和、逼近”求曲边梯形面积的思想方法; 2.初步掌握利用定积分求曲边梯形的几种常见题型及方法; 3.理解定积分的几何意义以及微积分的基本定理。 学习方法: 情境一:展示精美的赵州桥图片,讲述古代数学家的故事及伟大发现:拱形的面积 问题1:桥拱与水面之间的切面的面积如何求解呢? 问题2:需要用到哪些知识?(定积分) 问题3:求曲边梯形的思想方法是什么? 问题4:定积分的几何意义是什么? 问题5:微积分基本定理是什么? 情境二:利用定积分求平面图形的面积 例1. 计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 问题1:你能在平面直角坐标系内画出两条抛物线吗? 问题2:能在图中找出所要求的图形吗?(用阴影部分表示出来) (如右图) 问题3:这个图形以前见过吗?有没有直接的公式求它的面积吗? 问题4:既然没有直接的公式求其面积,那能不能转化成我们学过的曲边梯形的面积来间接求解呢?(可看做两个曲边梯形的面积之差,进而可以用定积分来解决) 解:解方程组?????==2 2x y x y 得到交点横坐标为0=x 或1=x x y O A B C D 2 x y =x y =2 1 1 -1 -1 4 x y O 8 4 2 2

∴ OABD OABC S S S 曲边梯形曲边梯形-=dx x ? = 1 dx x ?-1 2 1031 0233132x x -=313132=-= 情境三 学生探究: 例2.计算由直线4y x =-,曲线y =x 轴所围图形的面积S. 分析:模仿例1,先画出草图(左图),并设法把所求图形的面积问题转化为求曲边梯形的面积问题. 问题1:阴影部分图形是曲边梯形吗? 问题2:不是曲边梯形怎么办?能否构造出曲边梯形来呢? 问题3:如果转化成两部分的面积和,应该怎样作辅助线?(过点(4,0)作x 轴的垂线将阴影部分分为两部分) 问题4:两部分面积用定积分分别应该怎样表示?(注意积分上下限的确定) 问题5:做辅助线时应该注意什么?(尽量将曲边图形转化成我们熟悉的平面图形,如三角形、矩形、梯形和曲边梯形组合成的图形.) 规范的解题过程此处略去 思考:1.本题还有没有其它的解决方案?(可以将此阴影部分看做一个曲边梯形和一个三角形的面积之差) 2.上面的解法是将x 看作积分变量,能不能将y 看作积分变量?尝试解决之。 情境四:结合以上两个例题,总结利用定积分求平面图形面积的基本步骤。 解由曲线所围的平面图形面积的解题步骤: 1.画草图,求出曲线的交点坐标 2.将曲边形面积转化为曲边梯形面积 3.根据图形特点选择适当的积分变量 4.确定被积函数和积分区间 5.计算定积分,求出面积.

(完整版)定积分教案

《数学分析》 之九 第九章定积分(14+4学时) 教学大纲 教学要求: 1.理解Riemann定积分的定义及其几何意义 2.了解上和与下和及其有关性质 3.理解函数可积的充要条件,了解Riemann可积函数类 4.熟练掌握定积分的主要运算性质以及相关的不等式 5.了解积分第一中值定理 6.掌握变上限积分及其性质 7.熟练掌握Newton-Leibniz公式,定积分换元法,分部积分法 教学内容: 问题的引入(曲边梯形的面积及变速直线运动的路程),定积分定义,几何意义,可积的必要条件,上和、下和及其性质,可积的充分条件,可积函数类,定积分的性质,积分中值定理,微积分学基本定理,牛顿一莱布尼兹公式,定积分的换元法及分部法。 第页

此表2学时填写一份,“教学过程”不足时可续页 第页

=i 1 。 则称函数)(x f 在[b a .]上可积或黎曼可积。数J 称为函数)(x f 在[b a .]上 的定积分或黎曼积分,记作: ?=b a dx x f J )( 其中)(x f 称为被积函数,x 称为积分变量,[b a .]称为积分区间,dx x f )(称为被积式,b a ,分别称为积分的下限和上限。 定积分的几何意义; 连续函数定积分存在(见定理9.3) 三、举例: 例1 已知函数 在区间 上可积 .用定义求积分 . 解 取 等分区间 作为分法 n b x T i = ?, 取 .= . 由函数)(x f 在区间],0[b 上可积 ,每个特殊积分和之极限均为该积分值 . 例2 已知函数2 11 )(x x f += 在区间]1,0[上可积 ,用定义求积分 . 解 分法与介点集选法如例1 , 有 . 上式最后的极限求不出来 , 但却表明该极限值就是积分

定积分在物理上的应用(学习资料)

授课题目定积分在物理上的应用 课时数1课时 教学目标用定积分解决物理学上的变力做功以及液体压力问题。 重点与难点教学重点:定积分方法分析变力做功和液体压力。教学难点:定积分的元素法以及物理量的计算公式。 学情分析我所教授的学生从知识结构上来说属于好坏差别很大,有的接受新知识很快,有的很慢,有的根本听不懂,基 于这些特点,结合教学内容,我以板书教学为主,多媒 体教学为辅,把概念较强的课本知识直观化、形象化, 引导学生探索性学习。 教材分析本次课是学生学习完定积分的概念和计算方法以及定积分在几何上的应用后的学习,定积分的元素法在几何和 物理上的应用为学生尝试解决各种实际问题做了很好的 铺垫。将来把元素法的思想推广到多元函数后,其应用 范围将会更宽更广。所以无论从内容还是数学思想方面, 本次课在教材中都处于重要的地位。 教学方法根据对学生的学情分析,本次课主要采用案例教学法,问题驱动教学法,讲与练互相结合,以教师的引导和讲 解为主,同时充分调动学生学习的主动性和思考问题的 积极性。 教学手段传统教学与多媒体资源相结合。

课程资源 同济大学《高等数学》(第七版)上册 教学内容与过程 一、 变力沿直线所作的功 dx x F dW )(= ?=b a dx x F W )( ,求电场力所做的功。 处处移动到从距离点电荷直线下,一个单位正电荷沿电荷所产生的电场作用、在一个带例)(1b a b a q <+为时,由库仑定律电场力原点解:当单位正电荷距离r 2r q k F = dr r kq dW 2=则功的元素为: 所求功为 )11(]1[2b a kq r kq dr r kq W b a b a -=-==? 例2、在底面积为S 的圆柱形容器中盛有一定量的气体,由于气体的膨胀,把容器中的一个面积为S 的活塞a 移动到b 处(如图),求移动过程中气体压力所做的功。 解:建立坐标系如图. 由波义耳---马略特定律知压强p 与体积V 成反比,即xS k V k p == ,故作用在活塞上的力为 x k S p F =?= x a b x x x d +q +o r a b r r d r +1+S o x a b x x d x +

定积分的应用教学设计比赛一等奖

3.1定积分的应用:平面图形的面积 教材分析: 《定积分的简单应用》是人教版选修2-2第1章第7节的内容,从题目中可以看出这节教学的要求,就是让学生在充分认识导数与积分的概念、计算、几何意义的基础上,掌握用积分手段解决实际问题的基本思想和方法,从而进一步认识到数学知识的实用价值以及数学在实际应用中的强大生命力。在整个高中数学体系中,这部分内容也是学生在高等学校进一步学习数学的基础。 教学构思:应用型的课题是培养学生观察分析、发现、概括、推理和探索能力的极好素材,本节课通过创设情景、问题探究、抽象归纳、巩固练习、应用提升等探究性活动,培养学生的数学创新精神和实践能力,使学生们掌握定积分解题的规律,体会数学学科研究的基本过程与方法。 学情分析:知识层面,学生已经学习了定积分的定义,由来及微积分基本定理。在定积分与曲边梯形面积关系中,许多学生默认相等,这就与定积分本质相违背。能力层面,学生有一定的推理和探索能力,面对知识点,学生还需有归纳概括的能力。还需体会数学学科研究的基本过程与方法。情感层面,学生对数学新内容的学习有相当的兴趣和积极性,但探究问题的能力以及合作交流等方面发展不够均衡,有待加强。 教学理念:以学生发展为主线。新型的教学方式,新型的呈现方式。 教学目标: 知识与技能: 1.理解定积分的几何意义,会通过定积分求由两条或多条曲线围成的图形的面积. 2.掌握利用定积分求曲边梯形面积的几种常见题型及方法. 过程与方法:通过体验解决问题的过程,体现定积分的使用价值,加强观察能力和归纳能力,强化数形结合和化归思想的思维意识,达到将数学和其他学科进行转化融合的目的。 情感态度与价值观:通过教学过程中的观察思考总结,养成自主学习的良好学习习惯,培养数学知识应用于生活的意识。

高数教案_定积分应用

课 题: 定积分的几何应用 目的要求: 掌握定积分的微分元素法 掌握利用定积分求平面图形面积的方法 掌握利用定积分求体积的方法 掌握利用定积分求弧长的方法 教学重点: 利用定积分求面积和体积的方法 教学难点: 利用定积分求面积和体积的方法 教学课时:4 教学方法:讲练结合 教学内容与步骤: 定积分解题的条件: (1) 所求量(设为 F )与一个给定区间 [a,b]有关,且在该区间上具有可加性. 就是说,F 是确定于 [a,b]上的整体量,当把 [a,b]分成许多小区间时,整体量等于各部分量之和,即1 n i i F F == ∑ . (2) 所求量 F 在区间 [a,b]上的分布是不均匀的,也就是说, F 的值与区间 [a,b]的长不成正比.(否则的话, F 使用初等方法即可求得,而勿需用积分方法了) 用定积分概念解决实际问题的四个步骤: 第一步:将所求量 F 分为部分量之和,即: 1 Δn i i F F ==∑; 第二步:求出每个部分量的近似值, Δi F ≈()Δ(1,2,,);i i f x i n ξ=L 第三步:写出整体量 F 的近似值,1 Δn i i F F == ∑≈1 ()Δn i i i f x ξ=∑;

第四步:取max{Δ}0i x λ=→时的 1 ()Δn i i i f x ξ=∑极限,则得 1 lim ()Δ()d n b i i a i F f x f x x λξ→===∑?. 观察上述四步我们发现,第二步最关键,因为最后的被积表达式的形式就是在这一步被确定的,这只要把近似式()Δi i f x ξ中的变量记号改变一下即可( i ξ换为x ;i x ?换为 dx ). 而第三、第四两步可以合并成一步:在区间 [a,b]上无限累加,即在 [a,b]上积分. 至于第一步,它只是指明所求量具有可加性,这是 F 能用定积分计算的前提,于是,上述四步简化后形成实用的微元法. 定积分应用的微元法: (一) 在区间 [a,b]上任取一个微小区间 [],d x x x +,然后写出在这个小区间上的部分量ΔF 的近似值,记为d ()d F f x x =(称为 F 的微元); (二) 将微元dF 在[a,b]上积分(无限累加),即得: ()d .b a F f x x =? 微元法中微元的两点说明: (1) ()d f x x 作为ΔF 的近似值表达式,应该足够准确,确切的说,就是要求其差是关于Δx 的高阶无穷小. 即 Δ()d (Δ)F f x x o x -=.这样我们就知道了,称作微元的量 ()d f x x ,实际上是所求量的微分 dF; (2) 具体怎样求微元呢? 这是问题的关键,这要分析问题的实际意义及数量关系,一般按着在局部 [],d x x x + 上,以“常代变”、“匀代不匀”、“直代曲”的思路(局部线性化),写出局部上所求量的近似值,即为微元 d ()d F f x x = . 用定积分求平面图形的面积 1. 直角坐标系下的面积计算 用微元法不难将下列图形面积表示为定积分. (1) 曲线()(()0),y f x f x =≥,x a x b ==及 OX 轴所围图形,如下页左图,面积微元d ()d A f x x =,面积()d b a A f x x = ? . (2) 由上、下两条曲线(),()(()())y f x y g x f x g x ==≥及,x a x b ==所围成的图形,如下页右图,面积微元d [()()]d ,A f x g x x =-,面积[()()]d b a A f x g x x = -? . (3)由左右两条曲线(),()x y x y ψ?==及,y c y d ==所围成图形(图见下左)面积微元(注意,这时就应取横条矩形 dA ,即取 y 为积分变量)

定积分在物理中的应用 说课稿 教案 教学设计

定积分的简单应用 一:教学目标 知识与技能目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 过程与方法 情感态度与价值观 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 1、复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、(1,1),面积S=1 1 20 xdx x dx = -? ?,所以 ?1 20S =(x -x )dx 32 1 3023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。 巩固练习 计算由曲线3 6y x x =-和2 y x =所围成的图形的面积. 例2.计算由直线4y x =-,曲线2y x =以及x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯 2 x y =y x A B C D O

定积分在几何学上的应用(比赛课教案).doc

定积分在几何学上的应用 ( 比赛课教案 )

教学题目: 选修 2-2 1.7.1定积分在几何中的应用 教学目标: 一、知识与技能: 1.让学生深刻理解定积分的几何意义以及微 积分的基本定理; 2.通过本节课的探究,学生能够应用定积分解决不太规则的平面图形的面积,能够初步掌握应用定积分解决实际问题的基本思想和方法 3.初步掌握利用定积分求曲边梯形的几种常见题型及方法 二、过程与方法: 1.探究过程中通过数形结合的思想,加深对知识的理解,同时体会到数学研究的基本思路和方法。 三、情感态度与价值观: 探究式的学习方法能够激发学生的求知欲,培养学生对学习的浓厚兴趣;探究式的学习过程能够培养学生严谨的科学思维习惯和方法,培养学生勇于探索和实践的精神; 教学重点: 应用定积分解决平面图形的面积,使学生在解决问题的过程中体会定积分的 价值。 教学难点: 如何恰当选择积分变量和确定被积函数。 课型、课时:

新课,一课时 教学工具: 常用教具,多媒体, PPT课件 教学方法: 引导法,探究法,启示法 教学过程 当 f(x) 0 时,积分 b y=f (x)、 f (x)dx 在几何上表示由x a a、x b 与 x 轴所围成的曲边梯形的面积。 y f (x) O a b x O a b x y f (x) 当 f ( x) b f (x)dx 在几何上表示y f ( x)、x a、x b 与 x 轴 0时由积分 a b f ( x ) dx c f ( x ) dx b f ( x ) dx 。 所围成的曲边梯形面积的负值 a S a c 类型 1. 求由一条曲线 y=f(x) 和直线 x=a,x=b(a

1.7.2定积分在物理中的应用(学、教案)

1. 7.2定积分在物理中的应用 课前预习学案 【预习目标】 能熟练利用定积分求变速直线运动的路程.会用定积分求变力所做的功. 【预习内容】 一、知识要点:作变速直线运动的物体在时间区间[]b a ,上所经过的路程S ,等于其速度函数)0)()((≥=t v t v v 在时间区间[]b a ,上的 ,即 . 例1已知一辆汽车的速度——时间的函数关系为:(单位:).(),/(s t s m v ) ??? ????≤≤+-≤≤≤≤=.6040,905.1;4010,30;100, 103)(2t t t t t t v 求(1)汽车s 10行驶的路程;(2)汽车s 50行驶的路程;(3)汽车min 1行驶的路程. 变式1:变速直线运动的物体速度为,1)(2t t v -=初始位置为,10=x 求它在前s 2内所走的路程及s 2末所在的位置. 二、要点:如果物体在变力)(x F 的作用下做直线运动,并且物体沿着与)(x F 相同方向从a x =移动到),(b a b x <=则变力)(x F 所作的功W = . 例2 在弹性限度内,将一弹簧从平衡位置拉到离平衡位置lm 处,求克服弹力所作的功. 变式2:一物体在变力25)(x x F -=作用下,沿与)(x F 成?30方向作直线运动,则由1=x 运动到2 =x 时)(x F 作的功为 .

课内探究学案 一、学习目标: 1. 了解定积分的几何意义及微积分的基本定理. 2.掌握利用定积分求变速直线运动的路程、变力做功等物理问题。 二、学习重点与难点: 1. 定积分的概念及几何意义 2. 定积分的基本性质及运算的应用 三、学习过程 (一)变速直线运动的路程 1.物本做变速度直线运动经过的路程s ,等于其速度函数v = v (t ) (v (t )≥0 )在时间区间[a ,b ]上的 定积分 ,即?=b a dt t v s )(. 2.质点直线运动瞬时速度的变化为v (t ) = – 3sin t ,则 t 1 = 3至t 2 = 5时间内的位移是 ()dt t ?-5 3sin 3.(只列式子) 3.变速直线运动的物体的速度v (t ) = 5 – t 2,初始位置v (0) = 1,前2s 所走过的路程为 325 . 例1.教材P58面例3。 练习:P59面1。 (二)变力作功 1.如果物体沿恒力F (x )相同的方向移动,那么从位置x = a 到x = b 变力所做的功W = F (b —a ). 2.如果物体沿与变力F (x )相同的方向移动,那么从位置x = a 到x = b 变力所做的 功W =?b a dx x F )(. 例2.教材例4。 课后练习与提高 1、 设物体以速度)/(3)(2s m t t t v +=作直线运动,则它在s 4~0内所走的路程为( ) m A 70. m B 72. m C 75. m D 80. 2、设列车从A 点以速度)/(2.124)(s m t t v -=开始拉闸减速,则拉闸后行驶m 105所需时间为( ) s A 5. s B 10. s C 20. s D 35. 3、以初速s m /40竖直向上抛一物体,ts 时刻的速度,10402 t v -=则此物体达到最高时的高度为( ) m A 3160. m B 380. m C 340. m D 3 20.

定积分在几何学上的应用比赛课教学教案.docx

教学题目: 选修 2-2 1.7.1定积分在几何中的应用 教学目标: 一、知识与技能: 1.让学生深刻理解定积分的几何意义以及微积分的基本定理; 2.通过本节课的探究,学生能够应用定积分解决不太规则的平面图形的面积,能够初步掌握应用定积分解决实际问题的基本思想和方法 3.初步掌握利用定积分求曲边梯形的几种常见题型及方法 二、过程与方法: 1.探究过程中通过数形结合的思想,加深对知识的理解,同时体会到数学研究的基本思 路和方法。 三、情感态度与价值观: 探究式的学习方法能够激发学生的求知欲,培养学生对学习的浓厚兴趣;探究式的学习过程能够培养学生严谨的科学思维习惯和方法,培养学生勇于探索和实践的精神; 教学重点: 应用定积分解决平面图形的面积,使学生在解决问题的过程中体会定积分的价值。 教学难点: 如何恰当选择积分变量和确定被积函数。 课型、课时: 新课,一课时 教学工具: 常用教具,多媒体, PPT课件 教学方法: 引导法,探究法,启示法 教学过程

— b y=f (x) 、 x a 、 x b 与 x 轴所围成的曲边梯形 当 f(x) 0 时,积分 a f (x)dx 在几何上表示由 的面积。 y f (x) O a b x O a b x y f (x) 当 f ( x ) 0 时由 积分 b y f ( x ) 、x a 、x b 与 x 轴 f (x)dx 在几何上表示 a b c b f ( x ) dx 。 所围成的曲边梯形面积的负值 f ( x ) dx f ( x ) dx c a S a 类型 1. 求由一条曲线 y=f(x) 和直线 x=a,x=b(a

《定积分的简单应用》教案

定积分的简单应用 教学目标 知识与技能: 初步掌握利用定积分求曲边梯形的几种常见题型及方法;体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 过程与方法: 通过实例体会用微积分基本定理求定积分的方法 情感、态度与价值观: 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 教学重点与难点 重点: 应用定积分的思想方法,解决一些简单的诸如求曲边梯形面积、变速直线运动的路程、变力作功等实际问题.在解决问题的过程中体验定积分的价值。 难点: 将实际问题化归为定积分的问题。 教学过程 给出教学目标: 应用定积分的思想方法,解决一些简单的诸如求曲边梯形面积、变速直线运动的路程、变力作功等实际问题.在解决问题的过程中体验定积分的价值。 一、复习回顾 1、定积分的几何意义 2、微积分基本定理内容 二、新课引入 如图. 问题1:图中阴影部分是由哪些曲线围成? 提示:由直线x=a,x=b和曲线y=f(x)和y=g(x)围成. 问题2:你能求得其面积吗?如何求? 三、新课讲解 (一)平面图形的面积

一般地,设由曲线y =f (x ),y =g (x )以及直线x =a ,x =b 所围成的平面图形的面积为S ,则 S =∫b a f (x )d x -∫ b a g (x )d x ,f (x )≥g (x ). 解题关键是根据图形确定被积函数以及积分上、下限. 考点一:求平面图形的面积 [例1] 求由抛物线y =x 2-4与直线y =-x +2所围成图形的面积. [一点通] 求由曲线围成图形面积的一般步骤: ①画图; ②求交点,确定积分上、下限; ③确定被积函数; ④将面积用定积分表示; ⑤用牛顿-莱布尼兹公式计算定积分,求出结果. 题组集训 1.(2011·湖南高考)由直线x =-π3,x =π3 ,y =0与曲线y =cos x 所围成的封闭图形的面积为 ( ) A.12 B .1 C. 32 D. 3 2.求y =-x 2与y =x -2围成图形的面积S . 3、求由曲线xy =1及直线x =y ,y =3所围成平面图形的面积. [一点通] 分割型图形面积的求解: (1)通过解方程组求出曲线的交点坐标 (2)将积分区间进行分段 (3)对各个区间分别求面积进而求和(被积函数均是由图像在上面的函数减去下面的函数)

高中数学《定积分的简单应用》公开课精品表格式教案.doc

教案 总课时:课题 1.7 定积分的简单应用课型:新授课教师 第课时 1.进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方 法; 2.让学生了解定积分的几何意义以及微积分的基本定理; 学习目标 3.初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4.体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 重点曲边梯形面积的求法 教学重难点 难点定积分求体积以及在物理中应用 备课札记 教学过程: 1、复习 1.求曲边梯形的思想方法是什么? 2.定积分的几何意义是什么? 3.微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例 1.计算由两条抛物线y2 x 和 y x2所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形 的面积的差得到。 解:y x x 0及 x 1,所以两曲线的交点为y x2 ( 0, 0)、( 1, 1),面积 S= 1 xdx 1 yx x2dx ,所以 B 0 1 0 S= 1 2 )dx 2 x 23 x3 1 C y x 2 0 ( x - x 3 3 =3 D A 【点评】在直角坐标系下平面图形的面积的四个步骤:O 1. 作图象; 2. 求交点; 3. 用定积分表示所求的面积; 4. 微积分基本定理求定积分。 巩固练习计算由曲线y x3 6x 和 y x2所围成的图形的面积. 例 2.计算由直线y x 4 ,曲线y2x 以及x轴所围图形的面积S.

分析: 首先画出草图(图 1.7 一 2 ) ,并设法把所求图形的面积问题转化为求 曲边梯形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分 S 1 和 S 2.为了确定出被积函数和积分的上、 下限,需要求出直线 y x 4 与曲线 y 2x 的交点的横坐标,直线 y x 4 与 x 轴的交点. 解:作出直线 y x 4 ,曲线 y 2x 的草图,所求面积为图 1. 7 一 2 阴影 部分的面积. 解方程组 y 2x , y x 4 得直线 y x 4 与曲线 y 2x 的交点的坐标为( 8,4) . 直线 y x 4 与 x 轴的交点为( 4,0). 因此,所求图形的面积为 S=S 1+S 2 4 2xdx 8 2xdx 8 4)dx] [ ( x 4 4 2 2 3 4 2 2 3 8 1 2 8 40 2 2 3 x |0 3 x 4 2 ( x 4) |4 3 . 由上面的例题可以发现,在利用定积分求平面图形的面积时,一般要先画出它的 草图,再借助图形直观确定出被积函数以及积分的上、下限. 例 3. 求曲线 y sin x x [0, 2 ] 与直线 x 0, x 2 , x 轴所围成的图形面 3 3 积。 2 2 3 答案: S = 3 sin xdx cos x |o 3 2 练习 1、求直线 y 2x 3 与抛物线 y x 2 所围成的图形面积。 答案: S = (2 x +3-x 2 )dx (x 2 3 x x 3 ) |3 1 32 3 1 3 3

相关主题
文本预览
相关文档 最新文档