当前位置:文档之家› 真空中的静电场(电势)

真空中的静电场(电势)

真空中的静电场(电势)
真空中的静电场(电势)

图1-1

班号: 姓名: 学号: 成绩:

2.真空中的静电场2(电场与电势)

一、选择题

1. 关于静电场中某点电势值的正负,下列说法正确的是:[ ] A. 电势值的正负取决于置于该点的试探电荷的正负; B. 电势值的正负取决于电场力对试探电荷做功的正负; C. 电势值的正负取决于电势零点的选取 ;

D. 电势值的正负取决于产生电场的电荷的正负。 2.在下列关于静电场的表述中,正确的是:[ ]

A .初速度为零的点电荷置于静电场中,将一定沿一条电场线运动;

B .带负电的点电荷,在电场中从a 点移到b 点,若电场力作正功,则a 、b 两点的电势关系为U a >U b ;

C .由点电荷电势公式r

q

U 0π4ε=

可知,当r →0时,则U →∞;

D .在点电荷的电场中,离场源电荷越远的点,其电势越低;

E .在点电荷的电场中,离场源电荷越远的点,电场强度的量值就越小。

3. 如图1-1所示,图中实线为某电场中的电场线,虚线表示等势面,a 、b 、c 为电场中的三个点,由图可以看出:[ ]

A .c b a E E E >>,c b a U U U >>;

B .c b a E E E <<,c b a U U U <<;

C .c b a E E E >>,c b a U U U <<;

D .c b a

E E E <<,c b a U U U >>。 4. 在静电场中,若电场线为均匀分布的平行直线,则在该电场区域内电场线方向上任意两点的电场强度E 和电势U 相比较:[ ]

A. E 相同,U 不同;

B. E 不同,U 相同;

C. E 不同,U 不同;

D. E 相同,U 相同。

图1-2

-2σ

x +σ

图1-3

5.空间某区域静电场的电场线分布如图1-2所示,现将一带负电的点电荷由a 点经任意路径移到b 点,则在下列说法中,正确的是:[ ]

A .电场强度b a E E >,电场力作正功;

B .电势b a U U <,电场力作负功;

C .电势能b a W W <,电场力作正功;

D .电势能b a W W <,电场力作负功。 6.在下列有关静电场的表述中,正确的是:[ ]

A .电场强度E = 0的点,电势也一定为零;

B .同一条电场线上各点的电势不可能相等;

C .在电场强度处处相等的空间内,电势也处处相等;

D .在电势处处相等的一个三维区域内地方,电场强度也都处处相等。

7.半径为1R 、2R 的同心薄球面上,分别均匀带电1q 和2q ,其中2R 为外球面半径,2q 为外球面所带电荷量,设两球面间的电势差为U ?,则:[ ] A .U ?随1q 的增减而增减; B .U ?随2q 的增减而增减; C .U ?不随1q 的增减而改变; D .U ?不随2q 的增减而改变。 8.如图1-3所示,A 、B 是真空中两块相互平行的无限大均匀带电薄板,其电荷面密度分别为σ+和σ2-,若选A 板为零电势面,并取x 正方向向右,则图中a 点的电势为:[ ]

A .

023εσd ; B .0

2εσd

-; C .

23εσd

-; D .0。 9.两块分别均匀带电+q 和―q 的平行平板,间距为d ,板面积均为S ,平板厚度忽略不计,若两板的线度远大于d ,则两板间的相互作用力F 与两板间的电压U 的关系是:[ ]

A .U F ∝;

B .U

F 1

∝; C .2

1U

F ∝

; D .2

U F ∝。

B

C

A

图2-2

图2-3

x

图2-1

二、填空题

1.真空中有一均匀带电球面,球半径为R ,总电量为Q (0>Q ),现在球面上挖去一很小面积d S ,设挖去后的其余部分电荷仍均匀分布且电荷面密度无变化,若以无穷远处电势为零点,则该挖去d S 以后的球面球心处的电势为=U 。 2.如图2-1所示,A 、B 两点与O 点分别相距为10cm 和40cm ,位于O 点的点电荷C 109

-=Q 。若选A 点的电势为零,则B 点的电势=B U ;若选无穷远处为电势零点,则=B U 。

3.如图2-2所示,A 、B 两点相距为2R ,A 、B 处分别有点电荷Q -和Q +,以B 点为圆心、半径为R 作一半圆弧CDE 。若将一试探电荷0q +从C 点沿路径CDEF 移到无穷远处,并设无穷远处为电势零点,

则0q +在E 点的电势能W E = ,电场力作的功A C∞ = ;A CE = ;A E∞ = 。 4.如图2-3所示为一电偶极子,其电偶极矩为

e p

= ;现将一个电量为Q -的试探电荷,从电

偶极子的中心O 点处,沿任意路径移到无限远处,则电场力作功为=A J 。

5. 两个半径分别为R 和2R 的同心均匀带电球面,其中内球面带电+q ,外球面带电+Q ,选无穷远为电势零点,则内球面电势为U = ;欲使内球面电势为零,则外球面上的电量Q = 。

6.如图2-4所示,电量q (q > 0) 均匀分布在一半径为R 的细圆环上,若取无限远处为电势零点,则在垂直于环面的轴线上任一点P 的电势U P = ;由电场强度E 与电势梯度的关系可求得E P = 。 7. 已知某静电场的电势函数为a

x A U +-=,式中A和a 均为常量,则电场中任意点的电场

强度=E

8.静电场的高斯定理0d ε∑?

=

?q

S S E ,表明静电场是 ;静电场的环

路定理

?=?L

0d l E ,表明静电场是 。

三、问答题

1.电场强度E 和电势U 是描写电场分布的两个物理量,它们有什么样的区别和联系?若用场叠加原理计算场强E 和电势U ,应注意什么?

四、计算与证明题

1.均匀带电细线ABCD 弯成如图4-1所示的形状,电荷线密度为λ,并选取图示坐标,试证明:圆心O 处的电势()π2ln2π40

+=ελ

U

图 4-1

2. 如图4-2所示,一计数管中有一直径为2D 的薄金属长圆筒(圆筒的长度远大于圆筒的直径),在圆筒的轴线处装有一根直径为1D 的细金属丝(21D D <)。若已知该装置工作时金属丝与圆筒的电势差为

U ?,则试求:

(1)金属丝单位长度的荷电量λ; (2)该计数管内(

2

221D

r D <<)的场强分布; (3)金属丝表面附近的电场强度大小E 1。若已知V 1000=?U ,

m 1026.151-?=D ,m 100.222-?=D ,其值?1=E

图4-2

3.如图4-3所示,在半径为R 1和R 2的两个同心球面上,分别均匀分布着电荷,内球面带电量Q 1,外球面带电量Q 2,若选无穷远处为电势零点,请根据电势的定义式?

?=r

l

E U d 求解:

(1)1R r <、21R r R <≤、2R r ≥三个区域内的电势分布; (2)内球面的电势,以及两球面之间的电势差;

(3)若保持内球面上电量Q 1不变,当外球面电量Q 2变化时,试说明1R r <、21R r R <≤、

2R r ≥这三个区域内电势的变化情况,以及内外两球面之间电势差的变化情况。

图4-3

4. 半径为R的无限长直圆柱体内均匀带电,电荷体密度为 ,以轴线为电势参考零点,试求该圆柱体内、外的电势分布。

五、附加题

1. 试分析说明:若将一个带正电的导体A移近一个不带电的绝缘导体B时,导体A、B的电势将如何变化?

2. 本单元四.2题也可以用电势叠加原理进行计算,请感兴趣的同学先说明用此方法解题的基本思路,再用此方法计算上述各区域的电势分布。

3.如图所示,一半径为R的均匀带电球面,带电量为q,沿矢径方向放置有一均匀带电细线,电荷线密度为λ,长度为l,细线近端离球心距离为a。设球和细线上的电荷分布不受相互作用的影响,试求:

(1)细线与球面电荷之间的电场力F;

(2)细线在该电场中的电势能W e (设无穷远处为电势零点)。

批阅教师:

年月日

静电场专题复习

静电场知识点复习 一、库仑定律 ①元电荷:元电荷是指最小的电荷量,用e 表示,大小为e=c 19 10 6.1-?。 ②库仑定律:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上。表达式:2 2 1r q kq F = ,其中静电力常量229/.100.9C m N k ?=。 二、电场 ①电场的产生:电荷的周围存在着电场,产生电场的电荷叫做源电荷。描述电场力的性质的物理量是电场强度,描述电场能的性质的物理量是电势,这两个物理量仅由电场本身决定,与试探电荷无关。 ②电场强度:放入电场中某点的电荷所受的静电力与它的电荷量的比值,叫电场强度。 定义式:q F E = ,单位:C N /或m V /。方向:规定与正电荷在该点所受的静电力方向相同,则与负电荷在该点所受静电力的方向相反。也是该点电场线的切线方向。 区别:q F E = (定义式,适用于任何电场);2r kQ E =(点电荷产生电场的决定式);d U E =(电场强度与电势差间的关系,适用于匀强电场,d 是两点间距离在场强方向上的投影)。 ③电场线:在电场中画出的一系列有方向的曲线,曲线上每一点的切线方向表示该点的场强方向,曲线的疏密表示场强的大小。电场线是为了形象的描述电场而假想的、实际不存在的曲线。电场线从正电荷或无限远出发,终止于无限远或负电荷,是不闭合、不相交的曲线。熟悉正、负点电荷、匀强电场、等量异种电荷、等量同种电荷的电场线分布图(教材13页)。 三、电势能、电势、电势差 ①电势能:由于移动电荷时静电力做的功与路径无关,所以电荷在电场中也具有势能,叫做电势能。 静电力做功与电势能变化的关系式为:P E W ?-=,即静电力所做的功等于电势能的变化。所以,当静电力做多少正功,电势能就减小多少;当静电力做多少负功,电势能就增加多少。静电力做功与电势差的关系式为:AB AB qU W =。说明:电荷在某点的电势能等于静电力把它从该点移动到零势能位置时所做的功(通常选大地或无限远处电势能为零)。电势能有正有负,但是标量。试探电荷在电场中某点的电势能大小为:?q E P =。 ②电势:电荷在电场中某一点的电势能与它的电荷量的比值,叫做这一点的电势(由电场中这点的性质决定,与试探电荷的q 、E P 无关)。定义式:q E P =?。沿着电场线方向电势降低,或电势降低最快的方向就是电场强度的方向。 ③电势差与电势的关系式为:B A AB U ??-=;电势差与静电力做功的关系式为:q W U AB AB = ;匀强电场中电势差与电场强度的关系为:Ed U =。同一点的电势随零电势点的不同而不同(通常选大地

真空中的静电场

真空中的静电场 计算题 O B A ∞ ∞ 1.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为l,四分之一圆弧AB的半径为R,试求圆心O点的场强. 解:在O点建立坐标系如图所示. 半无限长直线A∞在O点产生的场强: 半无限长直线B∞在O点产生的场强: 四分之一圆弧段在O点产生的场强: 由场强叠加原理,O点合场强为: 2.一“无限长”圆柱面,其电荷面密度为:s = s0cos f ,式中f为半径R与x轴所夹的角,试求圆柱轴线上一点的场强. 解:将柱面分成许多与轴线平行的细长条,每条可视为“无限长”均匀带电直线,其电荷线密度为 = 0cos R d, 它在O点产生的场强为:

它沿x、y轴上的二个分量为: d E x=-d E cos f = d E y=-d E sin f = 积分:= ∴ 3. 如图所示,一厚为b的“无限大”带电平板,其电荷体密度分布为r =kx (0≤x≤b ),式中k为一正的常量.求: (1) 平板外两侧任一点P1和P2处的电场强度大小; (2) 平板内任一点P处的电场强度; (3) 场强为零的点在何处? 解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E. 作一柱形高斯面垂直于平面.其底面大小为S,如图所示. 按高斯定理,即 得到E = kb2 / (4e0) (板外两侧) (2) 过P点垂直平板作一柱形高斯面,底面为S.设该处场强为,如图所示.按高斯定理有 得到 (0≤x≤b) (3) =0,必须是,可得 4. 一“无限大”平面,中部有一半径为R的圆孔,设平面上均匀带电,电荷面密度为s.如图所示,试求通过小孔中心O并与平面垂直的直线上各点的场强和电势(选O点的电势为零). 解:将题中的电荷分布看作为面密度为s的大平面和面密度为-s的圆盘叠加的 结果.选x轴垂直于平面,坐标原点O在圆盘中心,大平面在x处产生的场强为 圆盘在该处的场强为 ∴ 该点电势为

大学物理第6章真空中的静电场课后习题及答案

第6章 真空中的静电场 习题及答案 1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。一试验电荷置于x 轴上何处,它受到的合力等于零 解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷 q +的右侧,它受到的合力才可能为0,所以 2 00 200) 1(π4)1(π42-=+x qq x qq εε 故 223+=x 2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)(2)这种平衡与三角形的边长有无关系 解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 2 220)3 3(π4130cos π412a q q a q '=?εε 故 q q 3 3- =' (2)与三角形边长无关。 3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。求该直线段受到的电场力。 解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为 ) (4220R x dq dE += πε 根据电荷分布的对称性知,0==z y E E 2 3220)(41 cos R x xdq dE dE x += =πεθ 式中:θ为dq 到场点的连线与x 轴负向的夹角。 ?+= 2 32 20)(4dq R x x E x πε 232210)(24R x R x +?=πλπε2 32201)(2R x x R +=ελ 下面求直线段受到的电场力。在直线段上取dx dq 2λ=,dq 受到的电场力大小为 dq E dF x =dx R x x R 2 322021)(2+= ελλ 方向沿x 轴正方向。 直线段受到的电场力大小为 ?=dF F dx R x x R l ?+= 02 3220 21)(ελλ2 R O λ1 λ2 l x y z

09211054 胡鸿 静电场零电位的选择

电磁场与电磁波研究报告 静电场零电位的选择 胡鸿09211054 刘思聪09211039 陶坤纬09211044

目录 静电场电位零点选择的任意性 (1) 为什么选择无穷远处为电位零点 (2) 为什么选择U地=0,它和U∞=0是否相容 (4) 零点不同的电位如何相加 (5) 收获和体会 (7) 参考文献 (9)

一、静电场电位零点选择的任意性 从物理的角度说明电势零点选择的任意性 从物理的角度上看, 静电场与重力场相似, 都是保守力场, 可以引入势能的概念, 电势能是相互作用的电荷系统所具有的, 孤立地谈论某一点的电势能或电势的高低和正负是没有意义的。为了确定电场中各点的电势, 就要选定参考点, 也就是势能零点, 它的选择必须满足一个条件, 那就是零点选定后, 空间各点的电势必须有确定的值。选择不同的参考零点, 静电场中各点的电势值虽然有所不同, 但两点之间的电势差仍然相同, 描述的仍然是同一个静电场。这就是电势零点的选择在原则上任意的物理原因。 从数学的角度说明电势零点选择的任意性 从数学的角度上看, 电势从单位正电荷在静电场中各点所蕴含的能量来描述场, 电势是描述静电场的标量位置函数。根据定义: 当参考点从p01到p02时, 各点的电势只改变 一个常量 不影响场强分布:。 反映在几何图像上(如图1 ( U - r) ) , 零点选择不同, 只是横坐标的位置不同, 横坐标改变, 不会影响曲线上各点的斜率。 静电场电势零点选择的限制性

以上讨论了电势零点选择从原则上是任意的, 但是我们在解题时又遇到了一些问题, 发现电势零点的选择在一些特殊情况下又会受到一定条件的限制。这个条件正如前面提及的: 电势零点一旦选定以后, 就必须使电场中各点的电势都具有确定的值, 这样才有物理意义, 否则毫无意义。即积分:必须是收敛的。有了这个条件, 电势零点的选择便依具体问题而定了。 二、为什么选择无穷远处为电位零点 1.电量和分布范围均有限,当所研究的观测点到带电体几何中心的距离远大于带电体的几何尺寸时.带电体的形状及电荷分布对观测点的影响可以忽略,此时带电体可以按几何点来处理 2.离带电体系足够远(在物理上)而可称为无穷远点的广大空间,是具有零场强和恒定电位的位置 3.普遍适用又方便自然 在几乎一切实际静电场问题中,尽管带电体系的电量、分布各异,但电量和分布范围均有限。因此,根据问题要求的精度,在离带电体系足够远(在物理上)而可称为无穷远点的广大空间,是具有零场强和恒定电位的位置,尽管实际静电场问题的具体条件不同,但都存在着具有上述性质的“无穷远点”,这是共同的普遍特点。点电荷为物理学中的一种数学模

真空中静电场场强的计算

真空中静电场场强的计算 张贵银 任何带电体都要在空间激发电场,静止带电体激发的电场称为静电场,静电场的空间分布通过物理量电场强度来描述,静电场的有源无旋性通过与电场强度相关联的高斯定理和场强环路定理来体现。所以电场强度是静电学部分最重要、最基本的一个概念,对于给定的任一带电体,了解和掌握其电场强度的计算方法具有重要的实际意义。场强的计算是静电学的重点和难点,本文对电场强度的计算方法进行了归纳、总结。 一、迭加法 电场强度的基本特性之一就是可迭加性,该特性提供了计算任意带电体场强的基本方法——迭加法,该方法的基本思想是:以熟知的点电荷场强公式r r q E 3 04πε= 为基础,当 带电体系由若干个分离的点电荷组成时,直接应用点电荷场强公式,进行矢量迭加,即得空间场强的分布;当带电体电荷连续分布时,将带电体视为由无数个电荷元组成,电荷元激发的场强由点电荷场强公式描述,无数个电荷元场强的迭加,即整个带电体激发的电场强度。 例1、一带电细线弯成半径为R 的半圆形,电荷线密度为φλλsin 0=,式中0λ为一常数,φ为半径R 与X 轴所成的夹角,如图1所示。 试求环心O 处的电场强度。 解:在Φ 处取电荷元,如图2, 其电量为 φφλλd R dl dq sin 0== 它在O 点产生的场强为 R d R dq dE 002 04sin 4πεφφλπε== 在x 、y 轴上的二个分量 φφ sin cos dE dE dE dE y x -=-= 对各分量分别求和 ?=- =πφφφπελ000 0cos sin 4d R E x R d R E y 0002008sin 4ελφφπελπ-=-=? j j i E R E E y x 00 8ελ- =+=∴ 迭加法求场强的一般步骤是:首先在带电体上选取适当的电荷元,写出电荷元在场点激发的电场强度,若各电荷元在场点激发的电场强度方向相同,将电荷元在场点激发的场强直接积分即得带电体在场点激发的电场强度;反之,需将电荷元在场点激发的场强沿选取的

第6章 静电场中的导体和电介质习题讲解

第6章静电场中的导体和电介质 一、选择题 1. 一个不带电的导体球壳半径为r , 球心处放一点电荷, 可测得球壳内外的电场.此后将该点电荷移至距球心r/2处, 重新测量电场.试问电荷的移动对电场的影响为下列哪 一种情况? [ ] (A) 对球壳内外电场无影响 (B) 球壳内外电场均改变 (C) 球壳内电场改变, 球壳外电场不变 T6-1-1图 (D) 球壳内电场不变, 球壳外电场改变 2. 当一个导体带电时, 下列陈述中正确的是 [ ] (A) 表面上电荷密度较大处电势较高 (B) 表面上曲率较大处电势较高 (C) 表面上每点的电势均相等 (D) 导体内有电力线穿过 3. 关于带电导体球中的场强和电势, 下列叙述中正确的是 [ ] (A) 导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零 (C) 导体内的电势与导体表面的电势相等 (D) 导体内的场强大小和电势均是不为零的常数 4. 当一个带电导体达到静电平衡时 [ ] (A) 导体内任一点与其表面上任一点的电势差为零 (B) 表面曲率较大处电势较高 (C) 导体内部的电势比导体表面的电势高 (D) 表面上电荷密度较大处电势较高 T6-1-5图

5. 一点电荷q放在一无限大导体平面附近, 相距d, 若无限大导体平面与地相连, 则导体平面上的总电量是 [ ] (A) qq (B) - (C) q (D) -q 22 6. 在一个绝缘的导体球壳的中心放一点电荷q, 则球壳内、外表面上电荷均匀分布.若 使q偏离球心, 则表面电荷分布情况为 [ ] (A) 内、外表面仍均匀分布 (B) 内表面均匀分布, 外表面不均匀分布 (C) 内、外表面都不均匀分布 (D) 内表面不均匀分布, 外表面均匀分布 7. 带电量不相等的两个球形导体相隔很远, 现用一根细导线将它们连接起来.若大球半径为m, 小球半径为n, 当静电平衡后, 两球表面的电荷密度之比σ m/σ n 为 mnm2n2 [ ] (A) (B) (C) 2 (D) 2 nmnm 8. 真空中有两块面积相同的金属板, 甲板带电q, 乙板带电Q.现 将两板相距很近地平行放置, 并使乙板接地, 则乙板所带的电量为 [ ] (A) 0 (B) -q (C) - q+Qq+Q (D) 22 T6-1-8图 9. 在带电量为+q的金属球的电场中, 为测量某点的电场强度E, 现在该点放一带电量为(+q/3)的试验电荷, 电荷受力为F, 则该点的电场强度满足 6F 3F[ ] (A) E> (B) E> qq 3F 3FT6-1-9图 (C) E< (D) E= qq 测得它所受力为F.若考虑到q不是足够小, 则此时F/q比P点未放q 时的场强 [ ] (A) 小 (B) 大 (C) 相等 (D) 大小不能确定 10. 在一个带电量为Q的大导体附近的P点, 置一试验电荷q, 实验

关于静电场势能零点的选取的讨论

关于静电场势能零点的选取的讨论 电势是电学里的一个很重要的概念,我读了这篇文章后,对电势的选取有了进一步的认识。 由文献中已知点电荷的场不能选取点电荷所在处为电势零点,无限大均匀带电平面和无限长均匀带电直线或圆柱的场不能选取无穷远点为电势零点。可见,对电势零点的选择的限制都出现在某些理想化的情形。理想模型是实际情形的近似和抽象,它不仅带来许多方便,而且也是建立物理规律和理论必不可少的手段。上述特殊情形出现的困难和矛盾(如电势不确定,电势为无穷大),既不能否定普遍的结论(如静电场是势场),也不能否定理想模型的重要作用,关键在于弄清楚理想模型的适用条件,才能正确理解电势零点选取的限制。 对零势点的选取分为以下几个方面: 1、在计算点电荷产生的电势时,不能选取场源电荷本身所在的位置为电势零点,通常选取无限远处为电势零点 ,得出电场中距离场源电荷为r的一点的电势:q/4 r 2、有限大的带电体通常可选择无限远处为电势零点电场中其他各点的电势值即 可确定。 3无限大带电体,比如“无限长”的导线,或者“无限大”的平面,“无限长”的圆柱面等带电体,这些理想化的物理模型,其上面的电荷分布延伸到无限远处,在计算这些带电体在周围空间产生的电势时,

就不能选取无限远处为电势零点,而只能选取其周围一点有限远处为电势零点,利用电势的相对性和电由高斯定理可知,“无限长”均匀带电直线周围任一点电场强度的大小: E =λ/2π 0 r 因此电势零点选取的原则是使计算的电势值有意义,并且使电势的表达式尽可能简洁。电势是一个相对量,它的大小、正负与电势零点的选取密切相关。我们在选取零势能点的时候要具体问题,具体分析。只有这样,才能得出正确而又简洁的答案。 0902010325 水利水电学院黄蕴晗

带电球体电场与电势的分布

带电球体电场与电势的分布 王峰 (南通市启秀中学物理学科 江苏 南通 226006) 在高三物理复习教学中,遇到带电体的内、外部场强、电势的分布特点问题时,我们一般以带电金属导体为例,指出其内部场强处处为零,在电势上金属体是一个等势体,带电体上的电势处处相等;但对带电金属导体的内、外部场强、电势的大小的分布特点及带电绝缘介质球的内、外部电场、电势的大小分布很少有详细说明;而在电场一章的复习中,常常会遇到此类问题,高三学生已初步学习了简单的微积分,笔者在此处利用微积分的数学方法,来推导出上述问题的答案,并给出相应的“r E -”和“r -?”的关系曲线图,供大家参考。 本文中对电场、电势的分布推导过程均是指在真空环境....中,即相对介电常数10=ε; 对电势的推导均取无穷远处为电势零参考点的,即0=∞U 。 1、 带电的导体球:因为带电导体球处于稳定状态时,其所带电荷全部分布在金属球体的表面,所以此模型与带电球壳模型的电场、电势分布的情况是一致的。 电场分布: 1.1.1内部(r

第九章 真空中的静电场(答案)2015(1)

一. 选择题 [ B ] 1(基础训练1) 图中所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线 密度分别为+ (x <0)和- (x >0),则Oxy 坐标平面上点(0,a )处的场强E 为 (A) 0. (B) i a 02ελπ. (C) i a 04ελπ. (D) ()j i a +π04ελ. 【提示】:左侧与右侧半无限长带电直线在(0,a)处产生的场强大小E +、E -大小为: E E +-== 矢量叠加后,合场强大小为: 02E a λ πε= 合,方向如图。 [ C ] 2(基础训练3) 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于: (A) 06εq . (B) 0 12εq . (C) 024εq . (D) 0 48εq . 【提示】:添加7个与如图相同的小立方体构成一个大立方体,使A 处于大立方体的中心。则大立方体外围的六个正方形构成一个闭合的高斯面。由Gauss 定理知,通过该高斯面的电通 量为 q ε。再据对称性可知,通过侧面abcd 的电场强度通量等于 24εq 。 [ D ] 3(基础训练6) 在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为 (A) a q 04επ. (B) a q 08επ. (C) a q 04επ-. (D) a q 08επ-. 【提示】:2 20048P a M M a q q V E dl dr r a πεπε-= ==? ?

[ C ] 4(自测提高4)如图9-34,设有一“无限大”均匀带正电荷的平面。取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空 间各点的电场强度E 随距离平面的位置坐标x 变 化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负): 【提示】:由于电场分布具有平面对称性,可根据高斯定理求得该带电平面周围的场强为: (+0;0) 2E i x x σε=± > -< “”号对应“”号对应 [ B ] 5(自测提高6)如图所示,两个同心的均匀带电球面,内球面半径为R 1、带电荷Q 1,外球面半径为R 2、带有电荷Q 2.设无穷远处为电势零点,则在内球面之内、距离球心为r 处的P 点的电势U 为: (A) r Q Q 0214επ+. (B) 202 10144R Q R Q εεπ+ π. (C) 0. (D) 1 01 4R Q επ. 【提示】:根据带点球面在求内外激发电势的规律,以及电势叠加原理即可知结果。 [ C ] 6(自测提高10)如图所示,在真空中半径分别为R 和2R 的两个同心球面,其上分别均匀地带有电荷+q 和-3q .今将一电荷为+ Q的带电粒子从内球面处由静止释放,则该粒子到达外球面时的动能为: (A) R Qq 04πε. (B) R Qq 02πε. (C) 08Qq R πε. (D) R Qq 083πε. 【提示】:静电力做功()AB A B QU Q V V =-等于动能的增加。其中: 00034428A q q q V R R R πεπεπε--= + = ?; 0003242428B q q q V R R R πεπεπε--=+= ?? 代上即得结果。 二.填空题 1.(基础训练13)两根互相平行的长直导线,相距为a ,其上均匀带电, 2 x

第六章静电场

第六章静电场 一、 单选题(本大题共33小题,总计99分) 1.(3分) 半径为R 的均匀带电球面,若其电荷面密度为σ,取无穷远处为零电势点,则在距离球面r (R r >)处的电势为[ ] A 、0 B 、R 0 εσ C 、r R 02 εσ D 、r R 02 4εσ 2.(3分) 半径为R 的均匀带电球面,若其电荷面密度为σ,取无穷远处为零电势点,则在距离球面r (R r <)处的电势为[ ] A 、0 B 、R 0 εσ C 、r R 02 εσ D 、r R 02 4εσ 3.(3分) 两个同心均匀带电球面,半径分别为a R 和b R (b a R R <), 所带电荷分别为a q 和b q .设某点与球心相距r ,当a R r <时,取无限远处为零电势,该点的电势为[ ] A 、r q q b a +?π041ε B 、 r q q b a -?π041ε C 、???? ? ?+?b b a R q r q 041 επ D 、???? ??+?b b a a R q R q 0 41επ 4.(3分) 两个同心均匀带电球面,半径分别为a R 和b R (b a R R <), 所带电荷分别为a q 和b q .设某点与球心相距r ,当b R r >时,取无限远处为零电势,该点的电势为[ ]

A、 r q q b a + ? π 4 1 ε B、 r q q b a - ? π 4 1 ε C、?? ? ? ? ? + ? b b a R q r q 4 1 επ D、?? ? ? ? ? + ? b b a a R q R q 4 1 επ 5.(3分)试判断下列几种说法中哪一个是正确的[] A、电场中某点电场强度的方向,就是将点电荷放在该点所受电场力的方向 B、在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同 C、电场强度可由q F E/ =定出,其中q为试验电荷,q可正、可负,F 为试验电荷所受的电场力 D、以上说法都不正确 6.(3分)电荷面密度分别为σ ±的两块无限大均匀带电平面如图放置,则其周围空间各点电场强度E 随位置坐标x变化的关系曲线为(假设电场强度方向取向右为正、向左为负) [] A、 B、

《真空中静电场》选择题解答与分析

12 真空中的静电场 12.1电荷、场强公式 1. 如图所示,在直角三角形ABC 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,则C 点的场强的大小为 (A) 4.5?104(N ?C -1). (B) 3.25?104(N ?C -1). 答案:(B) 参考解答: 根据点电荷的场强大小的公式, 点电荷q 1在C 点产生的场强大小为 )C (N 108.1)(41 42 011-??== AC q E πε,方向向下. 点电荷q 2在C 点产生的场强大小为 )C (N 107.2) (4142 022-??== AC q E πε,方向向右. C 处的总场强大小为:),C (N 1025.3142 221-??=+=E E E 总场强与分场强E 2的夹角为.69.33arctan 02 1 ==E E θ 对于错误选择,给出下面的分析: 答案(A)不对。 你将)C (N 105.410)7.28.1(14421-??=?+=+=E E E 作为解答。 错误是没有考虑场强的叠加,是矢量的叠加,应该用 ),C (N 1025.3142 221-??=+=E E E 进入下一题: 2. 真空中点电荷q 的静电场场强大小为 2 041r q E πε= 式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释? 参考解答: 点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用. 若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E就有确定值.

静电场——电场强度和电势

库仑定律 电场强度 1、实验定律 a 、库仑定律条件:⑴点电荷,⑵真空,⑶点电荷静止或相对静止。事实上,条件⑴和⑵均不能视为对库仑定律的限制,因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k 进行修正(如果介质分布是均匀和“充分宽广”的,一般认为k′= k /εr )。只有条件⑶,它才是静电学的基本前提和出发点(但这一点又是常常被忽视和被不恰当地“综合应用”的)。 b 、电荷守恒定律 c 、叠加原理 2、电场强度 a 、电场强度的定义 电场的概念;试探电荷(检验电荷);定义意味着一种适用于任何电场的对电场的检测手段;电场线是抽象而直观地描述电场有效工具(电场线的基本属性)。 b 、不同电场中场强的计算 决定电场强弱的因素有两个:场源(带电量和带电体的形状)和空间位置。这可以从不同电场的场强决定式看出 ⑴点电荷:E = k 2r Q ⑵证明:均匀带电环,垂直环面轴线上的某点电场强度E = 2322)R r (k Qr + ⑶证明:均匀带电球壳a.内部某点电场强度大E 内= 0 b.外部外部距球心为r 处场强为E 外 = k 2r Q c.如果球壳是有厚度的的(内径R 1 、外径R 2),在壳体中(R 1<r <R 2)E = 2313r R r k 34-πρ ,其中ρ为电荷体密度。

⑷证明:无限长均匀带电直线(电荷线密度为λ):E = r k 2λ ⑸证明:无限大均匀带电平面(电荷面密度为σ):E = 2πk σ 3.电通量和高斯定理 (1)电通量:在电场中穿过任意曲面的电场线的总条数称为穿 过该面的电通量,用 Ф 表示。 E 与平面S 垂直时,Ф=ES E 与平面S 有夹角θ时,θcos ES Φe = (2 该曲面所包围的所有电荷电量的代数Σq i 和除以 ε0 ,荷无关. 练习:用高斯定理证明上述(3)、(4)、(5)内的结论 练习 1.半径为R 的均匀带电球面,电荷的面密度为σ,试求球心处的电场 强度。 ⊥E

大学物理 第7章 真空中的静电场 答案

第七章 真空中的静电场 7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。 解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为 )41()2 2( 420+= a q F πε=,252 0a q πε方向由q 指向-4q 。 7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。(1) 求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。 解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则 2 02 0)(4)(4ξπεξ λξπεξ λ-= -= x d x d dE 则整根细棒在P 点产生的电场强度的大小为 )1 1(4)(400 20 x L x x d E L --=-= ? πελξξπελ = ) (40L x x L -πελ方向沿ξ轴正向。 (2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y 2 04r dx dE πελ= θπελcos 42 0r dx dE y = , θπελsin 42 0r dx dE x = 因θ θθθcos ,cos ,2y r d y dx ytg x ===, 习题7-1图 dq ξ d ξ 习题7-2 图a x x dx 习题7-2 图b y

代入上式,则 )cos 1(400θπελ-- =y =)1 1(4220L y y +--πελ,方向沿x 轴负向。 θθπελ θd y dE E y y ??= =0 0cos 4 00sin 4θπελy = = 2204L y y L +πελ 7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。 解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。对称分析E y =0。 θπεθ λsin 42 0R Rd dE x = ??==πθπελ 00sin 4R dE E x R 02πελ = 2 02 2R q επ= ,如图,方向沿x 轴正向。 7-4 如图线电荷密度为λ1的无限长均匀带电直线与另一长度为l 、线电荷密度为λ2的均匀带电直线在同一平面内,二者互相垂直,求它们间的相互作用力。 解:在λ2的带电线上任取一dq ,λ1的带电线是无限长,它在dq 处产生的电场强度由高斯定理容易得到为, x E 01 2πελ= 两线间的相互作用力为 θ θπελ θd y dE E x x ??-= -=0 0sin 4x 习题7-3图 λ1 习题7-4图

大学物理第六章习题选解

第六章 真空中的静电场 习题选解 6-1 三个电量为q -的点电荷各放在边长为r 的等边三角形的三个顶点上,电荷(0)Q Q >放在三角形的重心上。为使每个负电荷受力为零,Q 之值应为多大? 解:以三角形上顶点所置的电荷(q -) 为例,其余两个负电荷对其作用力的合力为1f ,方向如图所示,其大小为 题6-1图 2 2 2 2 1004330cos 42r q r q f πεπε=??= 中心处Q 对上顶点电荷的作用力为2f ,方向与1f 相反,如图所示,其大小为 2 233200434r Qq r Qq f πεπε==??? ? ?? 由12f f =,得 Q =。 6-2 在某一时刻,从238U 的放射性衰变中跑出来的α粒子的中心离残核234 Th 的中心为159.010r m -=?。试问:(1)作用在α粒子上的力为多大?(2)α粒子的加速度为多大? 解:(1)由反应 238 234492 902U Th+He → ,可知 α粒子带两个单位正电荷,即 1912 3.210Q e C -==? Th 离子带90个单位正电荷,即 1929014410Q e C -==? 它们距离为159.010r m -=? 由库仑定律可得它们之间的相互作用力为:

19199 122152 0 3.21014410(9.010)5124(9.010) Q Q F N r πε---???==??=? (2)α粒子的质量为: 2727272()2(1.6710 1.6710) 6.6810p n m m m Kg α---=+=??+?=? 由牛顿第二定律得: 28227512 7.66106.6810 F a m s m α--= ==??? 6-3 如图所示,有四个电量均为C q 610-=的点电荷,分别放置在如图所示的1,2,3,4点上,点1与点4距离等于点1与点2的距离,长m 1,第3个电荷位于2、4两电荷连线中点。求作用在第3个点电荷上的力。 解:由图可知,第3个电荷与其它各 电荷等距,均为2 2 r m = 。各电荷之间均为斥力,且第2、4两电荷对第三电荷的作用力大小相等,方向相反,两力平衡。由库仑定律,作用于电荷3的力为 题6-3 图 题6-3 图 N r q q F 22 133 10108.141 -?== πε 力的方向沿第1电荷指向第3电荷,与x 轴成45o 角。 6-4 在直角三角形ABC 的A 点放置点电荷C q 91108.1-?=,B 点放置点电荷 C q 92108.4-?-=,已知0.04,0.03BC m AC m ==,试求直角顶点C 处的场强E 。 解:A 点电荷在C 点产生的场强为 1E ,方向向下 142 11 01108.141 -??== m V r q E πε B 点电荷在C 点产生的场强为2E ,方向向右 142 22 02107.241 -??== m V r q E πε

真空中的静电场(答案解析)2015年度

第九章 真空中的静电场 一. 选择题 [ B ] 1(基础训练1) 图中所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷 线密度分别为+(x <0)和- (x >0),则Oxy 坐标平面上点(0,a )处的场强E 为 (A) 0. (B) i a 02ελπ. (C) i a 04ελπ. (D) ()j i a +π04ελ. 【提示】:左侧与右侧半无限长带电直线在(0,a)处产生的场强大小E +、E -大小为: 022E E a πε+-== 矢量叠加后,合场强大小为: 02E a λ πε=合,方向如图。 [ C ] 2(基础训练3) 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于: (A) 06εq . (B) 0 12εq . (C) 024εq . (D) 0 48εq . 【提示】:添加7个与如图相同的小立方体构成一个大立方体,使A 处于大立方体的中心。则大立 方体外围的六个正方形构成一个闭合的高斯面。由Gauss 定理知,通过该高斯面的电通量为 q ε。再据对称性可知,通过侧面abcd 的电场强度通量等于 24εq 。 A b c a q E + E - E 合 O +λ -λ x y (0, a ) +λ -λ x y (0, a )

[ D ] 3(基础训练6) 在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为 (A) a q 04επ. (B) a q 08επ. (C) a q 04επ-. (D) a q 08επ-. 【提示】:2 20048P a M M a q q V E dl dr r a πεπε-= ==? ? [ C ] 4(自测提高4)如图9-34,设有一“无限大”均匀带正电荷的平面。取x 轴垂直带电平面,坐标原点在带电平面上,则其周围 空间各点的电场强度E 随距离平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负): 【提示】:由于电场分布具有平面对称性,可根据高斯定理求得该带电平面周围的场强为: (+0;0)2E i x x σ ε=± > -<“”号对应“”号对应 [ B ] 5(自测提高6)如图所示,两个同心的均匀带电球面,内球面半径为R 1、带电荷Q 1,外球面半径为R 2、带有电荷Q 2.设无穷远处为电势零点,则在内球面之内、距离球心为r 处的P 点的电势U 为: (A) r Q Q 0214επ+. (B) 202 10144R Q R Q εεπ+π. (C) 0. (D) 1 01 4R Q επ. 【提示】:根据带点球面在求内外激发电势的规律,以及电势叠加原理即可知结果。 x

第九章 真空中的静电场习题

第九章 真空中的静电场 9–1 如图9-1所示,电量为+q 的三个点电荷,分别放在边长为a 的等边三角形ABC 的三个顶点上,为使每个点电荷受力为零,可在三角形中心处放另一点电荷Q ,则Q 的电量为 。 解:由对称性可知,只要某个顶点上的电荷受力为零即可。C 处电荷所受合力为零,需使中心处的点电荷Q 对它的引力F 与A ,B 两个顶点处电荷的对它的斥力F 1,F 2三力平衡,如图9-2所示,即 )21(F F F +-= 因此 12cos30F F ?= 即 22 02 cos304πq a ε=? 解得 q Q 3 3= 9-2 真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+λ 和-λ,点P 1和P 2与两带电线共面,其位置如图9-3所示,取向右为坐标x 正向,则1 P E = ,2P E = 。 解:(1)P 1点场强为无限长均匀带电直线λ,-λ在该点产生的场强的矢量和,即 λλ-+=E E E 1 P 其大小为 i i i E d d d P 000ππ2π21ελ ελελ=+= 方向沿x 轴正方向。 (2)同理可得 i i i E d d d P 000π3π2) 3(π22ελ ελελ -=- = 方向沿x 轴负方向。 图9–2 图9-3 图9–1

9-3 一个点电荷+q 位于一边长为L 的立方体的中心,如图9-4所示,则通过立方体一面的电通量为 。如果该电荷移到立方体的一个顶角上,那么通过立方体每一面的电通量是 。 解:(1)点电荷+q 位于立方体的中心,则通过立方体的每一面的电通量相等,所以通过每一面的通量为总通量的1/6,根据高斯定理 01 d in S q ε?=∑??E S ,其中S 为立方体的各面所 形成的闭合高斯面,所以,通过任一面的电通量为0 d 6S q ε?= ??E S 。 (2)当电荷+q 移至立方体的一个顶角上,与+q 相连的三个侧面ABCD 、ABFE 、BCHF 上各点的E 均平行于各自的平面,故通过这三个平面的电通量为零,为了求另三个面上的电通量,可以以+q 为中心,补作另外7个大小相同的立方体,形成边长为2L 且与原边平行的大立方体,如图9–5所示,这个大立方体的每一个面的电通电都相等,且均等于 6εq ,对原立方体而言,每个面的面积为大立方 体一个面的面积的1/4,则每个面的电通量也为大立方体一个面的电通量的1/4,即此时通过立方体每一面的电通量为0 111d 4624S q ε??=??E S 。 9-4 如图9-6所示,在场强为E 的匀强静电场中,A ,B 两点距离为d ,AB 连线方向与E 方向一致,从A 点经任意路径到B 点的场强线积分 l E d ??AB = 。 解:电场强度E 沿闭合路径ACBD 的环流为零,即有 0d d d =?+ ?= ????l E l E l E BDA ACB ACBD 因此 Ed Ed d d BDA ACB =--=?- =???)(l E l E 9-5 如9-7图,在点电荷q 的电场中,选取以q 为中心、R 为半径的球面上一点A 处为电势零点,则离点电荷q 为r 的B 处的电势为 。 解:以点电荷q 为中心,作半径为r 的球面为高斯面,利用高斯定理 01 d in S q ε?= ∑?E S ,有 2π4εq r E = 图 9-6 d 图9-4 q L q L 图9-5 q 2L B C D E F A 2L 2L G H 图9-7

真空中的静电场归纳,

普通物理学 程守洙第六版 静止电荷电场总结

真空中的静电场 教学目的要求 1. 理解点电荷概念,掌握库仑定律、电场强度和场强叠加原理; 2. 理解电场线与电通量,掌握静电场的高斯定理及其应用; 3. 理解静电场的保守性、环路定理与电势能; 4. 掌握电势和电势叠加原理; 5. 了解电场强度和电势梯度的关系. 本章内容提要 ⒈两个基本定律 ① 电荷守恒定律 在一个孤立系统内,无论进行怎样的物理过程,系统内电荷量的代数和总是保持不变,这个规律称为电荷守恒定律.它是物理学中普遍遵守的规律之一. ② 真空中的库仑定律 真空中两个静止的点电荷之间的相互作用力的大小与这两个电荷所带电荷量q l 和q 2的乘积成正比,与它们之间距离r 的平方成反比.作用力的方向沿着两个点电荷的连线,同号电荷相斥,异号电荷相吸.即 121212 122201212012 4π4πr q q q q r r r εε= ?=r F e ⒉两个重要物理量 ① 电场强度 单位试验电荷在电场中任一场点处所受的力就是该点的电场强度.即 q F E =

② 电势 电场中某点的电势等于把单位正电荷自该点移到“电势零点”过程中电场力做的功.若取“无限远”处为“电势零点”,则 d p p p W V q ∞ = =??E l 电场强度和电势都是描述电场中各点性质的物理量,二者的积分关系为 d p p V ∞ =??E l 微分关系是 grad V =V =--?E ⒊两个重要定理 ① 高斯定理 在真空中的静电场内,通过任意闭合曲面的电场强度通量等于该闭合曲面所包围的电荷电荷量的代数和的1/ε 0倍.即 1 d i S S q ε?= ∑? 内 E S ② 静电场的环路定理 在静电场中,电场强度E 的环流恒为零.即 0d =??l E 高斯定理和静电场的环路定理都是描写静电场性质的重要定理,前者说明静电场是有源场,而后者说明静电场是无旋场,即静电场是有源无旋场. ⒋三个叠加原理 ① 静电力叠加原理 作用在某一点电荷上的力为其它点电荷单独存在时对该点电荷静电力的矢量和.即 1 n i i ==∑F F ② 场强叠加原理 电场中某点的场强等于每个电荷单独在该点产生的场强的叠加,即 1 n i i==∑E E ③ 电势叠加原理 电场中某点的电势等于各电荷单独在该点产生的电势的叠加,即 1 n p Pi i V V ==∑ ⒌几个基本概念 ① 电场 电荷周围存在的一种特殊物质,称为电场.它与分子、原子等组成的实物一样,具有质量、能量、动量和角动量,它的特殊性在于能够叠加.相对于观察者静止的电荷在其周围所激发的电场称为静电场.静电场对外的表现主要有:对处于电场中的其他带电体有作用力;在电场中移动其他带电体时,电场力要对它做功. ② 电场线 为形象地反映电场而人为地在电场中描绘的曲线.其画法规定:电场线上某点的

真空中的静电场总结,

.. 普通物理学 程守洙第六版 静止电荷电场总结

真空中的静电场 教学目的要求 1. 理解点电荷概念,掌握库仑定律、电场强度和场强叠加原理; 2. 理解电场线与电通量,掌握静电场的高斯定理及其应用; 3. 理解静电场的保守性、环路定理与电势能; 4. 掌握电势和电势叠加原理; 5. 了解电场强度和电势梯度的关系. 本章内容提要 ⒈两个基本定律 ① 电荷守恒定律 在一个孤立系统内,无论进行怎样的物理过程,系统内电荷量的代数和总是保持不变,这个规律称为电荷守恒定律.它是物理学中普遍遵守的规律之一. ② 真空中的库仑定律 真空中两个静止的点电荷之间的相互作用力的大小与这两个电荷所带电荷量q l 和q 2的乘积成正比,与它们之间距离r 的平方成反比.作用力的方向沿着两个点电荷的连线,同号电荷相斥,异号电荷相吸.即 121212122201212012 4π4πr q q q q r r r εε=?=r F e ⒉两个重要物理量 ① 电场强度 单位试验电荷在电场中任一场点处所受的力就是该点的电场强度.即 q F E = ② 电势 电场中某点的电势等于把单位正电荷自该点移到“电势零点”过程中电场力做的功.若取“无限远”处为“电势零点”,则 0d p p p W V q ∞ ==??E l 电场强度和电势都是描述电场中各点性质的物理量,二者的积分关系为 d p p V ∞ =??E l 微分关系是 grad V =V =--?E ⒊两个重要定理 ① 高斯定理 在真空中的静电场内,通过任意闭合曲面的电场强度通量等于该闭合曲面所包围的电荷电荷量的代数和的1/ε 0倍.即 01d i S S q ε?=∑?内 E S

相关主题
文本预览
相关文档 最新文档