当前位置:文档之家› 线性代数第一章答案

线性代数第一章答案

线性代数第一章答案
线性代数第一章答案

第一章 行列式

1. 利用对角线法则计算下列三阶行列式:

(1)3

811411

02---;

3

81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4.

(2)b

a c a c

b

c b a ;

b

a c a c

b

c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3.

(3)2

22111c b a c

b a ;

2

22111c b a c b a

=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).

(4)y

x y x x y x y y

x y x +++.

y

x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3).

2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;

解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;

解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;

解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ? ? ? (2n -1) 2 4 ? ? ? (2n ); 解 逆序数为2

)

1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ? ? ? ? ? ?

(2n -1)2, (2n -1)4, (2n -1)6, ? ? ?, (2n -1)(2n -2) (n -1个)

(6)1 3 ? ? ? (2n -1) (2n ) (2n -2) ? ? ? 2. 解 逆序数为n (n -1) : 3 2(1个) 5 2, 5 4 (2个) ? ? ? ? ? ?

(2n -1)2, (2n -1)4, (2n -1)6, ? ? ?, (2n -1)(2n -2) (n -1个) 4 2(1个) 6 2, 6 4(2个) ? ? ? ? ? ?

(2n )2, (2n )4, (2n )6, ? ? ?, (2n )(2n -2) (n -1个)

3. 写出四阶行列式中含有因子a 11a 23的项. 解 含因子a 11a 23的项的一般形式为

(-1)t a 11a 23a 3r a 4s ,

其中rs 是2和4构成的排列, 这种排列共有两个, 即24和42. 所以含因子a 11a 23的项分别是

(-1)t a 11a 23a 32a 44=(-1)1a 11a 23a 32a 44=-a 11a 23a 32a 44, (-1)t a 11a 23a 34a 42=(-1)2a 11a 23a 34a 42=a 11a 23a 34a 42.

4. 计算下列各行列式:

(1)7

1100251020214

214; 解 711002510202142140

100142310

20211021

473234-----======c c c c 34)1(1431022110

14+-?---= 143102211014--=014

171720010

9932321

1=-++======c c c c .

(2)2605

232112131412-; 解

26

05

232112131412-2605

3212213041224--=====c c 0

41203212213

041224--=====r r

00

000032122130

412

14=--=====r r . (3)ef

cf bf de

cd bd ae ac ab ---;

ef

cf bf de cd bd ae

ac ab ---e c b e c b e c b adf ---=

abcdef adfbce 41

111111

11=---=.

(4)d

c b a 100

110011001---. 解

d c b a 100110011001---d

c b a

ab ar r 10011001101021---++===== d c a ab 101101)

1)(1(1

2--+--=+0

1011123-+-++=====cd c ad a ab dc c

cd

ad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1.

5. 证明:

(1)1

11222

2b b a a b ab a +=(a -b )3;

证明

1112222b b a a b ab a +001

22222221213a b a b a a b a ab a c c c c ------=====

a

b a b a b a ab 22)1(2

221

3-----=+21))((a b a a b a b +--==(a -b )3 .

(2)y

x z x z y z

y x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;

证明

bz

ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++ bz ay by ax x by ax bx az z bx

az bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=

bz ay y x by ax x z bx

az z y b y by ax z x bx az y z bz ay x a +++++++=22

z y x y x z x

z y b y x z x z y z y x a 33+=

y x z x z y z

y x b y x z x z y z y x a 33+=

y

x z x z y z

y x b a )(33+=.

(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2

222

22222

2222222=++++++++++++d d d d c c c c b b b b a a a a ;

证明

2

2

22222222222

222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得) 5

232125232125232125

232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2得)

02

212221222122

2122

222=++++=d d c c b b a a .

(4)4

4

4

4

22221111d c b a d c b a d c b a =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d );

证明

4

44422221111d c b a d c b a d c b a )

()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b a

d a c a b ---------=

)

()()(111))()((2

22a d d a c c a b b d c b a d a c a b +++---= )

)(())((001

11))()((a b d b d d a b c b c c b d b c a d a c a b ++-++------=

)()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----= =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ).

(5)1

22

1

1 000 0

0 1000 01

a x a a a a x x x n n n

+?

??-????????????????

?????-???--- =x n +a 1x n -1+ ? ? ? +a n -1x +a n .

证明 用数学归纳法证明.

当n =2时,

2

121

221a x a x a x a x D ++=+-=, 命题成立. 假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ ? ? ? +a n -2x +a n -1, 则D n 按第一列展开, 有

1

11

00 100 01

)1(11-?????????????????????-???--+=+-x x a xD D n n n n =xD n -1+a n =x n +a 1x n -1+ ? ? ? +a n -1x +a n . 因此, 对于n 阶行列式命题成立.

6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90?、或依副对角线翻转, 依次得

n nn n a a a a D 11111 ???????????????=, 11112 n nn n a a a a D ???????????????= , 11

113 a a a a D n n

nn ???????????????=,

证明D D D n n 2

)

1(21)

1(--==, D 3=D .

证明 因为D =det(a ij ), 所以

n

nn n n n n

nn

n a a a a a a a a a a D 221

1

111

111111 )1( ?

?????????????????-=???????????????=- ???=?

????????????????????--=-- )1()1(331

1

221

11121n

nn n n

n n n a a a a a a a a

D D n n n n 2

)1()1()2( 21)1()1(--+-+???++-=-=.

同理可证

nn

n n n n a a a a D ???????????????-=- )1(11112

)1(2D D n n T n n 2)

1(2)1()1()1(---=-=. D D D D D n n n n n n n n =-=--=-=----)1(2

)1(2

)1(22

)1(3)1()

1()

1()

1(.

7. 计算下列各行列式(D k 为k 阶行列式):

(1)a

a

D n 1

1

?

??=, 其中对角线上元素都是a , 未写出的元素都是0;

a

a a a a D n 0 0010 000 00 00

0 0010 00?????????????????????????????????=(按第n 行展开) )

1()1(1

0 0

0 0

0 00

0 001

0 000)1(-?-+?

?????????????????????????????-=n n n a

a a )1()1(2 )1(-?-????-+n n n a a a

n n n n

n a a a

+?

??-?-=--+)

2)(2(1

)1()1(=a n -a n -2=a n -2(a 2-1).

(2)x

a a a x a a a x D n ?????????????????????= ; 解 将第一行乘(-1)分别加到其余各行, 得

a

x x a a

x x a a x x a a

a a x D n --??????????????????--???--???=000 0 00 0 , 再将各列都加到第一列上, 得

a

x a

x a x a

a

a a n x D n -??????????????????-???-???-+=0000 0 000

0 )1(=[x +(n -1)a ](x -a )n -1. (3)1

1

1 1 )( )1()( )1(1

1

11???-?

????????-?

?????-???--???-=---+n a a a n a a a n a a a D n n n n

n n n ; 解 根据第6题结果, 有

n

n

n n n n n n n n a a a n a a a n a a a

D )( )1()( )1( 11

1

1)1(1112)1(1-???--?????????-?

?????-???-???-=---++ 此行列式为范德蒙德行列式.

∏≥>≥++++--+--=1

12

)1(1)]1()1[()1(j i n n n n j a i a D

∏≥>≥++---=1

12

)1()]([)1(j i n n n j i

∏≥>≥++???+-++-?

-?-=1

12

1

)1(2

)1()()1()1(j i n n n n n j i

∏≥>≥+-=

1

1)(j i n j i .

(4)n n

n

n

n d c d c b a b a D ?

?????

??????=

1

1112;

n

n

n

n

n d c d c b a b a D ?

?????

??????=

1

1112(按第1行展开)

n

n n n n n

d d c d c b a b a a 000

11

111111

----?

?????

??????=

0)

1(111

1111

1

1

2c d c d c b a b a b n

n n n n n

n ----+????????????-+.

再按最后一行展开得递推公式

D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是

∏=-=n

i i i i i n D c b d a D 2

22)(.

1

111111

12c b d a d c b a D -==

,

所以

∏=-=n

i i i i i n c b d a D 1

2)(.

(5) D n =det(a ij ), 其中a ij =|i -j |; 解 a ij =|i -j |,

4321 4 01233 10122 2101

1

3210)det(?

??----????

???

???

???

???

??-???-???-???-???=

=n n n n n n n n a D ij n

4321 1 11111 11111 1111

1 1111 2132???----????????????????

?????----???---???--???--???-=====n n n n r r r r

1

5242321 0 22210 02210 0021

0 0001 1213-???----????????????????

?????----???---???--???-+???+=====n n n n n c c c c =(-1)n -1(n -1)2n -2.

(6)n

n a a a D +??????????????????+???+=

1 1

1 1 111

112

1, 其中a 1a 2 ? ? ? a n

≠0.

n

n a a a D +??????????????????+???+=1 1

1 1 111

112

1

n

n n n a a a a a a a a a c c c c +-???-??????????????????????

?????-???-???-???-=====--10

0001 000 100 0100 0100 00

1133221

2132 1

1

1

1

3

1

2

1

121110 00011 000 00 11000 01100 001 ------+-???-????

???????????????????????-???-??????=n n n a a a a a a a a

∑=------+????

?????????????????????

??????????????=n i i n n a a a a a a a a 1

1

11

131******** 0001

00 100

00 01000 001

)11)((121∑=+=n

i i

n a a a a .

8. 用克莱姆法则解下列方程组:

(1)?????=+++-=----=+-+=+++01123253224254

321432143214321x x x x x x x x x x x x x x x x ;

解 因为

14211

2135132

41211

111-=----=D ,

142112105132412211151-=------=D , 28411

2035122

4121

1

15

12-=-----=D ,

42611013

5

232

422115113-=----=D , 1420

21321322121

5

11

14=-----=D , 所以 111==D

D x , 222==D D x , 333==D D x , 14

4-==D D x .

(2)??

?

???

?=+=++=++=++=+15065065065165545434323

212

1x x x x x x x x x x x x x .

解 因为

6655

10006510006510

065100065

==D ,

1507510016510006510

00650000611==D , 11455101065100065000

0601000152-==D ,

703511006500006010

00051001653==D , 3955

1

060100005100

0651010654-==D ,

2121

1

0510006510

0651100655==D ,

所以

665

1507

1=x ,

665

1145

2-=x ,

665

703

3=x ,

665

395

4-=x ,

665

2124=x .

9. 问λ, μ取何值时, 齐次线性方程组?????=++=++=++0

200

321321321x x x x x x x x x μμλ有非零解?

解 系数行列式为

μλμμμλ-==1

21111

1D .

令D =0, 得 μ=0或λ=1.

于是, 当μ=0或λ=1时该齐次线性方程组有非零解.

10. 问λ取何值时, 齐次线性方程组?????=-++=+-+=+--0

)1(0)3(20

42)1(321321321x x x x x x x x x λλλ有非零解?

解 系数行列式为

λ

λλλλλλ--+--=----=1011124

31111132421D

=(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3. 令D =0, 得

λ=0, λ=2或λ=3.

于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算221 1231223131 5 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ?

3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A 4.设矩阵210120001A ?? ??=?? ????,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+

深圳大学 《矩阵分析》教学大纲

《矩阵分析》教学大纲 英文名称:Matrix Analysis 一、课程目的与要求 通过本课程的学习,使学生在已掌握本科阶段线性代数知识的基础上,进一步深化和提高矩阵理论的相关知识。并着重培养学生将所学的理论知识应用于本专业的实际问题和解决实际问题的能力。本课程要求学生从理论上掌握矩阵的相关理论,会证明简单的一些命题和结论,从而培养逻辑思维能力。要求掌握一些有关矩阵计算的方法,如各种标准型、矩阵函数等,为今后在相关专业中实际应用打好基础。 二、学时/学分:60学时/3学分 三、课程内容及学时安排 (1) 线性空间与线性变换 10学时 理解线性空间的概念,掌握基变换与坐标变换的公式; 掌握子空间与维数定理,了解线性空间同构的含义; 理解线性变换的概念,掌握线性变换的矩阵表示。(不变子空间不作要求)(2) 内积空间 8学时 理解内积空间的概念,掌握正交基及子空间的正交关系; 了解内积空间的同构的含义,掌握判断正交变换的判定方法; 理解酋空间的概念,会判定一个空间是否为酋空间的方法,掌握酋空间与实内积空间的异同; 掌握正规矩阵的概念及判定定理和性质,理解厄米特二次型的含义。 (3) 矩阵的相似标准形与若干分解形式18学时 掌握矩阵相似对角化的判别方法;会求矩阵的约当标准形; 掌握哈密顿—开莱定理,会求矩阵的最小多项式; 会求史密斯标准形; 掌握正规矩阵及其酉对角化。 掌握多项式矩阵的互质性与既约性的判别方法,会求有理分式矩阵的标准形及其仿分式分解; 了解舒尔定理及矩阵的满秩分解、QR分解、奇异值分解及谱分解。 (4) 赋范线性空间10学时 了解赋范线性空间的及范数导出的度量,了解Lebsaque积分与L p空间; 掌握矩阵的各种范数定义、谱半径及其性质。, (5) 矩阵函数及其应用6学时 理解向量范数、矩阵范数及向量和矩阵的极限的概念; 掌握矩阵幂级数收敛的判定方法,会求矩阵函数; 会求矩阵的微分与积分; 了解矩阵函数在线性系统理论中的应用。 (6) 广义逆矩阵6学时 了解矩阵的Moore-Penrose广义逆及其性质 (7) 复习 2学时

同济大学线性代数第六版答案(全)

第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3811411 02---; 解 3 811411 02--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2221 11c b a c b a ; 解 2 221 11c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).

(4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ? ? ? (2n -1) 2 4 ? ? ? (2n ); 解 逆序数为2) 1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个)

线性代数知识点总结

线性代数知识点总结 第一章 行列式 (一)要点 1、二阶、三阶行列式 2、全排列和逆序数,奇偶排列(可以不介绍对换及有关定理),n 阶行列式的定义 3、行列式的性质 4、n 阶行列式ij a D =,元素ij a 的余子式和代数余子式,行列式按行(列)展开定理 5、克莱姆法则 (二)基本要求 1、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章 矩阵 (一)要点 1、矩阵的概念 n m ?矩阵n m ij a A ?=)(是一个矩阵表。当n m =时,称A 为n 阶矩阵,此时由A 的元素按原来排列的形式构成的n 阶行列式,称为矩阵A 的行列式,记为A . 注:矩阵和行列式是两个完全不同的两个概念。 2、几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1)矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。 如果两矩阵A 与B 相乘,有BA AB =,则称矩阵A 与B 可换。 注:矩阵乘积不一定符合交换 (2)方阵的幂:对于n 阶矩阵A 及自然数k , 规定I A =0 ,其中I 为单位阵 .

(3) 设多项式函数k k k k a a a a ++++=--λλλλ?1110)( ,A 为方阵,矩阵A 的 多项式I a A a A a A a A k k k k ++++=--1110)( ?,其中I 为单位阵。 (4)n 阶矩阵A 和B ,则B A AB =. (5)n 阶矩阵A ,则A A n λλ= 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A 可逆,则其逆矩阵是唯一的);矩阵A 的伴随矩阵记为*A , 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价意义下的标准形;矩阵A 可逆的又一充分必要条件:A 可以表示成一些初等矩阵的乘积;用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k 阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如n m A ?,l n B ?,将矩阵B 分块为 ) (21l b b b B =,其中j b (l j 2, ,1=)是矩阵B 的第j 列, 则 又如将n 阶矩阵P 分块为) (21n p p p P =,其中j p (n j 2, ,1=)是矩阵P 的第j 列. (3)设对角分块矩阵

行列式经典例题

大学-----行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

深圳大学工商管理学

专业代号:B020202 专业名称:工商企业管理(独立本科段)* 主考学校:深圳大学开考方式:面向社会 报考范围:全省及港澳地区 类型序号课程代号课程名称学分类型考试方式001 03709 马克思主义基本原理概论 4 必考笔试002 04183 概率论与数理统计(经管类) 5 必考笔试003 04184 线性代数(经管类) 4 必考笔试004 00015 英语(二)14 必考笔试005 00154 企业管理咨询 4 必考笔试006 00149 国际贸易理论与实务 6 必考笔试007 00067 财务管理学 6 必考笔试008 00151 企业经营战略 6 必考笔试009 00150 金融理论与实务 6 必考笔试010 00152 组织行为学 4 必考笔试011 00054 管理学原理 6 必考笔试012 00051 管理系统中计算机应用 3 必考笔试012 00052 管理系统中计算机应用 1 必考实践考核013 11390 工商企业管理实习 5 必考实践考核014 06999 毕业论文不计学分必考实践考核201 00055 企业会计学 6 加考笔试

202 00145 生产与作业管理 6 加考笔试203 00144 企业管理概论 5 加考笔试204 00009 政治经济学(财经类) 6 加考笔试205 00058 市场营销学 5 加考笔试231 00246 国际经济法概论 6 加考笔试课程设置:必考课14门74学分;加考课6门34学分。 说明: 1. 港澳考生可不考001课程,但须加考231课程。 2.工商企业管理、工商管理、企业管理专业专科毕业生可直接报考本专业,其他专业专科(或以上)毕业生报考本专业须加考201至205五门课程,已取得相同名称课程考试成绩合格者可申请免考。 3. 本专业仅接受国家承认学历的专科(或以上)毕业生申办毕业。

同济大学线性代数第六版答案(全)

第一章行列式 1.利用对角线法则计算下列三阶行列式: (1)3 81141102---; 解3 81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++.

解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2y -x 3-y 3-x 3 =-2(x 3+y 3). 2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; 解逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ??? (2n -1) 2 4 ??? (2n ); 解 逆序数为2 )1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ?????? (2n -1)2, (2n -1)4, (2n -1)6,???, (2n -1)(2n -2)(n -1个) (6)1 3 ??? (2n -1) (2n ) (2n -2) ??? 2.

线性代数第一章(答案)

第一章 行列式 一 填空题 1. n 阶行列式ij a 的展开式中含有11a 的项数为 (n-1)! 2.行列式 1 2 n λλλ = (1) 2 12 (1) n n n λλλ-- 3. 行列式11121314222324 333444 00 a a a a a a a a a a 的值11223344 a a a a 4.在n 阶行列式A =|ij a |中,若j i <时, ij a =0(j i ,=1,2,…,n),则 A = 1122nn a a a 解: A 其实为下三角形行列式. 5. 排列134782695的逆序数为 10 . 解:0+0+0+0+0+4+2+0+4=10 6. 已知排列9561274j i 为偶排列,则=),(j i (8,3) . 解:127435689的逆序数为5,127485639的逆序数为10 7. 四阶行列式中带有负号且包含a 12和a 21的项为 -a 12a 21a 33a 44 . 解:四阶行列式中包含a 12和a 21的项只有-a 12a 21a 33a 44和a 12a 21a 43a 34 8.在函数x x x x x x f 2 1 1 12)(---=中,3x 的系数为 -2

解: 行列式展开式中只有对角线展开项为3x 项. 9. 行 列 式x x x x x 2213212 113215 含 4x 的项 410x 解:含4x 的 项 应 为4443322111025x x x x x a a a a =???=. 10. 若n 阶行列式ij a 每行元素之和均为零,则ij a = 0 解:利用行列式性质:把行列式的某一行的各元素乘以同一数然后加到另一行对应的元素上去,行列式不变 11. =5 6789012011400 10 3 0200 1000 120 . 解:将最后一行一次与其前一行互换的到三角行列式 12.行列式c c b b a a ------1111111的值是 1 。 解c c b b a a ------1111111= 10 11111a b b c c ----=101 111a b c c --=1010101a b c =1

《经济数学》线性代数学习辅导与典型例题解析

《经济数学》线性代数学习辅导及典型例题解析 第1-2章行列式和矩阵 ⒈了解矩阵的概念,熟练掌握矩阵的运算。 矩阵的运算满足以下性质 ⒉了解矩阵行列式的递归定义,掌握计算行列式(三、四阶)的方法;掌握方阵乘积行列式定理。 是同阶方阵,则有: 若是阶行列式,为常数,则有: ⒊了解零矩阵,单位矩阵,数量矩阵,对角矩阵,上(下)三角矩阵,对称矩阵,初等矩阵的定义及性质。

⒋理解可逆矩阵和逆矩阵的概念及性质,掌握矩阵可逆的充分必要条件。 若为阶方阵,则下列结论等价 可逆满秩存在阶方阵使得 ⒌熟练掌握求逆矩阵的初等行变换法,会用伴随矩阵法求逆矩阵,会解简单的矩阵方程。 用初等行变换法求逆矩阵: 用伴随矩阵法求逆矩阵:(其中是的伴随矩阵) 可逆矩阵具有以下性质: ⒍了解矩阵秩的概念,会求矩阵的秩。 将矩阵用初等行变换化为阶梯形后,所含有的非零行的个数称为矩阵的秩。 典型例题解析 例1 设均为3阶矩阵,且,则。 解:答案:72 因为,且

所以 例2设为矩阵,为矩阵,则矩阵运算()有意义。 解:答案:A 因为,所以A可进行。 关于B,因为矩阵的列数不等于矩阵的行数,所以错误。 关于C,因为矩阵与矩阵不是同形矩阵,所以错误。 关于D,因为矩阵与矩阵不是同形矩阵,所以错误。 例3 已知 求。 分析:利用矩阵相乘和矩阵相等求解。 解:因为 得。

例4 设矩阵 求。 解:方法一:伴随矩阵法 可逆。 且由 得伴随矩阵 则=

方法二:初等行变换法 注意:矩阵的逆矩阵是唯一的,若两种结果不相同,则必有一个结果是错误的或两个都是错误的。 例4 设矩阵 求的秩。 分析:利用矩阵初等行变换求矩阵的秩。 解: 。

2020年深圳大学信息与通信工程专业研究生考试复试经验总结

2020年深圳大学信息与通信工程届复试经验 经验总结。 1)复试流程。 首先说说的是复试流程,复试时间是两天,一般最好在规定体检日期前一天就 到深圳。先是体检,体检完要拿那一个医生盖章的表到信工楼交表的。然后说 考试那两天,第一天早上是去文科楼笔试,就是那七本参考书,最重要一定要 拿下计算题。然后下午是去教学楼机房C语言机试。然后第二天上午就是面 试,面试的顺序是抽签的,前面的人能早上就能面完,后面的可能需要等一个 上午你都没能面试,还要吃个中午饭回来继续面试。说说面试的流程,首先进 去老师要求用英语进行自我介绍,然后是用英语读一篇文章,不长。我听说有 人读完后要求用中文翻译出来。接着是到老师前面抽专业问题,例如:模电的 集成运放的参数有哪些,数信卷积相关的问题。回答完问题老师就会示意让你 走的了。基本就这样,面试完就可以回酒店等通知了,一般面试完的一两天后 就会出成绩的了,被录取的就需要到信工楼拿调档函什么的。 2)笔试题型。 笔试科目就是那七本参考书,题型多是概念题,还有计算题。概念题都是些比 较基本的,比如什么是白噪声,自相关函数和功率谱的关系等等。当然也有比 较偏的,不过比较偏的大部分人都不会,所以复试笔试的分数都没几个超过 60分。计算题准备数信的和信号与系统的,计算题肯定在这两本书里面出, 通信原理也比较重要,理解基本概念,比如调幅,调相什么的,各个的特点和 优缺点啊什么的。所以最重要是数信,然后是信号与系统,然后就是模电和通 信原理,接着是通信电路,最后就是移动通信和数据通信网络。 3)面试以往问过的问题。 面试提问就就是模电,数信的问题,听说有的人抽到了高数,线性代数的问题, 这个真的有点看运气。不过多懂一点肯定更好啦,尽量准备充分点。如果你抽 到的问题都没怎么答好,老师有时会额外再问你一到两个问题的。所以最重要 是要对自己有信心。基本就这些了。

扬州大学线性代数习题册第一章

线性代数第一章行列式 --电商1201 一、填空题 1.排列631254的逆序数τ(631254)= 8 . 解: τ(631254)=5+2+1=8 2.行列式2 131 32 3 21= -18 . 解:D=1?3?2+2×1×3+2×1×3-3?3?3-1?1?1-2?2?2=-18 (陈冲) 3、4阶行列式中含1224a a 且带正号的项为_______ 答案:12243341a a a a 分析:4阶行列式中含1224a a 的项有12243341a a a a 和12243143a a a a 而 12243341a a a a 的系数:()(1234)(2431) 41(1)1ττ+-=-= 12243143a a a a 的系数:() (1234)(2413) 31(1)1ττ+-=-=- 因此,符合条件的项是12243341a a a a 4、2 2 2 111a a b b c c (,,a b c 互不相等)=_______ 答案:()()()b a c a c b --- 分析:2 2 2 111a a b b c c =222222()()()bc ab a c b c ac ba b a c a c b ++---=--- (陈思宇)

5.行列式 1 13 610420 4 7 10501λ--中元素λ的代数余子式的值为 42 解析: 元素λ的代数余子式的值为6 42 0710 01-3 41+-?)(=(-1) ×7 ×6×(-1)=42 6.设3 1-20 3 1222 3=D ,则代数余子式之和232221A A A ++=0 解析:232221A A A ++=1×21A +1×22A +1×23A =3 1211 1 222 -=0 (崔宇轩) 二、 单项选择题 1、设x x x x x x f 1 11 12 3111212)(-= ,则x 3 的系数为(C ) A. 1 B. 0 C. -1 D. 2 解:x 3的系数为 )() ()(1-21341234λλ+=-1 2、 设33 32 31232221 131211 a a a a a a a a a =m ≠0,则33 32 3131 23222121 13121111 423423423a a a a a a a a a a a a ---=(B ) A.12m B. -12m C.24m D. -24m 解:33 32 31232221 131211 a a a a a a a a a )4(2-?j →33 32 31 232221 131211 4-4-4-a a a a a a a a a =-4m

线性代数行列式经典例题

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

(精选)线性代数-考研笔记

第一章行列式 性质1 行列式与它的转置行列式相等。 性质2互换行列式的两行(列),行列式变号。 推论如果行列式的两行(列)完全相同,则此行列式等于零。 性质3行列式的某一行(列)中所以的元素都乘以同一个数,等于用数乘以此行列式。第行(或者列)乘以,记作(或)。 推论行列式的某一行(列)的所有元素的公因子可以提到行列式记号的外面。第行(或者列)提出公因子,记作(或)。 性质4行列式中如果两行(列)元素成比例,此行列式等于零。 性质5若行列式的某一列(行)的元素都是两数之和,例如第列的元素都是两数之和,则等于下列两个行列式之和: = 性质 6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。 定义在阶行列式,把元所在的第行和第列划去后,留下来的阶行列式叫做元的余子式,记作;记,叫做元的代数余子式。 引理一个阶行列式,如果其中第行所有元素除元外都为零,那么这行列式等于与它的代数余子式的乘积,即 定理3 (行列式按行按列展开法则) 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和,即 或 推论行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零。 范德蒙德行列式 克拉默法则

如果线性方程组①的系数行列式不等于零,即 , 那么,方程组①有唯一解其中是把系数行列式矩阵中第列的元素 用方程组右端的常数项代替后所得到的阶行列式,即 定理4 如果非齐次线性方程组的系数行列式,则非齐次线性方程组一定有解,且解是唯一的。 定理如果非齐次线性方程组无解或有两个不同的解,则它的系数行列式必为零。 定理5 如果齐次线性方程组的系数行列式 定理如果,则它的系数行列式必为零 第二章矩阵级其运算 定义1 由个数排成的行列的数表,称为行列矩阵; 以数为元的矩阵可简记作或矩阵也记作。 行数和列数都等于的矩阵称为阶矩阵或阶方阵。阶矩阵也记作。 特殊定义: 两个矩阵的行数相等,列数也相等时,就称它们是同型矩阵同型矩阵和的每一个元素都相等,就称两个矩阵相等,;元素都是零的矩阵称为零矩阵,记作;注意不同型的零矩阵是不同的。 特殊矩阵 阶单位矩阵,简称单位阵。特征:主对角线上的元素为,其他元素为; 对角矩阵,特征:不在对角线上的元素都是0,记作

考研线性代数重点内容和典型题型

考研线性代数重点内容和典型题型 线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的xx年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对xx年考研的同学们学习有帮助。 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《xx 年全国硕士研究生入学统一考试数学120种常考题型精解》。 矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、

伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。xx 年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。 特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、

济南大学线性代数与空间解析几何大作业答案-第一章

第一章 行列式 一、填空题 1. 42312314,!4a a a a -; 2. 0 ; 3. 4351875?=; 4. 1222+++c b a 5. -24 ; 6. -1或 -2. 二、选择题 D C B D C 三、计算题 1. 解: 1 22334,,r r r r r r D ---10 410 63103 210 11112 334r r r r --,11110123=100130014 . 2. 解:22223333 4 4 4 4 11111 12345 =5 =5432123451234512345!!!!!D . 3. 解:1211111112113 11234122301 100 =10002111221113006 12468244302 ---------=++----------D 2 3 1 1 01 =1001 3 0=10013030043 230 2 ----=---. 4. 解: 1,2,,12 30223 2!.00 3 200 +=?=====i r r i n n n D n n n 5. 解: 按第一列展开得: 1111(1)(1)+---=+--=+n n n n n n n D xD a xD a 22121()----=++=++n n n n n n x xD a a x D a x a

12(1)21-----= =++++n n n n n n x D a x a x a 1212121121()------=++ +++=++ +++n n n n n n n n n x x a a x a x a x a x a x a x a 四、解答题 解:14131211432A A A A +++1 31312021 01 14321---= =15 14131211432M M M M +++1 31312021 0114321-----==3

深圳大学应用物理学专业本科培养方案

深圳大学应用物理学专业本科培养方 案

深圳大学应用物理学专业本科培养方案 一、培养目标 本专业培养学生掌握物理学的基本理论和方法,具有良好的数学基础、计算机应用基础和实验技能,受到应用基础研究、应用研究、科技开发和技术管理的初步训练,具有良好的科学素养,适应高新技术发展的需要,具有较强的知识更新能力和较广泛的科技适应能力。为了使学生有更好的个性发展,适应社会需求,本专业在三、四年级特设信息物理工程、薄膜及低温等离子技术与应用、核技术与应用三个专业方向供学生选择,本专业毕业生能够在电子、光电子、通讯、交通、材料、真空和薄膜领域从事检测与控制、产品开发、工程设计等工作,或在核能技术、工业同位素及辐射技术、核医学等领域工作的复合人才。 二、培养要求 本专业是一个宽口径专业,要求学生较为系统地掌握物理学的基本理论、基本实验技能以及所需的数学基础,具备从事理论研究、科技开发、技术管理的初步能力。经过课程学习和实验训练,达到以下的培养要求: 1.系统地掌握应用物理专业基础课与主干课的基本理论,从整体上对应用物理专业的内容、科学方法、工作语言、基本概念以及物理学发展历史、现状和前沿有一个全面的了解;

2.具有自主知识更新能力,创新意识和开拓精神以及与之相应的能力,崇尚理性,崇尚实践,树立终身学习的观点,能够适应本专业及其相关领域工作并进行创新性发展; 3.在实验课、实践课以及其它的一些课程的教学期间,形成团结协作的研究风尚; 4.注重物理学所形成的物质观、自然观、时空观、宇宙观对整个人类文化发展所产生的深刻影响; 5.注重培养理论与实验、归纳与演绎、分析与综合、类比联想与猜测试探、理想化方法与模型化方法、估算与概算等科学方法; 6.具有良好的外语交流能力和利用外语把握国际上科技发展趋势的能力; 7.具有良好的数学基础和运用现代技术手段获取相关科技信息的基本能力; 8.在当前暂设的信息物理工程、薄膜及低温等离子技术与应用、核技术与应用三个专业方向之一具有较系统的专业技术知识和技能。 三、主干学科 物理学 四、主要课程 高等数学、普通物理(力学与热学、电磁学、光学、原子物

线性代数笔记

线性代数笔记 第一章行列式 (1) 第二章矩阵 (2) 第三章向量空间 (8) 第四章线性方程组 (11) 第五章特征值与特征向量...................................... 错误!未定义书签。第一章行列式 1.3。1 行列式的性质 给定行列式,将它的行列互换所得的新行列式称为D的转置行列式,记为或。 性质1 转置的行列式与原行列式相等。即 (这个性质表明:行列式对行成立的性质,对列也成立,反之亦然) 性质2 用数k乘行列式D的某一行(列)的每个元素所得的新行列式等于kD。 推论1 若行列式中某一行(列)的元素有公因数,则可将公因数提到行列式之外。 推论2 若行列式中某一行(列)的元素全为零,则行列式的值为0。 可以证明:任意一个奇数阶反对称行列式必为零。 性质3行列式的两行(列)互换,行列式的值改变符号。 以二阶为例 推论3 若行列式某两行(列),完全相同,则行列式的值为零. 性质4 若行列式某两行(列)的对应元素成比例,则行列式的值为零。 性质5 若行列式中某一行(列)元素可分解为两个元素的和,则行列式可分解为两个行列式的和, 注意性质中是指某一行(列)而不是每一行。 性质 6 把行列式的某一行(列)的每个元素都乘以加到另一行(列),所得的行列式的值不变。 范德蒙德行列式 例10 范德蒙行列式…… . =(x2-x1)(x3—x1)(x3—x2)

1。4 克莱姆法则 定理1.4.1 对于n阶行列式 定理1.4。2 如果n个未知数,n个方程的线性方程组的系数行列式D≠0,则方程组有惟一的解: 定理1.4。3 如果n个未知数n个方程的齐次方程组的系数行列式D≠0,则该方程组只有零解,没有非零解. 推论如果齐次方程组有非零解,则必有系数行列式D=0. 第二章矩阵 一、矩阵的运算 1、矩阵的加法 设A=(a ij)m×n,B=(b ij)m×n,则 A+B=(a ij+b ij)m×n 矩阵的加法适合下列运算规则: (1)交换律:A+B=B+A (2)结合律:(A+B)+C=A+(B+C) (3)A+0=0+A=A

线性代数(浙江大学出版社)第一章作业参考答案

第一章作业参考答案 1-1. 求以下排列的逆序数: (1)134782695 (3)13…(2n-1)(2n)(2n-2)…2 解:(1)t=0+0+0+0+4+2+0+4=10 (2)t=0+0+…+0+2+4+6+…+2(n-1)=2(1+2+3+…+n-1)=(1) 2(1)2 n n n n -?=- 1-2. 在6阶行列式的定义式中,以下的项各应带有什么符号? (1)233142561465a a a a a a 解:()12(234516)4,?3126454t t t t ==== 128t t t =+=为偶数,故该项带正号。 1-3. 用行列式的定义计算: (1) 0004 0043 0432 4321 (3) 01 2 3 100010001x x x a a a x a ---+ 解:(1) 1241231240 0040 043(1)(1)444425604324 3 21 t q q q a a a ++=-=-????=∑ (3) 1320 1 2 3 1 00010()(1)(1)001x x x x x x a x x a x a a a x a --=???++-???-?-+ 233432103210(1)(1)(1)(1)(1)a a x a x a x a x a +-?-?-?+-?-?=++++ 1-4. 计算下列行列式: (1) 1111111111111111--- (3) 120 03 40000130051 - (5)1111111111111111a a b b +-+- (7)n a b b b b a b b D b b b a =

线性代数第一章习题集

一. 判断题(正确打√,错误打×) 1. n 阶行列式ij a 的展开式中含有11a 的项数为1-n .( × ) 正确答案:)!1(-n 解答:方法1因为含有11a 的项的一般形式是n nj j a a a 2211 , 其中n j j j 32是1-n 级全排列的全体,所以共有)!1(-n 项. 方法2 由行列式展开定理 =nn n n n n a a a a a a a a a 2 1 2222111211 n n A a A a A a 1121211111+++ , 而n n A a A a 112121++ 中不再含有11a ,而11A 共有)!1(-n 项,所以含有11 a 的 项数是)!1(-n . 注意:含有任何元素ij a 的项数都是)!1(-n . 2. 若n 阶行列式ij a 中每行元素之和均为零,则ij a 等于零.( √ ) 解答:将 nn n n n n a a a a a a a a a 2 1 2222111211 中的n 、、、 32列都加到第一列,则行 列式中有一列元素全为零,所以ij a 等于零.

3. 3 3 2244 114 4 332211 000000a b b a a b b a a b a b b a b a =.( √ ) 解答:方法1按第一列展开 3 3 2244 114 4 1141413 3 224 13 3 224 14 4 332211) (0 000000a b b a a b b a a b b a b b a a a b b a b b a b b a a a a b a b b a b a =-=-=. 方法2 交换2,4列,再交换2,4行 2 2 3344114 4 3322114 4 332211 00000000 0000000 000000a b b a a b b a a b b a a b b a a b a b b a b a =- == 3 3 2244 11a b b a a b b a . 方法 3 Laplace 展开定理:设在n 行列式 D 中任意取定了 )11(-≤≤n k k 个行,由这k 行元素所组成的一切k 阶子式与它们的 代数余子式的乘积之和等于行列式D 。 所以按2,3行展开 3 2324 4 332211 ) 1(0 000000+++-=a b a b b a b a 3 3 2244 11a b b a a b b a = 3 3 2244 11a b b a a b b a . 4. 若n 阶行列式ij a 满足ij ij A a =,n j i ,, ,2,1=,则0 ≥ij a .(√)

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算22 1 12312231315 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ? 3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A

4.设矩阵210120001A ?? ??=?? ???? ,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+ 2.设00021000531 23004580034600A ?? ??? ? ??=?? ?????? ,求1.A - 二、讨论抽象矩阵的可逆性 1.设n 阶矩阵A 满足关系式320A A A E +--=,证明A 可逆,并求1.A -

相关主题
文本预览
相关文档 最新文档