当前位置:文档之家› 分子的构型与杂化类型的关系

分子的构型与杂化类型的关系

分子的构型与杂化类型的关系
分子的构型与杂化类型的关系

班级姓名

杂化轨道理论

一、杂化和杂化轨道

二、SP型杂化

三、杂化轨道的特点

四、分子的构型与杂化类型的关系

五、小结《赢在课堂》P42页

配合物理论:

一、相关实验

实验一:《选修3课本》P41页

实验二:《选修3课本》P42页实验三:《选修3课本》P43页、

二、配位键

1、概念

[Cu(H2O)4]2+读做,呈色。电化学离子中铜离子与水分子之间的化学键是由水分子提供给铜离子,铜离子接受水分子提供的孤电子对形成的,这类特殊的键称为配位键。

2、表示

配位键可以用A→B来表示,其中A是孤电子对的原子,叫做;B是电子的原子,叫做。

例如:

3、形成条件

配位键的形成条件是:(1)一方,(2)一方。

三、配位化合物

1、配位化合物

通常把金属离子(或原子)与某些分子或离子(称为配体)以结合形成的化合物称为配位化合物。

2、各组成名称

[Cu(H2O)4]2+中Cu2+称为,H2O称为,4称为。

3、配合物的组成

一般中心原子(或离子)的配位数为2、4、6。(通常铜的配位数为4,银的配位数为2)

内外界之间可以完全电离,但内界配离子极验证电离。如:[Cu(NH3)4](OH)2===

4、形成配合物的条件

(1)配位体是含有孤电子对的阴离子或分子,如NH3、H2O、Cl-、Br-、I-、CN-、SCN-等。

(2)中心原子(或离子)有空轨道,如Fe3+、Fe2+、Co2+、Ni2+、Cu2+、Ag+等,只要能提供接纳孤电子对的空轨道即可。

5、配合物的稳定性

配合物具有一定的稳定性。配合物中的配位键越强,配合物越稳定。当作为中心原子的金属离子相同时,配合物的稳定性与配位体的性质有关。

6、配合物形成时的性质改变

(1)颜色的改变,如Fe(SCN)3的形成;

(2)溶解度的改变,如AgCl→[Ag(NH3)2]+。

化学分子杂化轨道与构型

1、现代价键理论要点: (1)自旋相反的成单电子相互接近时,核间电子密度较大,可形成稳定的共价键 (2)共价键有饱和性。一个原子有几个未成对 电子,便可和几个自旋相反的电子配对成 键。 例如:H-H N≡N (3)共价键有方向性。这是因为,共价键尽可 能沿着原子轨道最大重叠的方向形成,叫做最大重叠原理。 2.按原子轨道的重叠方式分:键和键 键:原子轨道“头碰头”重叠 键:原子轨道“肩并肩”重叠 杂化轨道理论的基本要点 原子轨道在成键的过程中并不是一成不变的。同一原子中能量相近的某些轨道,在成键过程中重新组合成一系列能量相等的新轨道而改变了原有的状态。这一过程称为“杂化”。所形成的新轨道叫做“杂化轨道”。 杂化轨道的要点:

原子形成分子时,是先杂化后成键 同一原子中不同类型、能量相近的原子轨道参与杂化 杂化前后原子轨道数不变 杂化后形成的杂化轨道的能量相同 杂化后轨道的形状、伸展方向发生改变 杂化轨道参与形成σ键,未参与杂化的轨道形成π键 sp3 一个s轨道与三个p轨道杂化后,得四个sp3杂化轨道,每个杂化轨道的s成分为1/4,p成分为3/4,它们的空间取向是四面体结构,相互的键角θ=109o28′CH4,CCl4 C原子与H原子结合形成的分子为什么是CH4,而不是CH2或CH3?CH4分子为什么具有正四面体的空间构型(键长、键能相同,键角相同为109°28′)? 它的要点是:当碳原子与4个氢原子形成甲烷分子时,碳原子的2s轨道和3个2p轨道会发生混杂,混杂时保持轨道总数不变,得到4个能量相等、成分相同的sp3杂化轨道,夹角109°28 ′,表示这4个轨道是由1个s轨道和3个p轨道杂化形成的如下图所示:

(完整版)分子的立体结构杂化轨道与配位键习题及答案.docx

第二节《分子的立体结构》 (3) 杂化轨道理论 班级学号姓名等第 1.最早提出轨道杂化理论的是() A.美国的路易斯 B.英国的海特勒 C.美国的鲍林 D.法国的洪特 2.下列分子中心原子是sp2杂化的是() A.PBr 3 B.CH4 C.BF3 D.H2O 3.关于原子轨道的说法正确的是() A. 凡是中心原子采取sp3杂化轨道成键的分子其几何构型都是正四面体 3杂化轨道是由 4 个 H原子的 1s轨道和 C 原子的2p 轨道混合起来而形成 B.CH 分子中的 sp 4 的 C.sp 3杂化轨道是由同一个原子中能量相近的s 轨道和 p 轨道混合起来形成的一组能量相近 的新轨道 D.凡 AB3型的共价化合物,其中中心原子 A 均采用 sp3杂化轨道成键 4.用 Pauling的杂化轨道理论解释甲烷分子的四面体结构,下列说法不正确的是() A.C 原子的四个杂化轨道的能量一样 B.C 原子的 sp3杂化轨道之间夹角一样 C.C 原子的 4 个价电子分别占据 4 个 sp3杂化轨道 D.C 原子有 1 个 sp 3杂化轨道由孤对电子占据 5.下列对 sp3、 sp2、 sp 杂化轨道的夹角的比较,得出结论正确的是() A.sp 杂化轨道的夹角最大 B.sp 2杂化轨道的夹角最大 C.sp 3杂化轨道的夹角最大 D.sp 3、 sp2、sp 杂化轨道的夹角相等 6.乙烯分子中含有 4 个 C— H 和 1 个 C=C双键, 6 个原子在同一平面上。下列关于乙烯分子 的成键情况分析正确的是() A. 每个 C 原子的 2s 轨道与2p 轨道杂化,形成两个sp 杂化轨道 B. 每个 C 原子的 1 个 2s轨道与 2 个 2p 轨道杂化,形成 3 个 sp 2杂化轨道 C.每个 C 原子的 2s 轨道与 3 个 2p轨道杂化,形成 4 个 sp3杂化轨道 D.每个 C 原子的 3 个价电子占据 3 个杂化轨道, 1 个价电子占据 1 个 2p 轨道 7. 下列含碳化合物中,碳原子发生了sp3杂化的是() A.CH4 B.CH2=CH2 C.CH≡CH D. 8. 已知次氯酸分子的结构式为H— O— Cl ,下列有关说法正确的是() A.O 原子发生 sp 杂化 B.O 原子与 H、 Cl 都形成σ键 C.该分子为直线型分子 D.该分子的电子式是H︰ O︰ Cl 9. 下列关于杂化轨道理论的说法不正确的是() A.原子中能量相近的某些轨道,在成键时,能重新组合成能量相等的新轨道 B.轨道数目杂化前后可以相等,也可以不等 C.杂化轨道成键时,要满足原子轨道最大重叠原理、最小排斥原理 D.杂化轨道可分等性杂化轨道和不等性杂化轨道

杂化轨道与分子构型

第二节杂化轨道与空间构型 【学习目标】 1、复习巩固电子式、共价键、σ键、π键、键参数。 2、理解掌握杂化轨道、价层电子对、会计算价层电子对数,理解中心原子轨道与分子构型 的关系。 重难点:杂化轨道理解计算,杂化轨道与分子构型的关系 【回顾旧知识】 1、共价键的实质: 2、σ键、π键的形成过程 3、单键双键三键的组成 4、写出下列物质的电子式 N2HCl CO2H2O NH3BF3CH4 【开启新知识】 一、活动探究 发挥自己的想象,各小组用橡皮泥把下列物质可能的形状捏出来 CO2H2O NH3BF3CH4 提示:原子用球,键用牙签 成果展示

疑问:CO 2 H 2O 的组成都就是一个中心 原子,两个被结 合原子,分子组 成一样,构型为 什么不一样? 问题分析: 分子构 型就是由共价 键 的 与 决定的 共价 键的实质就是 也就就是说,分子长什么样与共用电子对所处的轨道夹角有关系 二、 杂化轨道理论 1.用杂化轨道理论解释甲烷分子的形成 在形成CH 4分子时, 碳原子的一个 轨道与三个 轨道发生混杂,形成四个能量相等的 杂化轨道。四个 杂化轨道分别与四个H 原子的1s 轨道重叠成键形成CH 4分子,所以四个C —H 键就是等同的。可表示为 2.杂化轨道的类型 杂化类型 sp sp 2 sp 3 参与杂化的旧的n s 化学式 立体构型 结构式 键角 比例模型 球棍模型 CO 2 O =C =O 180° H 2O 105° BF 3 120° NH 3 107° CH 4 109°28′

(1)观察上述杂化过程,分析原子轨道杂化后,数量与能量有什么变化? (2)2s轨道与3p轨道能否形成sp2杂化轨道? 三、确定杂化轨道数目及类型 对AB m形分子来说 杂化轨道数目=σ键+ 孤电子对数 练练手

有机化学分子杂化轨道理论

分子杂化轨道理论 2010-5-8 化材学院 化学(1)李向阳 价键理论简明地阐明了共价键的形成过程和本质,成功解释了共价键的方向性和饱和性,但在解释一些分子的空间结构方面却遇到了困难。例如CH 4分子的形成,按照价键理论,C 原子只有两个未成对的电子,只能与两个H 原子形成两个共价键,而且键角应该大约为90°。但这与实验事实不符,因为C 与H 可形成CH 4分子,其空间构型为正四面体,∠HCH = 109.5°。为了更好地解释多原子分子的实际空间构型和性质,1931年鲍林提出了杂化轨道理论(hybrid orbital theory ),丰富和发展了现代价键理论。1953年,我国化学家唐敖庆等统一处理了s-p-d-f 轨道杂化,提出了杂化轨道的一般方法,进一步丰富了杂化理论的内容 1.杂化轨道理论的基本要点 杂化轨道理论从电子具有波动性、波可以叠加的观点出发,认为一个原子和其他原子形成分子时,中心原子所用的原子轨道(即波函数)不是原来纯粹的s 轨道或p 轨道,而是若干不同类型、能量相近的原子轨道经叠加混杂、重新分配轨道的能量和调整空间伸展方向,组成了同等数目的能量完全相同的新的原子轨道——杂化轨道(hybrid orbital),以满足化学结合的需要。这一过程称为原子轨道的杂化(hybridization )。 下面以CH 4分子的形成为例加以说明。 基态C 原子的外层电子构型为2s 2 2p x 1 2p y 1 。在与H 原子结合时,2s 上的一个电子被激发到2p z 轨道上,C 原子以激发态2s 12p x 12p y 12p z 1参与化学结合。当然,电子从2s 激发到2p 上需要能量,但由于可多生成二个共价键,放出更多的能量而得到补偿。 在成键之前,激发态C 原子的四个单电子分占的轨道2s 、2p x 、2p y 、2p z 会互相“混杂”,线性组合成四个新的完全等价的杂化轨道。此杂化轨道由一个s 轨道和三个p 轨道杂化而成,故称为sp 3杂化轨道。经杂化后的轨道一头大,一头小,其方向指向正四面体的四个顶角,能量不同于原来的原子轨道(图1.6)。 形成的四个sp 3 杂化轨道与四个H 原子的1s 原子轨道重叠,形成(sp 3-s )σ键,生成CH 4分子。 杂化轨道成键时,同样要满足原子轨道最大重叠原理。由于杂化轨道的电子云分布更为集中,杂化轨道的成键能力比未杂化的各原子轨道的成键能力强,故形成CH 4分子后体系能量降低,分子的稳定性增强。 CH 4分子形成的整个杂化过程可示意如下 图1. sp 3杂化轨道示意图 激发 杂化 sp 3杂化轨道 4 个电子能量相等 2 s 2p 基态C 原子 2 s 2p 1个2s 电子激发到2p 轨道 与4 个H 原子的1 s 电子结合 sp 3-s 重叠成键

杂化轨道理论(现用图解)

杂化轨道理论(图解) 一、原子轨道角度分布图 S Px Py Pz dz 2 dx 2-y 2 dxy dxz dyz 二、共价键理论和分子结构 ㈠、共价键理论简介 1、经典的化学键电子理论: 1916年德国化学家柯塞尔(Kossel)和1919年美国化学家路易斯(Lewis)等提出了化学键的电子理论。他们根据稀有气体原子的电子层结构特别稳定这一事实,提出各元素原子总是力图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。柯塞尔用电子的得失解释正负离子的结合。路易斯提出,原子通过共用电子对而形成的化学键称为共价键(covalent [k ?u`veilent]bond[b ?nd])。用黑点代表价电子(即最外层s ,p 轨道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀有气体原子的电子结构。为了方便,常用短线代替黑点,用“-”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键,“≡”表示3对电子形成的共价叁键。原子单独拥有的未成键的电子对叫做孤对电子(lone[l ?un]pair[p ε?]electron[i`lektr ?n])。Lewis 结构式的书写规则又称八隅规则(即8电子结构)。 评价 贡献:Lewis 共价概念初步解释了一些简单非金属原子间形成共价分子的过程及其 与离子键的区别。局限性:①、未能阐明共价键的本质和特性;②、八隅规则的例外很多。 PCl 5 SF 6 BeCl 2 BF 3 NO ,NO 2 …

中心原子周围价电子数10 12 4 6 含奇数价电子的分子… ③、不能解释某些分子的性质。含有未成对电子的分子通常是顺磁性的(即它们在磁场中表现出磁性)例如O2。 2、1927年德国的海特勒Heitler和美籍德国人的伦敦London两位化学家建立了现代价键理论,简称VB理论(电子配对法)。1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。 3、1928年-1932年,德国的洪特(F.Hund)和美国的马利肯(R.S.Mulliken)两位化学家提出分子轨道理论,简称MO理论。马利肯(R.S.Mulliken)由于建立和发展分子轨道理论荣获得1966年诺贝尔化学奖。 MO法和VB法是两种根本不同的物理方法;都是电子运动状态的近似描述;在一定条件下它们具有等价性。 O2 :2 O原子电子组态1s22s22p4 →O2,8×2=16个电子,外层电子:12个电子, KK(σ2s)2(σ*2s)2(σ2pz)2 (π2px)2(π2py)2(π*2px)1 (π*2py)1 MO理论认为价电子为12,其中 成键电子,(σ2s)2(σ2pz)2(π2px)2(π2py)2共8个电子 反键电子,(σ*2s)2(π*2px)1 (π*2py)1共4个电子 ------------ ----------- ----------- σ单键,3电π键,3电子π键 σ+π3+π3,由于每个π3只相当于半个键,故键级=2。尽管该键级与传统价键理论的结论一致,但分子轨道理论圆满解释了顺磁性(由于分子中存在未成对电子引起的),价键理论则不能解释。

杂化轨道理论解释部分分子的结构

1.BF3分子的结构: 硼原子的电子层结构为1s22s22p x1,当硼与氟反应时,硼原子的一个2s电子激发到一个空的2P轨道中,使硼原子的电子层结构变为1s22s22p x12p y1。硼原子的2s轨道和两个2p轨道杂化组合成sp2杂化轨道,硼原子的三个sp2杂化轨道分别与三个F原子的各一个2P轨道重叠形成三个sp2-p的σ键,由于三个sp2杂化轨道在同一平面上,而且夹角为120°,所以BF3分子具有平面三角形结构。 2.气态的BeCl2分子的结构: Be原子的电子结构1s22s2,从表面上看Be原子似乎不能形成共价键,但是在激发状态下,Be的一个2s 电子可以进入2p轨道,经过杂化形成2个sp杂化轨道,与氯原子中的3p轨道重叠形成两个sp-pσ键。由于杂化轨道间的夹角为180°,所以形成的BeCl2分子的空间结构是直线型。 BeCl2分子杂化态 3.乙烯、乙炔分子的结构: 乙烯分子中碳原子的原子轨道采用SP2杂化。形成乙烯分子时,两个碳原子各用一个sp2杂化轨道上的电子相互配对,形成一个σ键;每个碳原子的另外两个sp2杂化轨道上的电子分别与两个氢原子的1s轨道的电子配对形成共价键;每个碳原子的一个未参与杂化的2P轨道(均含有一个未成对电子)能够以“肩并肩”的方式重叠,该轨道上的电子配对形成一个π键。三个sp2杂化轨道的对称轴在同一平面上,对称轴夹角为1200,这样,在乙烯分子中的碳原子间,存在一个σ键和一个π键。类似地,乙炔分子中的碳原子采取sp1杂化,两个sp杂化轨道的对称轴在同一直线上,夹角为180o,两个碳原子间存在一个σ键和两个π键。 注意:杂化轨道只能形成σ键,不能形成π键。 例1.有关甲醛分子的说法正确的是() A.C原子采取sp杂化 B.甲醛分子为三角锥形结构 C.C原子采取sp2杂化 D.甲醛分子为平面三角形结构 4.氨分子的结构: 在形成氨分子时,氮原子中的原子轨道也发生了sp3杂化,生成四个SP3杂化轨道,但所生成的四个sp3杂化轨道中,只有三个轨道各含有一个未成对电子,可分别与一个氢原子的1s电子形成一个σ键,另一个sp3杂

化学分子杂化轨道及构型

1、现代价键理论要点: (1)自旋相反的成单电子相互接近时,核间电子密度较大,可形成稳定的共价键 (2)共价键有饱和性。一个原子有几个未成对电子,便可和几个自旋相反的电子配对成键。 例如:H-H N≡N (3)共价键有方向性。这是因为,共价键尽可能沿着原子轨道最大重叠的方向形成,叫做最大重叠原理。 2.按原子轨道的重叠方式分:键和键 键:原子轨道“头碰头”重叠 键:原子轨道“肩并肩”重叠 杂化轨道理论的基本要点 原子轨道在成键的过程中并不是一成 不变的。同一原子中能量相近的某些轨道, 在成键过程中重新组合成一系列能量相等 的新轨道而改变了原有的状态。这一过程称 为“杂化”。所形成的新轨道叫做“杂化轨道”。 杂化轨道的要点: 原子形成分子时,是先杂化后成键 同一原子中不同类型、能量相近的原子轨道参与杂化 杂化前后原子轨道数不变 杂化后形成的杂化轨道的能量相同 杂化后轨道的形状、伸展方向发生改变 杂化轨道参与形成σ键,未参与杂化的轨道形成π键 sp3 一个s轨道与三个p轨道杂化后,得四个sp3杂化轨道,每个杂化轨道的s成分为1/4,p成分为3/4,它们的空间取向是四面体结构,相互的键角θ=109o28′CH4,CCl4C原子与H原子结合形成的分子为什么是CH4,而不是CH2或CH3?CH4分子为什么具有正四面体的空间构型(键长、键能相同,键角相同为109°28′)? 它的要点是:当碳原子与4个氢原子形成甲烷分子时,碳原子的2s轨道和3个2p轨道会发生混杂,混杂时保持轨道总数不变,得到4个能量相等、成分相同的sp3杂化轨道,夹角109°28 ′,表示这4个轨道是由1个s轨道和3个p轨道杂化形成的如下图所示:

化学分子杂化轨道及构型

1、现代价键理论要点: (1)自旋相反的成单电子相互接近时,核间电子密度较大,可形成稳定的共价键 (2)共价键有饱与性。一个原子有几个未成对电子,便可与几个自旋相反的电子配对成键。 例如:H-H N≡N (3)共价键有方向性。这就是因为,共价键尽可能沿着原子轨道最大重叠的方向形成,叫做最大重叠原理。 2、按原子轨道的重叠方式分:键与键 键:原子轨道“头碰头”重叠 键:原子轨道“肩并肩”重叠 杂化轨道理论的基本要点 原子轨道在成键的过程中并不就是一 成不变的。同一原子中能量相近的某些轨道, 在成键过程中重新组合成一系列能量相等 的新轨道而改变了原有的状态。这一过程称 为“杂化”。所形成的新轨道叫做“杂化轨道”。 杂化轨道的要点: 原子形成分子时,就是先杂化后成键 同一原子中不同类型、能量相近的原子轨道参与杂化 杂化前后原子轨道数不变 杂化后形成的杂化轨道的能量相同 杂化后轨道的形状、伸展方向发生改变 杂化轨道参与形成σ键,未参与杂化的轨道形成π键 sp3 一个s轨道与三个p轨道杂化后,得四个sp3杂化轨道,每个杂化轨道的s成分为1/4,p 成分为3/4,它们的空间取向就是四面体结构,相互的键角θ=109o28′CH4,CCl4 C原子与H原子结合形成的分子为什么就是CH4,而不就是CH2或CH3?CH4分子为什么具有正四面体的空间构型(键长、键能相同,键角相同为109°28′)? 它的要点就是:当碳原子与4个氢原子形成甲烷分子时,碳原子的2s轨道与3个2p轨道会发生混杂,混杂时保持轨道总数不变,得到4个能量相等、成分相同的sp3杂化轨道,夹角109°28 ′,表示这4个轨道就是由1个s轨道与3个p轨道杂化形成的如下图所示:

杂化轨道的类型与分子空间构型

杂化轨道的类型与分子空间构型 一、杂化类型有 1)sp杂化 同一原子内由一个ns轨道和一个np轨道发生的杂化,称为sp杂化。杂化后组成的轨道称为sp杂化轨道。sp杂化可以而且只能得到两个sp杂化轨道。实验测知,气态BeCl2中的铍原子就是发生sp杂化,它是一个直线型的共价分子。Be 原子位于两个Cl原子的中间,键角180°,两个Be-Cl键的键长和键能都相等2)sp2杂化 同一原子内由一个ns轨道和二个np轨道发生的杂化,称为sp2杂化。杂化后组成的轨道称为sp2杂化轨道。气态氟化硼(BF3)中的硼原子就是sp2杂化,具有平面三角形的结构。B原子位于三角形的中心,三个B-F键是等同的,键角为120° 3)sp3杂化可以而且只能得到四个sp3杂化轨道。CH4分子中的碳原子就是发生sp3杂化,它的结构经实验测知为正四面体结构,四个C-H键均等同,键角为109°28′。这样的实验结果,是电子配对法所难以解释的,但杂化轨道理论认为,激发态C原子(2s12p3)的2s轨道与三个2p轨道可以发生sp3杂化,从而形成四个能量等同的sp3杂化轨道 sp型的三种杂化

π键(pi bond)成键原子的未杂化p轨道,通过平行、侧面重叠而形成的共价键,叫做π键,可简记为“肩并肩”。 π键与σ键不同,它的成键轨道必须是未成对的p轨道。π键可以是两中心,两电子的定域键,也可以是多中心,多电子的大Π键;同时,π键既可以是一般共价键,也可以是配位共价键。两个原子间可以形成最多2条π键,例如,碳碳双键中,存在一条σ键,一条π键,而碳碳三键中,存在一条σ键,两条π键。 简单地说,π键是电子云“肩并肩”地重叠,σ键是电子云“头碰头”地重叠。 烷烃中只存在一种键,所以可以发生取代反应. 烯烃的双键就是由π键和σ键组成.后者比较稳定,前者不稳定,所以发生氧化反应或者加成反应.π键和σ键是互相垂直的.平行于碳原子之间的π键就比较容易断裂. 炔烃也是由两种键组成,一个碳碳三键有两个π键.一个和σ键.π键也是不稳定的.π键和σ键之间也是互相垂直的,π键和π键之间是平行的.所以炔烃也具有烯烃的化学性质. 在乙炔分子中,有两个π键,在乙烯分子中,只有一个π键,但相对来说,乙炔分子中π电子云不如乙烯中π电子云集中。另外,乙炔分子中碳原子是sp杂化,乙烯分子中碳原子是sp2杂化。凡碳原子杂化电子云s成分愈大,这个碳原子的电负性也愈大,所以乙炔分子中碳原子的电负性比乙烯分子中碳原子的电负性大,再加上乙炔分子中两个碳原子之间的共用电子比乙烯的多,造成乙炔的键长比乙烯的短,乙炔分子中的π键比乙烯分子中的π键结合得比较牢固。 正由于乙烯和乙炔分子具有上述结构上的差异,因此表现在对不同试剂的反应上,活泼性就不同。乙烯分子中π电子云比乙炔的集中,当遇到亲电试剂进攻时,乙烯比乙炔易加成。溴和高锰酸钾都属于亲电试剂。 单键是一根σ键;双键和三键都含一根σ键,其余1根或2根是π键。但无机化合物不用此法。原因是,无机化合物中经常出现的共轭体系(离域π键)使得某两个原子之间共用的电子对数很难确定,因此无机物中常取平均键级,作为键能的粗略标准。 经验方法: 如果两原子之间只有一个化学键就是sigma键 如果不止一个化学键,那就是一个sigma键加上n个π键

化学分子杂化轨道及构型

化学分子杂化轨道及构型 Prepared on 22 November 2020

1、现代价键理论要点: (1)自旋相反的成单电子相互接近时,核间电子密度较大,可形成稳定的共价键 (2)共价键有饱和性。一个原子有几个未成对电子,便可和几个自旋相反的电子配对成键。 例如:H-H N≡ N (3)共价键有方向性。这是因为,共价键尽可能沿 着原子轨道最大重叠的方向形成,叫做最大重叠 原理。 2.按原子轨道的重叠方式分:键和键 键:原子轨道“头碰头”重叠 键:原子轨道“肩并肩”重叠 杂化轨道理论的基本要点 原子轨道在成键的过程中并不是一成不变 的。同一原子中能量相近的某些轨道,在成键过程中重新组合成一系列能量相等的新轨道而改变了原有的状态。这一过程称为“杂化”。所形成的新轨道叫做“杂化轨道”。 杂化轨道的要点: 原子形成分子时,是先杂化后成键 同一原子中不同类型、能量相近的原子轨道参与杂化 杂化前后原子轨道数不变 杂化后形成的杂化轨道的能量相同 杂化后轨道的形状、伸展方向发生改变 杂化轨道参与形成σ键,未参与杂化的轨道形成π键 sp3 一个s轨道与三个p轨道杂化后,得四个sp3杂化轨道,每个杂化轨道的s成分为1/4,p成分为3/4,它们的空间取向是四面体结构,相互的键角θ=109o28′ CH4,CCl4 C原子与H原子结合形成的分子为什么是CH4,而不是CH2或CH3CH4分子为什么具有正四面体的空间构型(键长、键能相同,键角相同为109°28′) 它的要点是:当碳原子与4个氢原子形成甲烷分子时,碳原子的2s轨道和3个2p轨道会发生混杂,混杂时保持轨道总数不变,得到4个能量相等、成分相同的sp3杂化轨道,夹角109°28 ′,表示这4个轨道是由1个s轨道和3个p轨道杂化形成的如下图所示: H2O中O也是采取sp3杂化 O的电子构型:1s22s22p4NH3中N也是采取sp3杂化 N的电子构型:1s22s22p3 等性杂化和不等性sp3杂化 与中心原子键合的是同一种原子,分子呈高度对称的正四面体构型,其中的4个sp3杂化轨道自然没有差别,这种杂化类型叫做等性杂化。

分子杂化轨道理论

分子杂化轨道理论 2010-5-8 化材学院 化学(1)李向阳 价键理论简明地阐明了共价键的形成过程和本质,成功解释了共价键的方向性和饱和 性,但在解释一些分子的空间结构方面却遇到了困难。例如CH 4分子的形成,按照价键理 论,C 原子只有两个未成对的电子,只能与两个H 原子形成两个共价键,而且键角应该大 约为90°。但这与实验事实不符,因为C 与H 可形成CH 4分子,其空间构型为正四面体, ∠HCH = 109.5°。为了更好地解释多原子分子的实际空间构型和性质,1931年鲍林提出了 杂化轨道理论(hybrid orbital theory ),丰富和发展了现代价键理论。1953年,我国化学家唐 敖庆等统一处理了s-p-d-f 轨道杂化,提出了杂化轨道的一般方法,进一步丰富了杂化理论 的内容 1.杂化轨道理论的基本要点 杂化轨道理论从电子具有波动性、波可以叠加的观点出发,认为一个原子和其他原子形 成分子时,中心原子所用的原子轨道(即波函数)不是原来纯粹的s 轨道或p 轨道,而是若 干不同类型、能量相近的原子轨道经叠加混杂、重新分配轨道的能量和调整空间伸展方向, 组成了同等数目的能量完全相同的新的原子轨道——杂化轨道(hybrid orbital),以满足化学 结合的需要。这一过程称为原子轨道的杂化(hybridization )。 下面以CH 4分子的形成为例加以说明。 基态C 原子的外层电子构型为2s 22p x 12p y 1。在与H 原子结合时,2s 上的一个电子被激 发到2p z 轨道上,C 原子以激发态2s 12p x 12p y 12p z 1参与化学结合。当然,电子从2s 激发到2p 上需要能量,但由于可多生成二个共价键,放出更多的能量而得到补偿。 在成键之前,激发态C 原子的四个单电子分占的 轨道2s 、2p x 、2p y 、2p z 会互相“混杂”,线性组合成 四个新的完全等价的杂化轨道。此杂化轨道由一个s 轨道和三个p 轨道杂化而成,故称为sp 3杂化轨道。 经杂化后的轨道一头大,一头小,其方向指向正四面 体的四个顶角,能量不同于原来的原子轨道(图1.6)。 形成的四个sp 3杂化轨道与四个H 原子的1s 原子轨道重叠,形成(sp 3-s )σ键,生成CH 4分子。 杂化轨道成键时,同样要满足原子轨道最大重叠原理。由于杂化轨道的电子云分布更为 集中,杂化轨道的成键能力比未杂化的各原子轨道的成键能力强,故形成CH 4分子后体系 能量降低,分子的稳定性增强。 CH 4分子形成的整个杂化过程可示意如下 图1. sp 3杂化轨道示意图 激发 杂化 sp 3杂化轨道 4个电子能量相等 2 s 2p 基态C 原子 2 s 2 p 1个2s 电子激发 到2p 轨道 与4 个H 原子的1 s 电子结合 sp 3-s 重叠成键

分子的构型与杂化类型的关系

班级姓名 杂化轨道理论 一、杂化和杂化轨道 二、SP型杂化 三、杂化轨道的特点 四、分子的构型与杂化类型的关系 五、小结《赢在课堂》P42页 配合物理论: 一、相关实验 实验一:《选修3课本》P41页 实验二:《选修3课本》P42页实验三:《选修3课本》P43页、 、

二、配位键 1、概念 [Cu(H2O)4]2+读做,呈色。电化学离子中铜离子与水分子之间的化学键是由水分子提供给铜离子,铜离子接受水分子提供的孤电子对形成的,这类特殊的键称为配位键。 2、表示 配位键可以用A→B来表示,其中A是孤电子对的原子,叫做;B是电子的原子,叫做。 例如: 3、形成条件 配位键的形成条件是:(1)一方,(2)一方。 三、配位化合物 1、配位化合物 通常把金属离子(或原子)与某些分子或离子(称为配体)以结合形成的化合物称为配位化合物。 2、各组成名称 [Cu(H2O)4]2+中Cu2+称为,H2O称为,4称为。 3、配合物的组成 一般中心原子(或离子)的配位数为2、4、6。(通常铜的配位数为4,银的配位数为2) 内外界之间可以完全电离,但内界配离子极验证电离。如:[Cu(NH3)4](OH)2=== 4、形成配合物的条件 (1)配位体是含有孤电子对的阴离子或分子,如NH3、H2O、Cl-、Br-、I-、CN-、SCN-等。 (2)中心原子(或离子)有空轨道,如Fe3+、Fe2+、Co2+、Ni2+、Cu2+、Ag+等,只要能提供接纳孤电子对的空轨道即可。 5、配合物的稳定性 配合物具有一定的稳定性。配合物中的配位键越强,配合物越稳定。当作为中心原子的金属离子相同时,配合物的稳定性与配位体的性质有关。 6、配合物形成时的性质改变 (1)颜色的改变,如Fe(SCN)3的形成; (2)溶解度的改变,如AgCl→[Ag(NH3)2]+。

杂化轨道理论

杂化轨道理论 在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这个过程叫做轨道的杂化,产生的新轨道叫做杂化轨道。 1基本介绍 杂化轨道理论(hybrid orbital theory)是1931年由鲍林(Pauling L)等人在价键理论的基础上提出,它实质上仍属于现代价键理论,但是它在成键能力、分子的空间构型等方面丰富和发展了现代价键理论。 核外电子在一般状态下总是处于一种较为稳定的状态,即基态。而在某些外加作用下,电子也是可以吸收能量变为一个较活跃的状态,即激发态。在形成分子的过程中,由于原子间的相互影响,单个原子中,具有能量相近的两个能级中,具有能量较低的能级的一个或多个电子会激发而变为激发态,进入能量较高的能级中去,即所谓的跃迁现象,从而新形成了一个或多个能量较高的能级。此时,这一个或多个原来处于较低能量的能级的电子所具有的能量增加到与原来能量较高的能级中的电子相同。这样,这些电子的轨道便混杂在一起,这便是杂化,而这些电子的状态也就是所谓的杂化态。 用化学语言讲,杂化轨道理论从电子具有波动性、波可以叠加的观点出发,认为一个原子和其他原子形成分子时,中心电子所用的电子轨道不是原来纯粹的s轨道或p轨道,而是若干不同类型、能量相近的电子轨道经叠加混杂、重新分配轨道的能量和调整空间伸展方向,组成了同等数目的能量完全相同的新的电子轨道——杂化轨道,以满足化学结合的需要。这一过程称为电子轨道的杂化。 2基本要点 只有最外电子层中不同能级中的电子可以进行轨道杂化,且在第一层的两个电子不参与反应。 不同能级中的电子在进行轨道杂化时,电子会从能量低的层跃迁到能量高的层,并且杂化以后的各电子轨道能量相等又高于原来的能量较低的能级的能量而低于原来能量较高的能级的能量。当然的,有几个原子轨道参加杂化,杂化后就生成几个杂化轨道。 杂化轨道成键时,要满足原子轨道最大重叠原理。 杂化后的电子轨道与原来相比在角度分布上更加集中,从而使它在与其他原子的原子轨道成键时重叠的程度更大,形成的共价键更加牢固。 3理论说明 (1)s-p型杂化 只有s轨道和p轨道参与的杂化,主要有以下三种类型:sp1杂化,sp2杂化,sp3杂化。 sp杂化轨道角度分布及其空间伸展方向示意图 (2)s-p-d型杂化 ns轨道,np轨道,nd轨道一起参与杂化称为s-p-d型杂化,主要有以下几种类型: 此外还有以内层的(n-1)d轨道,ns轨道,np轨道一起参与的杂化方式,它主要存在于

分子杂化轨道理论(精编文档).doc

【最新整理,下载后即可编辑】 分子杂化轨道理论 2010-5-8 化材学院化学(1)李向阳 价键理论简明地阐明了共价键的形成过程和本质,成功解释了共价键的方向性和饱和性,但在解释一些分子的空间结构方 分子的形成,按照价键理论,C原子面却遇到了困难。例如CH 4 只有两个未成对的电子,只能与两个H原子形成两个共价键,而且键角应该大约为90°。但这与实验事实不符,因为C与H 分子,其空间构型为正四面体,∠HCH = 109.5°。可形成CH 4 为了更好地解释多原子分子的实际空间构型和性质,1931年鲍林提出了杂化轨道理论(hybrid orbital theory),丰富和发展了现代价键理论。1953年,我国化学家唐敖庆等统一处理了s-p-d-f轨道杂化,提出了杂化轨道的一般方法,进一步丰富了杂化理论的内容 1.杂化轨道理论的基本要点 杂化轨道理论从电子具有波动性、波可以叠加的观点出发,认为一个原子和其他原子形成分子时,中心原子所用的原子轨道(即波函数)不是原来纯粹的s轨道或p轨道,而是若干不同类型、能量相近的原子轨道经叠加混杂、重新分配轨道的能量和调整空间伸展方向,组成了同等数目的能量完全相同的新的原子轨道——杂化轨道(hybrid orbital),以满足化学结合的需要。这一过程称为原子轨道的杂化(hybridization)。 分子的形成为例加以说明。 下面以CH 4 基态C原子的外层电子构型为2s22p x12p y1。在与H原子结合时,2s上的一个电子被激发到2p z轨道上,C原子以激发态2s12p x12p y12p z1参与化学结合。当然,电子从2s激发到2p上需要能量,但由于可多生成二个共价键,放出更多的能量而得到补偿。

高考化学:杂化轨道理论(图解)

高考化学:杂化轨道理论(图解) 一、原子轨道角度分布图 S Px Py Pz dz2 dx2-y2dxy dxz dyz 二、共价键理论和分子结构 ㈠、共价键理论简介 1、经典的化学键电子理论: 1916年德国化学家柯塞尔(Kossel)和1919年美国化学家路易斯(Lewis)等提出了化学键的电子理论。他们根据稀有气体原子的电子层结构特别稳定这一事实,提出各元素原子总是力图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。柯塞尔用电子的得失解释正负离子的结合。路易斯提出,原子通过共用电子对而形成的化学键称为共价键(covalent [k?u`veilent]bond[b?nd])。用黑点代表价电子(即最外层s,p轨道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀有气体原子的电子结构。为了方便,常用短线代替黑点,用“-”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键,“≡”表示3对电子形成的共价叁键。原子单独拥有的未成键的电子对叫做孤对电子 (lone[l?un]pair[pε?]electron[i`lektr?n])。Lewis结构式的书写规则又称八隅规则(即8电子结构)。 评价贡献:Lewis共价概念初步解释了一些简单非金属原子间形成共价分子的过程及其与离子键的区别。局限性:①、未能阐明共价键的本质和特性;②、八隅规则的例外很多。 PCl5SF6BeCl2BF3NO,NO2… 中心原子周围价电子数10 12 4 6 含奇数价电子的分子… ③、不能解释某些分子的性质。含有未成对电子的分子通常是顺磁性的(即它们在磁场中表现出磁性)例如O2。 2、1927年德国的海特勒Heitler和美籍德国人的伦敦London两位化学家建立了现代价键理论,简称VB理论(电子配对法)。1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。 3、1928年-1932年,德国的洪特(F.Hund)和美国的马利肯(R.S.Mulliken)两位化学家提出分子轨道理论,简称MO理论。马利肯(R.S.Mulliken)由于建立和发展分子轨道理论荣获得1966年诺贝尔化学奖。 MO法和VB法是两种根本不同的物理方法;都是电子运动状态的近似描述;在一定条件

高中化学 专题4 第1单元第1课时 杂化轨道理论与分子空间构型教案 苏教版选修3

第1课时杂化轨道理论与分子空间构型 [核心素养发展目标] 1.了解杂化轨道理论,能从微观角度理解中心原子的杂化轨道类型对 分子空间构型的影响。2.通过对杂化轨道理论的学习,掌握中心原子杂化轨道类型的判断方法,建立分子空间构型分析的思维模型。 一、杂化轨道及其理论要点 1.试解释CH4分子为什么具有正四面体的空间构型? (1)杂化轨道的形成 碳原子2s轨道上的1个电子进入2p空轨道,1个2s轨道和3个2p轨道“混合”起来,形成能量相等、成分相同的4个sp3杂化轨道,可表示为 (2)共价键的形成 碳原子的4个sp3杂化轨道分别与4个H原子的1s轨道重叠形成4个相同的σ键。 (3)CH4分子的空间构型 甲烷分子中的4个C—H键是等同的,C—H键之间的夹角——键角是109.5°,形成正四面体型分子。 2.轨道杂化与杂化轨道 (1) 轨道的杂化:在外界条件影响下,原子内部能量相近的原子轨道重新组合形成一组新轨道的过程叫做原子轨道的杂化。 (2)杂化轨道:重新组合后的新的原子轨道,叫做杂化原子轨道,简称杂化轨道。 (3)轨道杂化的过程:激发→杂化→轨道重叠。 3.杂化轨道的类型 杂化类型sp sp2sp3 参与杂化的原子轨 道及数目 n s 1 1 1 n p 1 2 3 杂化轨道数目 2 3 4 杂化轨道理论的要点

(1)原子形成分子时,通常存在激发、杂化和轨道重叠等过程。发生轨道杂化的原子一定是中心原子。 (2)原子轨道的杂化只有在形成分子的过程中才会发生,孤立的原子是不可能发生杂化的。 (3)只有能量相近的轨道才能杂化(如2s、2p)。 (4)杂化前后原子轨道数目不变(参加杂化的轨道数目等于形成的杂化轨道数目),且杂化轨道的能量相同。 (5)杂化轨道成键时要满足化学键间最小排斥原理,使轨道在空间取得最大夹角分布。故杂化后轨道的伸展方向、形状发生改变,但杂化轨道的形状完全相同。 例1下列关于杂化轨道的说法错误的是( ) A.所有原子轨道都参与杂化形成杂化轨道 B.同一原子中能量相近的原子轨道参与杂化 C.杂化轨道能量集中,有利于牢固成键 D.杂化轨道中不一定有一个电子 答案 A 解析参与杂化的原子轨道,其能量不能相差太大,如1s轨道与2s、2p轨道能量相差太大,不能形成杂化轨道,即只有能量相近的原子轨道才能参与杂化,故A项错误,B项正确;杂化轨道的电子云一头大一头小,成键时利用大的一头,可使电子云重叠程度更大,形成牢固的化学键,故C项正确;并不是所有的杂化轨道中都会有电子,也可以是空轨道,也可以有一对孤电子对(如NH3),故D项正确。 例2下列有关sp2杂化轨道的说法错误的是( ) A.由同一能层上的s轨道与p轨道杂化而成 B.共有3个能量相同的杂化轨道 C.每个sp2杂化轨道中s轨道成分占三分之一 D.sp2杂化轨道最多可形成2个σ键 答案 D 解析同一能层上s轨道与p轨道的能量差异不是很大,相互杂化的轨道的能量差异也不能过大,A项正确;同种类型的杂化轨道能量相同,B项正确;sp2杂化轨道是由一个s轨道与2个p轨道杂化而成的,C项正确;sp2杂化轨道最多可形成3个σ键,D项错误。 二、用杂化轨道理论解释分子的形成及分子中的成键情况 1.用杂化轨道理论解释BeCl2、BF3分子的形成 (1)BeCl2分子的形成

杂化轨道类型及分子空间立体构型

杂化轨道类型及分子空间立体构型 查缺补漏小专题1

一、杂化轨道类型与分子构型 分子结构与极性 1.中心原子的杂化轨道类型与分子的空间构型 参与杂化的原子轨道分子构型示例 杂化 轨道 类型 SP 一个S轨道,一个P轨道直线形CH三CH CO2 BeCL2 SP2一个S轨道,两个P轨道平面三角形CH2=CH2 BF3\BCL3 \CH2O SP3一个S轨道三个P轨道正四面体CH4\CCL4 \NH4+ 三角锥形NH3 V形H2S\H2O 判断杂化轨道类型的一般方法: (1)看中心原子有没有形成双键或叁键.如果全为单键,则是SP3杂化,如果有一个双键,是SP2杂化,如果有2个双键或一个叁键,是SP杂化. (2)没有填充电子的空轨道,一般不参与杂化,1对孤电子对

占据1个杂化轨道. 价层电子对互斥理论 几种分子或离子的立体构型: 分子或离子中心原子 的孤电子 对数 分子或离 子的价层 电子对数 杂化轨道 类型 键角分子或 离子的 立体构 型名称 CO2 0 2 SP 180 直线形SO2 1 3 SP2120 V形 BF3 0 3 SP2120 平面三 角形CO32-0 3 SP2120 平面三 角形CH4 0 4 SP3109.28 正四面 体形 NH4 + 0 4 SP3109.28 正四面 体 NH3 1 4 SP3107 三角锥 形 H2O 2 4 SP3105 V形

另:CH3+. 中心原子的价层电子对数与分子立体构型有密切的关系.对ABm型化合物,中心原子A的价层电子对数n的计算方法:n=[A的价电子数+m(8-B的价电子数)]/2;主族元素来说,价电子数等于原子的最外层电子数,计算当B为H时将式中的8改成2. 高考题中考查方式: 1.CO2与SO2分子的立体结构分别是和。 2.在碳酸二甲酯分子中,碳原子采用的杂化方式 有,O-C-O的键角约。3.P的氢化物的分子构型为 .其中原子采取杂化. 4. 用价层电子互斥理论推断SnBr2分子中Sn-Br键的键角 120°(填大于或小于或等于),石墨晶体中,每个碳原子通过杂化与周围碳原子成键. 5.丙烯腈(H2C=CH-CH三N)分子中碳原子轨道杂化类型是 . 6.SiF4和SO32-的中心原子杂化类型是 ,ClO3-的空间构型为 . 7.甲醛分子的空间构型是C原子的轨道杂化类型是 1mol甲醛分子中§键的数目为 .

相关主题
文本预览
相关文档 最新文档