当前位置:文档之家› 3.4 定积分与微积分基本定理

3.4 定积分与微积分基本定理

3.4 定积分与微积分基本定理
3.4 定积分与微积分基本定理

3.4 定积分与微积分基本定理

一、选择题

1.与定积分∫d x 相等的是( ). 3π

01-cos x A.∫sin d x B.∫d x 23π

0x 2

23π0|sin x 2|C. D .以上结论都不对

|2∫3π0sin x 2

d x |2. 已知f (x )为偶函数,且f(x)d x =8,则f(x)d x =( )

6∫0?-66A .0 B .4 C .8 D .16

3.以初速度40 m/s 竖直向上抛一物体,t 秒时刻的速度v =40-10t 2,则此物体达到最高时的高度为( ).

A. m

B. m

C. m

D. m 1603803403203

4.一物体以v =9.8t +6.5(单位:m /s )的速度自由下落,则下落后第二个4 s 内经过的路程是( )

A .260 m

B .258 m

C .259 m

D .261.2 m 5.由曲线y =,直线y =x -2及y 轴所围成的图形的面积为 x ( ).

A. B .4 C. D .6 1031636.已知a =2,n ∈N *,b =x 2d x ,则a ,b 的大小关系是( ). n ∑i =11n (i n )1∫0

A .a >b

B .a =b

C .a

D .不确定 7.下列积分中

①d x ; ②; ③d x ; ④d x ,积分值等于1的个数是( ). e ∫11x ?-22xdx 2

∫04-x 2π()

?-20sin cos 22cos πx x x A .1 B .2 C .3 D .4

二、填空题

8.如果10 N 的力能使弹簧压缩10 cm ,为在弹性限度内将弹簧拉长6 cm ,则力所做的功为______.

9.曲线y =与直线y =x ,x =2所围成的图形的面积为____________.

1x

10.若(2x -3x 2)d x =0,则k 等于_________.

k ∫

11. |3-2x |d x =________.

2∫

112.抛物线y =-x 2+4x -3及其在点A (1,0)和点B (3,0)处的切线所围成图形的面积为________.

三、解答题

13.如图在区域Ω={(x,y)|-2≤x≤2,0≤y≤4}中随机撒900粒豆子,如果落在每个区域的豆子数与这个区域的面积近似成正比,试估计落在图中阴影部分的豆子数.

14.如图所示,直线y=kx分抛物线y=x-x2与x轴所围图形为面积相等的两部分,求k的值.

(12,0)

15.曲线C:y=2x3-3x2-2x+1,点P,求过P的切线l与C围成的图形的面积.

16. 已知二次函数f(x)=3x2-3x,直线l1:x=2和l2:y=3tx(其中t为常数,且0

(1)求函数S(t)的解析式;

(2)定义函数h(x)=S(x),x∈R.若过点A(1,m)(m≠4)可作曲线y=h(x)(x∈R)的三条切线,求实数m的取值范围.

3.4 定积分与微积分基本定理

一、选择题

1.与定积分∫d x 相等的是( ). 3π

01-cos x A.∫sin d x B.∫d x 23π0x

223π

0|sin x 2|C. D .以上结论都不对

|2∫3π0sin x 2d x |解析 ∵1-cos x =2sin 2,∴∫d x = x

23π

01-cos x ∫|sin |d x =∫|sin |d x .

3π02x 2

23π0x 2答案 B 2. 已知f (x )为偶函数,且f(x)d x =8,则f(x)d x =( ) 6

∫0

?-66A .0 B .4 C .8 D .16

解析 -6f(x)d x =2f(x)d x =2×8=16.

6∫6∫

0答案 D

3.以初速度40 m/s 竖直向上抛一物体,t 秒时刻的速度v =40-10t 2,则此物体达到最高时的高度为( ). A. m B. m C. m D. m 1603803403203解析 v =40-10t 2=0,t =2,(40-10t 2)d t =Error!=40×2-×8=(m). 2∫

020*******答案 A

4.一物体以v =9.8t +6.5(单位:m /s )的速度自由下落,则下落后第二个4 s 内经过的路程是( )

A .260 m

B .258 m

C .259 m

D .261.2 m

解析 (9.8t +6.5)d t =(4.9t 2+6.5t)Error!=4.9×64+6.5×8-4.9×16-6.5×4=313.6+

8

452-78.4-26=261.2.

答案 D

5.由曲线y =,直线y =x -2及y 轴所围成的图形的面积为

x ( ).

A. B .4 C. D .6 103163

解析 由y =及y =x -2可得,x =4,所以由y =及y =x -2及y 轴所围成的封闭图形面积为x x 4∫0

(-x +2)d x =Error!=. 答案 C x (23x 32-12x 2+2x )163

6.已知a =

2,n ∈N *,b =x 2d x ,则a ,b 的大小关系是( ). n ∑i =11n (i n )1∫0

A .a >b

B .a =b

C .a

D .不确定

答案 A

7.下列积分中

①d x ; ②; ③d x ; ④d x ,积分值等于1的个数是( ). e ∫1

1x ?-22xdx 2∫04-x 2π()?-20sin cos 22cos πx x x A .1 B .2 C .3 D .4 解析 ①Error!=1,②Error!=0, e 12-2③d x =

(π22)=1, 2∫0

4-x 2π1π14④∫0d x =∫0(cos x +sin x )d x π2cos 2x 2 cos x -sin x 12π2

=(sin x -cos)|0=1. 12π2

答案 C

二、填空题

8.如果10 N 的力能使弹簧压缩10 cm ,为在弹性限度内将弹簧拉长6 cm ,则力所做的功为______.

解析 由F(x)=kx ,得k =100,F(x)=100x ,100x d x =0.18(J ).

W =∫0.060答案 0.18 J

9.曲线y =与直线y =x ,x =2所围成的图形的面积为____________. 1x

答案 -ln 2 3210.若(2x -3x 2)d x =0,则k 等于_________.

k ∫

0解析 (2x -3x 2)d x =2x d x -3x 2d x =x 2=k 2-k 3=0,

k ∫0k ∫0k

∫0|k 0-x 3|k 0∴k=0或k =1.

答案 0或1

11. |3-2x |d x =________.

2

1解析 ∵|3-2x |=Error!

∴|3-2x |d x =∫1(3-2x )d x +(2x -3)d x 2∫1322∫32=Error!1+(x 2-3x )|2=. 323212

答案 12

12.抛物线y =-x 2+4x -3及其在点A (1,0)和点B (3,0)处的切线所围成图形的面积为________. 解析 如图所示,因为y ′=-2x +4,y ′|x =1=2,y ′|x =3=-2,两切线方程为y =2(x -1)和

y =-2(x -3).

由Error!得x =2.

所以S =[2(x -1)-(-x 2+4x -3)]d x +[-2(x -3)-(-x 2+4x -3)]d x

2∫13

2

=(x 2-2x +1)d x +(x 2-6x +9)d x

2∫13∫

2=Error!+Error!=. 2

13223

答案 23

三、解答题

13.如图在区域Ω={(x ,y )|-2≤x ≤2,0≤y ≤4}中随机撒900粒豆子,如果落在每个区域的豆子数与这个区域的面积近似成正比,试估计落在图中阴影部分的豆子数.

解析 区域Ω的面积为S 1=16.

图中阴影部分的面积

S 2=S 1-Error!=. 2-2323

设落在阴影部分的豆子数为m , 由已知条件=, m 900S 2

S 1即m ==600. 900S 2S 1因此落在图中阴影部分的豆子约为600粒.

14.如图所示,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.

解析 抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1,

所以,抛物线与x 轴所围图形的面积

S =(x -x 2)d x =Error!=.又Error! 1∫01

016

由此可得,

抛物线y =x -x 2与y =kx 两交点的横坐标为

x 3=0,x 4=1-k ,所以,

=∫(x -x 2-kx )d x S 2

1-k 0=Error! 1-

k 0=(1-k )3.又知S =, 1616

所以(1-k )3=, 12

于是k =1- =1-. 312342

15.曲线C :y =2x 3-3x 2-2x +1,点P ,求过P 的切线l 与C 围成的图形的面积. (12

,0)

解析 设切点坐标为(x

0,

y

0)

y ′=6x 2-6x -2,

则y ′|x =x 0=6x -6x 0

-2, 20切线方程为y =(6x -6x 0-2), 20(x -12

)则y 0=(6x -6x 0-2), 20(x 0-12

)即2x -3x -2x 0+1=(6x -6x 0-2). 302020(x 0-12

)

整理得x 0(4x -6x 0

+3)=0, 20解得x 0=0,则切线方程为y =-2x +1.

解方程组Error!

得Error!或Error!

由y =2x 3-3x 2-2x +1与y =-2x +1的图象可知

S =∫0[(-2x +1)-(2x 3-3x 2-2x +1)]d x 32

=∫0(-2x 3+3x 2)d x =. 322732

16. 已知二次函数f(x)=3x 2-3x ,直线l 1:x =2和l 2:y =3tx(其中t 为常数,且0

(1)求函数S(t)的解析式;

(2)定义函数h(x)=S(x),x ∈R .若过点A (1,m )(m ≠4)可作曲线y =h (x )(x ∈R )的三条切线,求实数m 的取值范围.

解析 (1)由Error!得x 2-(t +1)x =0,

所以x

1=0,x 2=t +1.

所以直线l 2与f(x)的图象的交点的横坐标分别为0,t +1.

因为0

所以S(t)=∫[3tx -(3x 2-3x)]d x +t +1[(3x 2-3x)-3tx]d x t +

102∫

=Error!+Error!=(t +1)3-6t +2. t +

102t +1(2)依据定义,h(x)=(x +1)3-6x +2,x ∈R ,则h ′(x )=3(x +1)2-6.

因为m ≠4,则点A (1,m )不在曲线y =h (x )上.过点A 作曲线y =h (x )的切线,设切点为M (x 0,y 0),

则3(x 0+1)2-6=, x 0+1 3-6x 0+2-m x 0-1

化简整理得2x -6x 0

+m =0,其有三个不等实根. 30设g (x 0)=2x -6x 0+m ,则g ′(x 0

)=6x -6. 3020由g ′(x 0)>0,得x 0>1或x 0<-1;

由g ′(x 0)<0,得-1

所以g (x 0)在区间(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减,

所以当x 0=-1时,函数g (x 0)取极大值;

当x 0=1时,函数g (x 0)取极小值.

因此,关于x 0的方程2x -6x 0

+m =0有三个不等实根的充要条件是Error! 30即Error!即-4

1-定积分与微积分基本定理(理)含答案版

定积分与微积分基本定理(理) 基础巩固强化 1.求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( ) A .S =?? ?0 1(x 2-x )d x B .S =?? ?0 1 (x -x 2)d x C .S =?? ?0 1 (y 2-y )d y D .S =??? 1 (y - y )d y [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图 形的面积S =?? ?0 1 (x -x 2)d x . 2.如图,阴影部分面积等于( ) A .2 3 B .2-3 [答案] C [解析] 图中阴影部分面积为

S =??? -3 1 (3-x 2 -2x )d x =(3x -1 3x 3-x 2)|1 -3=32 3. 4-x 2d x =( ) A .4π B .2π C .π [答案] C [解析] 令y =4-x 2,则x 2+y 2=4(y ≥0),由定积分的几何意义知所求积分为图中阴影部分的面积, ∴S =1 4×π×22=π. 4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( ) A .在t 1时刻,甲车在乙车前面 B .在t 1时刻,甲车在乙车后面 C .在t 0时刻,两车的位置相同 D .t 0时刻后,乙车在甲车前面 [答案] A [解析] 判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t 0,t 1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时间段内速度函数的定积

微积分基本定理(17)

1.6 微积分基本定理( 2) 一、【教学目标】 重点:使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分. 难点:利用微积分基本定理求积分;找到被积函数的原函数. 能力点:正确运用基本定理计算简单的定积分. 教育点:通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩 证唯物主义观点,提高理性思维能力. 自主探究点:通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义. 易错点:准确找到被积函数的原函数,积分上限与下限代人求差注意步骤,以免符号出错. 考试点:高考多以填空题出现,以考查定积分的求法和面积的计算为主. 二、【知识梳理】 1. 定积分定义:如果函数() f x在区间[,] a b上连续,用分点 0121- =<<<<<<<= i i n a x x x x x x b,将区间[,] a b等分成n个小区间,在每一个小区间 1 [,] i i x x - 上任取一点(1,2,,) ξ= i i n,作和 1 ()() ξξ = - ?=∑n i i i i b a f x f n ,当n→∞时,上述和式无限接近某个常数,这个常数叫做函数() f x在区间[,] a b上的定积分,记作() b a f x dx ?,即 1 ()lim() n b a i n i b a f x dx f n ξ →∞ = - =∑ ?,这里a、b分别叫做积分的下限与上限,区间[,] a b叫做积分区间,函数() f x叫做被积函数,x叫做积分变量,() f x dx叫做被积式. 2.定积分的几何意义 如果在区间[,] a b上函数连续且恒有()0 f x≥,那么定积分() b a f x dx ?表示由直线, x a x b ==(a b ≠),0 y=和曲线() y f x =所围成的曲边梯形的面积.

定积分及微积分基本定理练习题及答案

1.4定积分与微积分基本定理练习题及答案 1.(2011·一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系是 ( ) A .a2,c =??02sinxdx =- cosx|02=1-cos2∈(1,2), ∴c

定积分及微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

7.微积分基本定理练习题

7、微积分基本定理 一、选择题 1.??0 1(x 2 +2x )d x 等于( ) A.13 B.23 C .1 D.43 2.∫2π π(sin x -cos x )d x 等于( ) A .-3 B .-2 C .-1 D .0 3.自由落体的速率v =gt ,则落体从t =0到t =t 0所走的路程为( ) A.13gt 20 B .gt 2 0 C.12gt 20 D.16gt 20 4.曲线y =cos x ? ????0≤x ≤3π2与坐标轴所围图形的面积是( ) A .4 B .2 C.5 2 D .3 5.如图,阴影部分的面积是( ) A .2 3 B .2- 3 C.323 D.35 3 6.??0 3|x 2-4|d x =( ) A.213 B.223 C.233 D.25 3 7.??241 x d x 等于( ) A .-2ln2 B .2ln2 C .-ln2 D .ln2 8.若??1a ? ?? ??2x +1x d x =3+ln2,则a 等于( ) A .6 B .4 C .3 D .2 9.(2010·山东理,7)由曲线y =x 2 ,y =x 3 围成的封闭图形面积为( ) A.112 B.14 C.13 D.7 12 10.设f (x )=??? ?? x 2 0≤x <12-x 1

11.从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为________. 12.一物体沿直线以v =1+t m/s 的速度运动,该物体运动开始后10s 内所经过的路程是________. 13.求曲线y =sin x 与直线x =-π2,x =5 4π,y =0所围图形的面积为________. 14.若a =??02x 2 d x ,b =??02x 3 d x ,c =??0 2sin x d x ,则a 、b 、c 大小关系是________. 三、解答题 15.求下列定积分: ①??0 2(3x 2+4x 3 )d x ; ② sin 2 x 2 d x . 17.求直线y =2x +3与抛物线y =x 2 所围成的图形的面积. 18.(1)已知f (a )=??0 1(2ax 2 -a 2 x )d x ,求f (a )的最大值; (2)已知f (x )=ax 2 +bx +c (a ≠0),且f (-1)=2,f ′(0)=0,??0 1f (x )d x =-2,求a ,b ,c 的值. DBCDCCDDAC 11. 13 12. 23(1132-1) 13.4-2 2 [解析] 所求面积为 =1+2+? ?? ?? 1-22=4-22. 14.[答案] c

高中数学选修2-2公开课教案16微积分基本定理

1.6 微积分基本定理 一、教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例体会用微积分基本定理求定积分的方法 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二、教学重难点 重点 通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。 难点 了解微积分基本定理的含义 三、教学过程 1、复习: 定积分的概念及用定义计算 2、引入新课 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 变速直线运动中位置函数与速度函数之间的联系 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为 21()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1()T T v t dt ?=12()()S T S T - 而()()S t v t '=。 对于一般函数()f x ,设()()F x f x '=,是否也有

()()()b a f x dx F b F a =-? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。 注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 ()()()b a f x dx F b F a =-? 证明:因为()x Φ=()x a f t dt ?与()F x 都是()f x 的原函数,故 ()F x -()x Φ=C (a x b ≤≤) 其中C 为某一常数。 令x a =得()F a -()a Φ=C ,且()a Φ= ()a a f t dt ?=0 即有C=()F a ,故()F x =()x Φ+()F a ∴ ()x Φ=()F x -()F a =()x a f t dt ? 令x b =,有()()()b a f x dx F b F a =-? 此处并不要求学生理解证明的过程 为了方便起见,还常用()|b a F x 表示()()F b F a -,即 ()()|()()b b a a f x dx F x F b F a ==-? 该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。 它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。 例1.计算下列定积分: (1)2 11dx x ?; (2)3211(2)x dx x -?。 解:(1)因为'1(ln )x x =, 所以22111ln |ln 2ln1ln 2dx x x ==-=?。 (2))因为2''211()2,()x x x x ==-, 所以3332211111(2)2x dx xdx dx x x -=-??? 233111122||(91)(1)33x x =+=-+-=。 练习:计算 120x dx ? 解:由于313 x 是2x 的一个原函数,所以根据牛顿—莱布尼兹公式有 120x dx ?=3101|3x =33111033?-?=13 例2.计算下列定积分:

专题13 定积分与微积分基本定理知识点

考点13 定积分与微积分基本定理 一、定积分 1.曲边梯形的面积 (1)曲边梯形:由直线x =a 、x =b (a ≠b )、y =0和曲线()y f x =所围成的图形称为曲边梯形(如图①). (2)求曲边梯形面积的方法与步骤: ①分割:把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形(如图②); ②近似代替:对每个小曲边梯形“以值代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值(如图②); ③求和:把以近似代替得到的每个小曲边梯形面积的近似值求和; ④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积. 2.求变速直线运动的路程 3.定积分的定义和相关概念 (1)如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0

()d b a f x x ? =1 lim ()n i n i b a f n ξ→∞ =-∑ . (2)在 ()d b a f x x ? 中,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数()f x 叫做被 积函数,x 叫做积分变量,f (x )d x 叫做被积式. 4.定积分的性质 (1)()()d d b b a a kf x x k f x x =??(k 为常数); (2)[()()]d ()d ()d b b b a a a f x g x x f x x g x x ±=±? ??; (3) ()d =()d +()d b c b a a c f x x f x x f x x ? ??(其中a

定积分与微积分基本定理

教学过程

一、课堂导入 问题:什么是定积分?定积分与微积分基本定理是什么? 二、复习预习 1.被积函数若含有绝对值号,应先去绝对值号,再分段积分.

2.若积分式子中有几个不同的参数,则必须先分清谁是被积变量. 3.定积分式子中隐含的条件是积分上限大于积分下限. 4.定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负. 5.将要求面积的图形进行科学而准确的划分,可使面积的求解变得简捷. 三、知识讲解 考点1 定积分的概念 设函数y=f(x)定义在区间[a,b]上用分点a=x0

在每个小区间内任取一点ξi,作和式I n=∑n-1 i=0 f(ξi)Δx i.当λ→0时,如果和式的极限存在,把和式I n的极限叫做函数f(x) 在区间[a,b]上的定积分,记作?b a f(x)d x,即?b a f(x)d x=lim λ→0∑n-1 i=0 f(ξi)Δx i,其中f(x)叫做被积函数,f(x)d x叫做被积式,a 为积分下限,b为积分上限.

(1)?b a kf(x)d x=k?b a f(x)d x (k为常数). (2)?b a[f(x)±g(x)]d x=?b a f(x)d x±?b a g(x)d x. (3)?b a f(x)d x=?c a f(x)d x+?b c f(x)d x (a

定积分与微分基本定理

定积分与微积分基本定理 一、目标与策略 明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数! 学习目标: ● 了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念、几何意义. ● 直观了解微积分基本定理的含义,并能用定理计算简单的定积分. ● 应用定积分解决平面图形的面积、变速直线运动的路程和变力作功等问题,在解决问题的过程中体验定积分的价值. 重点难点: ● 重点:正确计算定积分,利用定积分求面积. ● 难点:定积分的概念,将实际问题化归为定积分问题. 学习策略: ● 运用“以直代曲”、“以不变代变”的思想方法,理解定积分的概念. ● 求定积分主要是要找到被积函数的原函数,也就是说,要找到一个函数,它的导函数等于被积函数. ● 求导运算与求原函数运算互为逆运算. 二、学习与应用 常见基本函数的导数公式 (1)()f x C =(C 为常数),则'()f x = (2)()n f x x =(n 为有理数),则'()f x = (3)()sin f x x =,则'()f x = (4)()cos f x x =,则'()f x = (5)()x f x e =,则'()f x = (6)()x f x a =,则'()f x = “凡事预则立,不预则废”。科学地预习才能使我们上课听讲更有目的性和针对 知识回顾——复习 学习新知识之前,看看你的知识贮备过关了吗?

(7)()ln f x x =,则'()f x = (8)()log a f x x =,则'()f x = 函数四则运算求导法则 设 ()f x ,()g x 均可导 (1)和差的导数:[()()]'f x g x ±= (2)积的导数:[()()]'f x g x ?= (3)商的导数:()[]'() f x g x = (()0g x ≠) 知识点一:定积分的概念 如果函数)(x f 在区间[,]a b 上连续,用分点b x x x x x a n n =<

微积分基本定理 教案

微积分基本定理 一:教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的内容,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二:教学重难点 重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基 本定理的含义,并能正确运用基本定理计算简单的定积分。 难点:了解微积分基本定理的含义 三:教学过程: 1、知识链接: 定积分的概念: 用定义计算的步骤: 2、合作探究: ⑴导数与积分的关系; 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。有没有计算定积分的更直接方法,也是比较一般的方法呢? 下面以变速直线运动中位置函数与速度函数之间的联系为例: 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为2 1()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1()T T v t dt ?=12()()S T S T - 而()()S t v t '=。 说出你的发现 ⑵ 微积分基本定理 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-?? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差

高中数学16微积分基本定理(教案)

三、教学过程 1、复习: 定积分的概念及用定义计算 2、引入新课 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 变速直线运动中位置函数与速度函数之间的联系 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为 2 1 ()T T v t dt ? 。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1 ()T T v t dt ? =12()()S T S T - 而()()S t v t '=。 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算 ()f x 在[,]a b 上的定积分的方法。 注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 ()()()b a f x dx F b F a =-? 证明:因为()x Φ= ()x a f t dt ? 与()F x 都是()f x 的原函数,故 ()F x -()x Φ=C (a x b ≤≤) 其中C 为某一常数。 令x a =得()F a -()a Φ=C ,且()a Φ= ()a a f t dt ? =0 即有C=()F a ,故()F x =()x Φ+()F a ∴ ()x Φ=()F x -()F a =()x a f t dt ? 令x b =,有 ()()()b a f x dx F b F a =-? 此处并不要求学生理解证明的过程 为了方便起见,还常用()|b a F x 表示()()F b F a -,即 ()()|()()b b a a f x dx F x F b F a ==-? 该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求 定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。 它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。

定积分与微积分基本定理

定积分与微积分基本定理 [考纲传真] 1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.2.了解微积分基本定理的含义. 【知识通关】 1.定积分的有关概念与几何意义 (1)定积分的定义 如果函数f (x )在区间[a ,b ]上连续,用分点将区间[a ,b ]等分成n 个小区间,在 每个小区间上任取一点ξi (i =1,2,…,n ),作和式∑n i =1f (ξi )Δx =∑n i =1 b -a n f (ξi ),当n →∞ 时,上述和式无限接近于某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定 积分,记作??a b f (x )d x ,即??a b f (x )d x =lim n →∞∑n i =1 b -a n f (ξi ). 在??a b f (x )d x 中,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. (2)定积分的几何意义 图形 阴影部分面积 S =??a b f (x )d x S =-??a b f (x )d x S =??a c f (x )d x -??c b f (x )d x S =??a b f (x )d x -??a b g(x )d x =??a b [f (x )-g(x )]d x 2.(1)??a b kf (x )d x =k ??a b f (x )d x (k 为常数);

(2)??a b [f 1(x )±f 2(x )]d x =??a b f 1(x )d x ±??a b f 2(x )d x ; (3)??a b f (x )d x =??a c f (x ) d x +??c b f (x )d x (其中a

微分学的基本定理

微分学的基本定理 【费马(Fermat)定理】 若(i)函数)(x f 在0x 点得某一邻域),(0δx O 内有定义,并且在此邻域内恒有 )(x f )(0x f ≤, 或者)(x f )(0x f ≥; (ii)函数)(x f 在0x 点可导, 则有 0)(0='x f 证明我们对)(x f 的情形给出假设证明.由于假设)(0x f '存在,按定义,也就是 +'f (0x )=-'f (0x )=f '(0x ), 另一方面,由于)(x f )(0x f ≤,所以对(δ+00,x x )内的各点x ,有 ≤--0 0)()(x f x f 0;而对(00,x x δ-)内的各点x ,有 0)()(0 0≥--x f x f .再由极限性质得 )(0x f '=+'f (0x )=lim 0+→o x x ≤--00)()(x x x f x f 0,)(0x f '=-'f (0x )=lim 0 -→o x x 0)()(00≥--x x x f x f .而)(0x f '是一个定数,因此它必须等于零,即)(0x f '=0. 对于)(x f )(0x f ≥的情形,也可相仿证明. 这个定理的几何意义是:如果曲线)(x f y =在0x 点具有极大值(也就是函数)(x f 在0x 点的值不小于)(x f 在0x 点近旁的其他点上的值)或者曲线)(x f y =在0x 点具有极小值(也就是函数)(x f 在0x 点的值不大于)(x f 在0x 点近旁的其他点上的值),并且曲线

)(x f y =在0x 点具有切线l ,那么,费马定理就表明了切线l 必为水平线. 【拉格朗日(Lagrange)中值定理】 这个定理也称为微分学的中值定理,它是微分学中的一个很重要的定理. 若函数)(x f 满足 (i) 在[]b a ,连续;(ii)在(b a ,)可导, 则在(b a ,)内至少存在一点ξ,使 )(ξf '=a b a f b f --)()(.这个定理从几何图形上看是很明显的.画出[]b a ,上的一条曲线)(x f y =,连接A,B 两点,作弦AB,它的斜率是 = ?tan a b a f b f --)()(.下面对此定理给以证明. 证明不妨假设)(x f 在[]b a ,上不恒为常数.因为如果)(x f 恒为常数,则0)(='x f 在(b a ,)上处处成立,这时定理的结论是明显的. 由于)(x f 在[]b a ,连续,由闭区间连续函数的性质,)(x f 必在[]b a ,上达到其最大值M 和最小值m,我们分两种情形来证明. (1)考虑特殊情形,)()(b f a f =.由于)(x f 不恒为常数,所以此时必有M >m,且M 和m 中至少有一个不等式.这时根据闭区间上连续函数的性质,在(b a ,)内至少有一点ξ,使得))(()(m f M f ==ξξ或者,于是对(b a ,)内任一点x ,必有 )) ()()(()(ξξf x f f x f ≥≤或于是由费马定理,即得 0)(='ξf . 而此时0)()(=-a f b f ,这就证明了定理成立. 对于这样特殊情况的中值定理,也叫【罗尔(Rolle)定理】. (2)考虑一般情形,)()(b f a f ≠.此时,作辅助函数[] 1

§1.6微积分基本定理

1.6微积分基本定理 一:教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例体会用微积分基本定理求定积分的方法 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二:教学重难点 重点通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。 难点 了解微积分基本定理的含义 三:教学过程: 1、复习: 定积分的概念及用定义计算 2、引入新课 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 变速直线运动中位置函数与速度函数之间的联系 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为 21()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 21()T T v t dt ? =12()()S T S T - 而()()S t v t '=。 对于一般函数()f x ,设()()F x f x '=,是否也有

()()()b a f x dx F b F a =-? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。 注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 ()()()b a f x dx F b F a =-? 证明:因为()x Φ=()x a f t dt ?与()F x 都是()f x 的原函数,故 ()F x -()x Φ=C (a x b ≤≤) 其中C 为某一常数。 令x a =得()F a -()a Φ=C ,且()a Φ= ()a a f t dt ?=0 即有C=()F a ,故()F x =()x Φ+()F a ∴ ()x Φ=()F x -()F a =()x a f t dt ? 令x b =,有()()()b a f x dx F b F a =-? 此处并不要求学生理解证明的过程 为了方便起见,还常用()|b a F x 表示()()F b F a -,即 ()()|()()b b a a f x dx F x F b F a ==-? 该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。 它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。 例1.计算下列定积分: (1)2 11dx x ?; (2)3211(2)x dx x -?。 解:(1)因为'1(ln )x x =, 所以22111ln |ln 2ln1ln 2dx x x ==-=?。 (2))因为2''211()2,()x x x x ==-, 所以3332211111(2)2x dx xdx dx x x -=-??? 233111122||(91)(1)33x x =+=-+-=。 练习:计算 120x dx ? 解:由于313 x 是2x 的一个原函数,所以根据牛顿—莱布尼兹公式有

定积分与微积分基本定理

教学过程 一、课堂导入 问题:什么是定积分?定积分与微积分基本定理是什么?

二、复习预习 1.被积函数若含有绝对值号,应先去绝对值号,再分段积分. 2.若积分式子中有几个不同的参数,则必须先分清谁是被积变量. 3.定积分式子中隐含的条件是积分上限大于积分下限. 4.定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负.5.将要求面积的图形进行科学而准确的划分,可使面积的求解变得简捷.

三、知识讲解 考点1定积分的概念 设函数y=f(x)定义在区间[a,b]上用分点a=x0

考点2定积分的运算性质 (1)?b a kf(x)d x=k?b a f(x)d x (k为常数). (2)?b a[f(x)±g(x)]d x=?b a f(x)d x±?b a g(x)d x. (3)?b a f(x)d x=?c a f(x)d x+?b c f(x)d x (a

微积分基本定理

微积分基本定理(教案)(总4 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

微积分基本定理 一:教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的内容,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二:教学重难点 重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积 分基本定理的含义,并能正确运用基本定理计算简单的定积分。 难点:了解微积分基本定理的含义 三:教学过程: 1、知识链接: 定积分的概念: 用定义计算的步骤: 2、合作探究: ⑴导数与积分的关系; 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。有没有计算定积分的更直接方法,也是比较一般的方法呢? 下面以变速直线运动中位置函数与速度函数之间的联系为例: 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为2 1()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1()T T v t dt ?=12()()S T S T - 而()()S t v t '=。 说出你的发现 ⑵ 微积分基本定理 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-??

定积分与微积分基本定理复习讲义

定积分与微积分基本定理复习讲义 河南省卢氏县第一高级中学山永峰 考 什么怎么考 1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. 2.了解微积分基本定理的含义. 1.考查形式多为选择题或填空题. 2.考查简单定积分的求解. 3.考查曲边梯形面积的求解. 4.与几何概型相结合考查. [归纳·知识整合] 1.定积分 (1)定积分的相关概念:在∫b a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式. (2)定积分的几何意义 ①当函数f(x)在区间[a,b]上恒为正时,定积分∫b a f(x)d x的几何意义是由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分). ②一般情况下,定积分∫b a f(x)d x的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b 之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数. (3)定积分的基本性质:①∫b a kf(x)d x=k∫b a f(x)d x. ②∫b a[f1(x)±f2(x)]d x=∫b a f1(x)d x±∫b a f2(x)d x. ③∫b a f(x)d x=∫c a f(x)d x+∫b c f(x)d x. [探究] 1.若积分变量为t,则∫b a f(x)d x与∫b a f(t)d t是否相等? 提示:相等. 2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗? 提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算. 3.定积分∫b a[f(x)-g(x)]d x(f(x)>g(x))的几何意义是什么? 提示:由直线x=a,x=b和曲线y=f(x),y=g(x)所围成的曲边梯形的面积. 2.微积分基本定理:如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么∫b a f(x)d x

相关主题
文本预览
相关文档 最新文档