当前位置:文档之家› 北科大数理方程 第5章行波法与积分变换法习题答案

北科大数理方程 第5章行波法与积分变换法习题答案

北科大数理方程 第5章行波法与积分变换法习题答案
北科大数理方程 第5章行波法与积分变换法习题答案

积分变换习题解答1-4

1-4 1.证明下列各式: 2)()1f t ()()()()()23123f t f t f t f t f t ???? =????; 6) ()()() ()() ()1 21212 d d d ;d d d f t f t f t f t f t f t t t t ? ?==?? 10)() ()()d t f t u t f ττ-∞ =? 分析:根据卷积的定义证明. 证明: 2) () ()()12 3f t f t f t ????()()()123d f f t f t ττττ+∞ -∞??=--? ? ? ()()()132d f f u f t u du τττ+∞+∞ -∞ -∞??=--???? ? ? ()()()132d d f f u f t u u τττ+∞+∞ -∞-∞=--?? ()()()123 d d f f t u f u u τττ+∞+∞-∞ -∞??=--????? ? ( )()()123d f t u f t u f u u +∞ -∞??=--?? ? ()()()123f t f t f t ??=? ? 6) ()()()()1212d d d d d f t f t f f t t t τττ+∞ -∞??? ?=?-?????? ? ()()()()1212 d d d d d f f t f t f t t t τττ+∞ -∞ ??=?-=??? , ()()()()1212d d d d d f t f t f t f t t τττ+∞ -∞??? ?=-??????? ? ()()()()12 12d d d d d f t f f t f t t t τττ+∞ -∞ ?? =-?=???? ? . 10) ()()()()d f t u t f u t τττ+∞ -∞=-? ()1,0,t u t t τττ?? ???? ?()d t f ττ-∞=?. 2.若()()()()12e ,sin t f t u t f t tu t α-==,求()()12f t f t . 注意:不能随意调换()1f t 和()2f t 的位置.

复变函数与积分变换习题答案

习题六 1. 求映射1 w z = 下,下列曲线的像. (1) 22x y ax += (0a ≠,为实数) 解:2222 11i=+i i x y w u v z x y x y x y ===-+++ 221 x x u x y ax a = ==+, 所以1w z =将22x y ax +=映成直线1u a =. (2) .y kx =(k 为实数) 解: 22221i x y w z x y x y = =-++ 22 2222 x y kx u v x y x y x y = =- =- +++ v ku =- 故1 w z = 将y kx =映成直线v ku =-. 2. 下列区域在指定的映射下映成什么? (1)Im()0, (1i)z w z >=+; 解: (1i)(i )()i(+)w x y x y x y =+?+=-+ ,. 20.u x y v x y u v y =-=+-=-< 所以Im()Re()w w >. 故(1i)w z =+?将Im()0,z >映成Im()Re()w w >. (2) Re(z )>0. 00, 00. Im(w )>0. 若w =u +i v , 则2222 ,u v y x u v u v ==++ 因为0 + 故i w z = 将Re(z )>0, 00,Im(w )>0, 12 12w > (以(12,0)为圆心、 1 2为半径的圆)

研究生数理方程期末试题-10-11-1-A-答案

北京交通大学硕士研究生2010-2011学年第一学期 《数学物理方程》期末试题(A 卷) (参考答案) 学院__________ 专业___________ 学号 __________ 姓名____________ 1、( 10分)试证明:圆锥形枢轴的纵振动方程为: 玫[I h .丿&」V h .丿& 其中E是圆锥体的杨氏模量,「是质量密度,h是圆锥的高(如下图所示) 【提示:已知振动过程中,在x处受力大小为ES ,S为x处截面面积。】 ex 【证明】在圆锥体中任取一小段,截面园的半径分别是r1和r2,如图所示。于是,我们有 2、::u(x dx,t) 2 u(x,t) — 2 u2(x,t) E( D) E( * ) ( A )dx 于 x x t r1 = (h「x)tan : r2= (h _(x dx)) tan : 上式化简后可写成

2 2 ::U(X,t) 2 ::u(x,t) 2, ;u (x,t) E[(h -x) 卜亠 & -(h -'X) 〔x J - - (h -'X)dx 2 从而有 E ::[(^x)2;:U(x ,t)H-(^x)2::u2(x,t) .x :X :t 或成 2 ::[(1「)2汽("]“2(1「)小叩) .x h ::x h ;:t 其中a^E ,证明完毕。 2、 (20分)考虑横截面为矩形的散热片, 它的一边y=b 处于较高温度U ,其它三边y=0. x = 0和x = a 则处于冷却介质中,因而保持较低的温度 u o 。试求该截面上的稳定温度 分布u(x,y),即求解以下定解问题: u|y 卫二 %, u|y 生二 U, 0 x a. 【提示:可以令u(x, y)二u 0 v(x, y),然后再用分离变量方法求解。】 【解】令u(x, y) v(x, y),则原定解问题变为 Wl x£=0, V=0, 0cy

数理方程期末考试试题

2013-2014学年度第二学期数理方程(B )期末考试试题 考后回忆版本 一、求下列偏微分方程的通解),(y x u u =(16分) (1)y x y x u 22=???(2)xy x u y x u y =??+???2二、求下列固有之问题的解。要求明确指出固有值及其所对应的固有函数(10分) ?????=′+∞<<<=+′+′′.0)2(,)0()20(,022y y x y x y x y x λ三、求第一象限}0,0|),{(2 >>∈=y x R y x D 的第一边值问题的Green 函数。(12分) 四、用积分变换法求解下列方程。(12分)???=>+∞<<<=).21(),0(,)(),0(. 1)1,(,0)0,()0,10(,4x x u x x x u t u t u t x u u t xx tt δ?七、用分离变量法求解下列方程。(15分) ?????=<++=++=++0|)1(,1 222222z y x zz yy xx u z y x z u u u 八、求解下列定解问题。(5分) ?????==>+∞<

积分变换习题解答2-3

2-3 1.设()()12,f t f t 均满足Laplace 变换存在定理的条件(若它们的增长指数均为c ),且()()()()1212,f t f t F s F s ????==????L L ,则乘积()()12f t f t ?的Laplace 变换一定存在,且 ()()()()j 1122j 1d 2πj F q F s q q f t f t ββ+∞ -∞??=-????L 其中(),Re .c s c ββ>>+ 证明: 已知()()12,f t f t 均满足Laplace 变换存在定理的条件且其增长指数均为c ,由Laplace 变换存在定理知()()12f t f t ?也满足Laplace 变换存在定理的条件且 ()()()()1212e e ct ct f t f t f t f t M M ?=?≤?22e ,0ct M t =≤<+∞ 表明()()12f t f t ?的增长指数为2c .因此()()12f t f t ?的Laplace 变换 ()()()120 e d st F s f t f t t +∞ -=? 在半平面()Re 2s c >上一定存在,且右端积分在()()Re s c c ββ≥+>上绝对且一致收敛,并且在()Re 2s c >的半平面内,()F s 为解析函数. 根据()()11F f t s ??=??L ,则()1f t 的Laplace 反演积分公式为 ()()11j j 1e d 2πj qt q f F q t ββ+∞-∞= ? 从而 ()()()()12120 e d st f t f t f t f t t +∞ -????=??L ()()j 120 j e d 1e d 2πj q s t t F q q f t t ββ+∞+--∞∞ ??=???? ?? (交换积分次序)()()()1j 0j 2e 12πj d d s q t F q f t t q ββ++∞-∞ ∞--??=?????? ()()j 12j 1d 2πj F q F s q q ββ+∞ -∞= -? 2.求下列函数的Laplace 逆变换(象原函数);并用另一种方法加以验证.

研究生数理方程期末试题10111A答案

《数学物理方程》期末试题(A 卷) (参考答案) 学院 专业 学号 姓名 1、 (10分)试证明:圆锥形枢轴的纵振动方程为: 其中E 是圆锥体的杨氏模量,ρ是质量密度,h 是圆锥的高(如下图所示): 【提示:已知振动过程中,在x 处受力大小为u ES x ??,S 为x 处截面面积。】 【证明】在圆锥体中任取一小段,截面园的半径分别是1r 和2r ,如图所示。于是,我们有 上式化简后可写成 从而有 或成 其中2 E a ρ = ,证明完毕。 2、 (20分)考虑横截面为矩形的散热片,它的一边y b =处于较高温度U ,其它三边0y =, 0x =和x a =则处于冷却介质中,因而保持较低的温度0u 。试求该截面上的稳定温度 分布(,)u x y ,即求解以下定解问题: 【提示:可以令0(,)(,)u x y u v x y =+,然后再用分离变量方法求解。】 【解】令0(,)(,)u x y u v x y =+,则原定解问题变为 分离变量:

代入方程得到关于X 和Y 的常微分方程以及关于X 的定解条件: 可以判定,特征值 特征函数 利用特征值n λ可以求得 于是求得特征解 形式解为 由边界条件,有 得到 解得 最后得到原定解问题的解是 3、 (20分)试用行波法求解下列二维半无界问题 【解】方程两端对x 求积分,得 也即 对y 求积分,得 也即 由初始条件得 也即 再取0x =,于是又有 从而得 于是 将这里的()g x 和()h y 代入(,)u x y 的表达式中,即得 4、 (20分)用积分变换法及性质,求解无界弦的自由振动问题: 【提示:可利用逆Fourier 积分变换公式:11 ,||sin []20, ||x at a t F a a x at ωω-?

北京科技大学参考书目

北京科技大学参考书目│ ├────────────────────────────────────────┤ │070205凝聚态物理: 226量子力学:《量子力学》上册科学出版社曾谨言│ │《量子力学教程》高等教育出版社周世勋 │ │228统计物理:《热力学与统计物理》高等教育出版社汪志成 │ │《统计物理学》高等教育出版社熊吟涛 │ │332固体物理:《固体物理学》上、下册上海科技出版社方俊鑫、陆栋│ │《固体物理学》高等教育出版社黄昆、韩汝琦 │ │《固体物理导论》科学出版社基特尔(杨顺华译) │ │333金属物理:《金属物理》冶金工业出版社余宗森、田中卓 │ │同等学力加试:原子物理《原子物理学》高等教育出版社杨福家 │

│《原子物理学》高等教育出版社褚圣林 │ │理论力学《理论力学》高等教育出版社胡慧玲 │ │ │ │071200科学技术史: 219物理化学:《物理化学》冶金工业出版社蔡文娟1994 │ │254考古学通论:《中国考古学通论》河南大学出版社孙英民.李友谋主编2002年│ │《中国考古学:实践、理论、方法》中州古籍出版社张忠培1992年 │ │262科学技术哲学:《西方科学哲学》南京大学出版社夏基松、沈斐凤1987年│ │《科学哲学教程》山西科学出版社郭贵春2000年 │ │267文物保护学:《岩土文物建筑的保护》中国建筑工业出版社黄克忠1998年│ │《文物保存环境概论》科学出版社郭宏2001年9月 │ │《文物保护材料学》西北大学出版社王薏贞1995年 │

│334金属学及热处理:《金属学》冶金工业出版社宋维锡 │ │337金属腐蚀学:《金属腐蚀学》冶金工业出版社朱日彰 │ │395科学技术史:《科学史》广西师范大学丹皮尔2001 │ │《历史上的科学》科学出版社贝尔纳着伍况甫译1983 │ │《20世纪科学技术简史(第二版)》科学出版社李佩珊、许良英1999 │ │同等学力加试:科技文献导读无 │ │科学社会学《科学的社会功能》商务印书馆贝尔纳1982 │ │ │ │080104工程力学: 212弹性力学:《弹性力学》人民教育出版社徐 芝纶主编│ │213工程地质学:《工程地质学》地质出版社胡广韬.杨文元主编 │ │250炸药化学:《爆炸化学》国防工业出版社张熙和.云主惠主编 │

复变函数与积分变换课后习题答案详解

复变函数与积分变换 (修订版)主编:马柏林 (复旦大学出版社) ——课后习题答案

习题一 1. 用复数的代数形式a +ib 表示下列复数 π/43513 ; ;(2)(43);711i i e i i i i i -++++ ++. ①解i 4 πππe cos isin 44-??????=-+- ? ? ? ??? ?? ?? ②解: ()()()() 35i 17i 35i 1613i 7i 1 1+7i 17i 2525 +-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 13 35=i i i 1i 222 -+-+=-+ 2.求下列各复数的实部和虚部(z =x +iy ) (z a a z a -∈+ ); 33 3;;;.n z i ① :∵设z =x +iy 则 ()()()()()()()22 i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-????+--+-????===+++++++ ∴ ()222 2 2 Re z a x a y z a x a y ---??= ?+??++, ()22 2Im z a xy z a x a y -?? = ?+??++. ②解: 设z =x +iy ∵ ()()()()() ()()()3 2 322222222 3223i i i 2i i 22i 33i z x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++??=--+-+??=-+- ∴ ()332 Re 3z x xy =-, ()323Im 3z x y y =-. ③解: ∵ (( )( ){ }3 3 2 3 2 111313188-+? ???== --?-?+?-????? ? ?? ?? ()1 80i 18 = += ∴Re 1=?? , Im 0=?? . ④解: ∵ () ( )(( )2 3 3 2 3 13131i 8 ??--?-?+?-???? =?? ()1 80i 18 = += ∴Re 1 =? ? , Im 0=? ? . ⑤解: ∵()()1,2i 211i, k n k n k k n k ?-=? =∈?=+-???¢. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当 21n k =+时, ()Re i 0 n =, ()()Im i 1k n =-. 3.求下列复数的模和共轭复数 12;3;(2)(32); .2 i i i i +-+-++ ①解:2i -+= 2i 2i -+=-- ②解:33-= 33-=- ③解:()( )2i 32i 2i 32i ++=++= ()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+?+=-?-=- ④解: 1i 1i 22++== ()1i 11i 222i ++-??== ??? 4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+,

数理方程期末试题B答案

北 京 交 通 大 学 2007-2008学年第二学期《数理方程与特殊函数》期末考试试卷(B ) (参考答案) 学院_ ____________ 专业___________________ 班级________ ____ 学号_______________ 姓名___________ __ 一、 计算题(共80分,每题16分) 1. 求下列定解问题(15分) 2. 用积分变换法及性质,求解半无界弦的自由振动问题:(15分) 3. 设弦的两端固定于0x =及x l =,弦的出示位移如下图所示。初速度为零,又没有外力 作用。求弦做横向振动时的位移(,)u x t 。 [ 解 ] 问题的定解条件是 由初始条件可得 4. 证明在变换, x at x at ξη=-=+下,波动方程xx tt u a u 2=具有形式解0=n u ξ,并由此求 出波动方程的通解。 5. 用分离变量法解下列定解问题 [ 提示:1) 可以直接给出问题的固有函数,不必推导;2) 利用参数变易法。] [ 解 ] 对应齐次方程的定解问题的固有函数是x l n π sin ,其解可以表示成 把原问题中非齐次项t x t x f l a l π π22sin sin ),(=按照固有函数展开成级数 因此有 利用参数变易法,有 于是 6. 用Bessel 函数法求解下面定解问题 [ 解 ] 用分离变量法求解。令)()(),(t T R t u ρρ=,则可得

以及 设0ρβλn n = 为Bessel 函数)(0x J 的正零点,则问题(II )的特征值和特征函数分别为 问题(I )的解为 于是原问题的解是 由初始条件 得到 故 于是最后得到原问题的解是 二、 证明题(共2分,每题10分) 7. 证明平面上的Green 公式 其中C 是区域D 的边界曲线,ds 是弧长微分。 [证明] 设),(),,(y x Q y x p 在D+C 上有一阶连续偏导数,n 为C 的外法线方向,其方向余弦为βαcos ,cos ,则有 再设u,v 在D 内有二阶连续偏导数,在D+C 上有一阶连续偏导数,令 得到 交换u,v ,得到 上面第二式减去第一式,得到 证毕。 8. 证明关于Bessel 函数的等式:

(完整版)复变函数与积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。 (1) i 解:2 cos sin 2 2 i i e i ππ π ==+ (2) -1 解:1cos sin i e i πππ-==+ (3) 1+ 解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解: 2221cos sin 2sin 2sin cos 2sin (sin cos )2 2 2 2 22 2sin cos()sin()2sin 222222 i i i i i e παα α α α α α αααπαπαα?? - ??? -+=+=+? ?=-+-= ??? (5) 3z 解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e + 解:()1cos1sin1i i e ee e i +==+ (7) 11i i -+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++ 二、计算下列数值 (1) 解: 1ar 21ar 21ar 2 b i ctg k a b i ctg a b i ctg a π?? + ??? = =??=??? (2) 解:6 2263634632 22i k i i i i e i e e e i πππππππ?? ??++ ? ??? ????+ ????=+????====-+? ??=-?

(3) i i 解:( )2222i i k k i i e e ππππ???? +-+ ? ??? ?? == (4) 解:( ) 1/2222i i k k e e ππππ???? ++ ? ??? ?? == (5) cos5α 解:由于:()()5 5 2cos5i i e e ααα-+=, 而: ()()()() ()()()() 5 5 5 55 5 5 5 55 cos sin cos sin cos sin cos sin n n i n n n n i n n e i C i e i C i αααααααααα-=--==+==-=-∑∑ 所以: ()()()()()()()()()()() 5555055550 4 3 2 5 3 543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n n n n n n n n n C i i C i i C i ααααααααααααααααα --=--=?? =+-????=+-??=++=-+∑∑ (6) sin5α 解:由于:()() 5 5 2sin 5i i e e ααα--=, 所以: ()()()()()()()()()()() () 5555055550 5234 245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n n n n n n n n n C i i i C i i i C i C i i ααααααααααααααααα --=--=?? =--? ??? =--??=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:

复变函数与积分变换(修订版复旦大学)课后的第三章习题答案

习题三 1. 计算积分2 ()d C x y ix z -+?,其中C 为从原点到点1+i 的直线段. 解 设直线段的方程为y x =,则z x ix =+. 01x ≤≤ 故 ()()1 22 1 23 1 0()1 1 (1)(1)(1)333C x y ix dz x y ix d x ix i i ix i dx i i x i -+=-++-=+=+?=+=?? ? 2. 计算积分(1)d C z z -?,其中积分路径C 为 (1) 从点0到点1+i 的直线段; (2) 沿抛物线y=x2,从点0到点1+i 的弧段. 解 (1)设z x ix =+. 01x ≤≤ ()()1 11()C z dz x ix d x ix i -=-++=?? (2)设2 z x ix =+. 01x ≤≤ ()()1 22 211()3 C i z dz x ix d x ix -=-++=?? 3. 计算积分d C z z ?,其中积分路径C 为 (1) 从点-i 到点i 的直线段; (2) 沿单位圆周|z|=1的左半圆周,从点-i 到点i; (3) 沿单位圆周|z|=1的右半圆周,从点-i 到点i. 解 (1)设z iy =. 11y -≤≤ 11 1 1 C z dz ydiy i ydy i --===??? (2)设i z e θ =. θ从32π到2π 22 332 2 12i i C z dz de i de i π π θ θππ===???

(3) 设i z e θ =. θ从32π到2π 2 32 12i C z dz de i π θ π==?? 6. 计算积分()sin z C z e z dz -???,其中C 为0 z a =>. 解 ()sin sin z z C C C z e z dz z dz e zdz -?=-????蜒 ? ∵sin z e z ?在z a =所围的区域内解析 ∴sin 0z C e zdz ?=?? 从而 ()20 22 sin 0 z i C C i z e z dz z dz adae a i e d π θ π θθ-?====?? ??蜒 故()sin 0 z C z e z dz -?=?? 7. 计算积分2 1 (1) C dz z z +??,其中积分路径C 为 (1)11:2 C z = (2) 23 :2 C z = (3) 31:2 C z i += (4) 43:2 C z i -= 解:(1)在 1 2 z = 所围的区域内, 21 (1)z z +只有一个奇点0z =. 12 1 11111 ()2002(1) 22C C dz dz i i z z z z i z i ππ= -?-?=--=+-+?? 蜒(2)在2C 所围的区域内包含三个奇点 0,z z i ==±.故 22 1 11111()20(1) 22C C dz dz i i i z z z z i z i πππ= -?-?=--=+-+?? 蜒(3)在2C 所围的区域内包含一个奇点 z i =-,故 32 1 11111()00(1) 22C C dz dz i i z z z z i z i ππ= -?-?=--=-+-+??蜒(4)在4C 所围的区域内包含两个奇点 0,z z i ==,故

复变函数与积分变换第五版习题解答

复变函数与积分变换第五版答案 目录 练 习 一...............................1 练 习 二...............................3 练 习 三...............................5 练 习 四...............................8 练 习 五..............................13 练 习 六..............................16 练 习 七..............................18 练 习 八..............................21 练 习 九 (24) 练 习 一 1.求下列各复数的实部、虚部、模与幅角。 (1)i i i i 524321-- --; 解:i i i i 524321---- = i 2582516+ z k k Argz z z z ∈+== = = π22 1 arctan 25 5825 8Im 25 16 Re (2)3 ) 231(i + 解: 3) 231(i + z k k Argz z z z e i i ∈+===-=-==+=π ππ π π 210Im 1Re 1 ][)3 sin 3(cos 333 2.将下列复数写成三角表示式。 1)i 31- 解:i 31-

)35sin 35(cos 2ππi += (2)i i +12 解:i i +12 )4 sin 4(cos 21π π i i +=+= 3.利用复数的三角表示计算下列各式。 (1)i i 2332++- 解:i i 2332++- 2sin 2 cos π π i i +== (2)4 22i +- 解:4 22i +-4 1 )]43sin 43(cos 22[ππi += 3,2,1,0] 1683sin 1683[cos 2]424/3sin ]424/3[cos 283 8 3 =+++=+++=k k i k k i k ππππππ 4..设 321,,z z z 三点适合条件:321z z z ++=0,,1321===z z z 321,,z z z 是内接于单位 圆z =1的一个正三角形的项点。 证:因,1321===z z z 所以321,,z z z 都在圆周 32z z ++=0 则, 321z z z -=+1321=-=+z z z ,所以21z z +也在圆周1=z 上,又 ,12121==-+z z z z 所以以0,211,z z z +为顶点的三角形是正三角形,所以向量

复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版-习题1

习题一 1. 用复数的代数形式a +ib 表示下列复数 π/43513 ; ;(2)(43);711i i e i i i i i -++++ ++. ①解: i 4 πππe cos isin 44-?????? =-+-=+= ? ? ? ??????? ②解: ()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525 +-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222 -+-+=-+ 2.求下列各复数的实部和虚部(z =x +iy ) (z a a z a -∈+ ); 33 311;;;.22n z i ??-+-- ???? ①解: ∵设z =x +iy 则 ()()()()()()()2 2 i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-????+--+-????===+++++++ ∴()222 22Re z a x a y z a x a y ---??= ?+??++, ()2 2 2Im z a xy z a x a y -?? = ?+??++. ②解: 设z =x +iy ∵()()()()()()()()3 2 322222222 3223i i i 2i i 22i 33i z x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++??=--+-+??=-+- ∴() 332Re 3z x xy =-, ()323Im 3z x y y =-. ③解: ∵( ( )( ){ } 3 3 2 3 2 11 131318 8 -+????==--?-?+?-????? ?? ??? ()1 80i 18 = +=

积分变换习题解答2-2

2-2 1.求下列函数的Laplace 变换式: 1)()232f t t t =++. 解:由[]2 132!1232132m m m t s s s s s t t +????==++=++???? 及有L L L . 2)()1e t f t t =-. 解 :[]() () 11 11 ,e e t t t t t s s s s --????= ==- ????2 2 2+1-1L L ,L 1-. 3)()()2 1e t f t t =-. 解: ()22-1e e 2e e t t t t t t t ????=-+???? L L () () () 2 3 2 3 2 2 145 .-1-1-1s s s s s s -+= - + = -1 5)()cos f t t at =. 解: 由微分性质有: [][]() 2 2 2 222 2 d d cos cos d d s s a t at at s s s a s a -?? =-=-= ? +?? +L L 6) ()5sin 23cos 2f t t t =- 解:已知[][]2 2 2 2 sin ,cos s t t s s ω ωωω ω= = ++L L ,则 []52 2 222103sin 23cos 25 34 4 4 s t t s s s --=-= +++L 8)()4e cos 4t f t t -=. 解: 由[]2 cos 416 t s +s = L 及位移性质有 42cos 4416 e t s t s -??=??++4(+)L . 3.若()()f t F s ??=??L ,证明(象函数的微分性质):

复变函数与积分变换 复旦大学出版社 习题六答案

习题六 1. 求映射1w z = 下,下列曲线的像. (1) 22x y ax += (0a ≠,为实数) 解:2 2 2 2 11i=+i i x y w u v z x y x y x y == = - +++ 2 2 1x x u x y ax a = == +, 所以1w z = 将22x y ax +=映成直线1u a =. (2) .y kx =(k 为实数) 解: 2 2 2 2 1i x y w z x y x y = =- ++ 2 22 2 2 2 x y kx u v x y x y x y = =- =- +++ v ku =- 故1w z = 将y kx =映成直线v ku =-. 2. 下列区域在指定的映射下映成什么? (1)Im()0, (1i)z w z >=+; 解: (1i)(i )()i(+)w x y x y x y =+?+=-+ ,. 20.u x y v x y u v y =-=+-=-< 所以Im()Re()w w >. 故(1i)w z =+?将Im()0,z >映成Im()Re()w w >. (2) Re(z )>0. 00, 00. Im(w )>0. 若w =u +i v , 则 2 2 2 2 ,u v y x u v u v = = ++ 因为0 + 故i w z = 将Re(z )>0, 00,Im(w )>0, 12 12 w > (以(12 ,0)为圆心、12 为半径的圆) 3. 求w =z 2在z =i 处的伸缩率和旋转角,问w =z 2将经过点z =i 且平行于实轴正向的曲线的切线方向映成w 平面上哪一个方向?并作图.

第三章-行波法与积分变换法Word版

第三章 行波法与积分变换法 分离变量法,它是求解有限区域内定解问题常用的一种方法。 行波法,是一种针对无界域的一维波动方程的求解方法。 积分变换法,一个无界域上不受方程类型限制的方法。 §3.1 一维波动方程的达朗贝尔(D ’alembert )公式 一、达朗贝尔公式 考察如下Cauchy 问题: .- ),(u ),(u 0, ,- ,0t 02 2 222+∞<<∞==>+∞<<∞??=??==x x x t x x u a t u t t ψ? (1) 作如下代换; ? ? ?-=+=at x at x ηξ, (2) 利用复合函数求导法则可得 22 2 2 2 22 2))((,ηηξξηξηξη ξηηξξ??+???+??=??+????+??=????+??=????+????=??u u u u u x u u u x u x u x u 同理可得 ),2(2 2222222ηηξξ ??+???-??=??u u u a t u 代入(1)可得 η ξ???u 2=0。 先对η求积分,再对ξ求积分,可得),(t x u d 的一般形式 )()()()(),(at x G at x F G F t x u -++=+=ηξ 这里G F ,为二阶连续可微的函数。再由初始条件可知

). ()()(),()()(' ' x x aG x aF x x G x F ψ?=-=+ (3) 由(3)第二式积分可得 C dt t a x G x F x += -?0)(1)()(ψ, 利用(3)第一式可得 .2 )(21)(21)(,2 )(21)(21)(00C dt t a x x G C dt t a x x F x x --=++=??ψ?ψ? 所以,我们有 ?+-+-++=at x at x dt t a at x at x t x u )(21)]()([21),(ψ?? (4) 此式称为无限弦长自由振动的达朗贝尔公式。 二、特征方程、特征线及其应用 考虑一般的二阶偏微分方程 02=+++++Fu Eu Du Cu Bu Au y x yy xy xx 称下常微分方程为其特征方程 0)(2)(22=+-dx C Bdxdy dy A 。 由前面讨论知道,直线常数=±at x 为波动方程对应特征方程的积分曲线,称为特征线。已知,左行波)(at x F +在特征线1C at x =+上取值为常数值)(1C F ,右行波)(at x G -在特征线2C at x =-上取值为常数值)(2C G ,且这两个值随着特征线的移动而变化,实际上,波是沿着特征线方向传播的。称变换(2)为特征变换,因此行波法又称特征线法。 注:此方法可以推广的其他类型的问题。 三、公式的物理意义 由 )()(),(at x G at x F t x u -++= 其中)(at x F +表示一个沿x 轴负方向传播的行波, )(at x G -表示一个沿x 轴正方向传播的行波。达朗贝尔公式表明:弦上的任意扰动总是以行波形式分别向两个 方向传播出去,其传播速度为a 。因此此法称为行波法。

积分变换课后答案

1-1 1. 试证:若 ()f t 满足Fourier 积分定理中的条件,则有 ()()()d d 0 cos sin f t a t b t ωωωωωω+∞+∞ =+? ? 其中()()()()d d ππ11cos ,sin .a f b f ωτωττωτωττ+∞+∞ -∞-∞ ==?? 分析:由Fourier 积分的复数形式和三角形式都可以证明此题,请读者试 用三角形式证明. 证明:利用Fourier 积分的复数形式,有 ()()j j e e d π12t t f t f ωωτω+∞+∞--∞-∞??= ? ????? ()()j j d e d π11cos sin 2t f ωτωτωττω+∞+∞-∞-∞??=-???? ?? ()()()j j d 1cos sin 2 a b t t ωωωωω+∞ -∞??= -+??? 由于()()()(),,a a b b ωωωω=-=--所以 ()()()d d 11cos sin 22 f t a t b t ωωωωωω+∞+∞-∞-∞= +?? ()()d d 0 cos sin a t b t ωωωωωω+∞+∞ =+? ? 2.求下列函数的Fourier 积分: 1)()22 21,10,1t t f t t ?-≤?=?>??; 2) ()0, 0;e sin 2,0 t t f t t t -???为连续的偶函数,其Fourier 变换为 j 21()[()]()e d 2()cos d 2(1)cos d 00t F f t f t t f t t t t t t ωωωω-+∞ +∞?====-?-∞ ???F

复变函数与积分变换课后习题答案详解

… 复变函数与积分变换 (修订版)主编:马柏林 (复旦大学出版社) / ——课后习题答案

习题一 1. 用复数的代数形式a +ib 表示下列复数 π/43513 ; ;(2)(43);711i i e i i i i i -++++ ++. ①解i 4 πππ2222e cos isin i i 44-??????=-+-= +-=- ? ? ? ??? ?? ?? ②解: ()()()() 35i 17i 35i 1613i 7i 1 1+7i 17i 2525 +-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 13 35=i i i 1i 222 -+-+=-+ 2.求下列各复数的实部和虚部(z =x +iy ) (z a a z a -∈+); 3 3 31313;;;.n i i z i ???? -+-- ? ? ① :∵设z =x +iy 则 ()()()()()()()22 i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-????+--+-????===+++++++ ∴ ()222 2 2 Re z a x a y z a x a y ---??= ?+??++, ()22 2Im z a xy z a x a y -?? = ?+??++. ②解: 设z =x +iy ∵ ()()()()() ()()()3 2 3 2 2 222222 3223i i i 2i i 22i 33i z x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++??=--+-+??=-+- ∴ ()332 Re 3z x xy =-, ()323Im 3z x y y =-. ③解: ∵ () ()()()(){ }3 3 2 3 2 1i 31i 311313313388-+??-+? ???== --?-?+?-?- ? ?????? ? ?? ?? ()1 80i 18 = += ∴1i 3Re 1?? -+= ? ??? , 1i 3Im 0??-+= ? ???. ④解: ∵ () ()() ()()2 3 3 23 1313 3133i 1i 38 ??--?-?-+?-?- ?? ??-+? ? = ? ??? ()1 80i 18 = += ∴1i 3Re 1??-+= ? ?? ? , 1i 3Im 0??-+= ? ??? . ⑤解: ∵()()1, 2i 211i, k n k n k k n k ?-=?=∈?=+-???. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当 21n k =+时, ()Re i 0 n =, ()()Im i 1k n =-. 3.求下列复数的模和共轭复数 12;3;(2)(32); .2 i i i i +-+-++ ①解:2i 415-+=+=. 2i 2i -+=-- ②解:33-= 33-=- ③解:()()2i 32i 2i 32i 51365++=++=?=. ()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+?+=-?-=- ④解: 1i 1i 2 22++== ()1i 11i 222i ++-??= = ??? 4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+, 则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数. 若z =x ,x ∈,则z x x ==.

相关主题
文本预览
相关文档 最新文档