当前位置:文档之家› 药代动力学

药代动力学

药代动力学代表计算题

计算题(Calculation questions ) 1.某患者单次静脉注射某单室模型药物2g ,测得不同时间的血药浓度结果如下: 时间(h) 1.0 2.0 3.0 4.0 5.0 6.0 8.0 10.0 血药浓度(mg/ml) 0.28 0.24 0.21 0.18 0.16 0.14 0.1 0.08 求k ,Cl ,T 1/2,C 0,V ,AUC 和14h 的血药浓度。 【解】对于单室模型药物静脉注射 kt 0e C C -=,t 303 .2k C log C log 0- = log C 对t 作直线回归(注:以下各题直线回归均使用计算器或计算机处理),得: a = 0.4954, b = -0.0610,|r | = 0.999(说明相关性很好) 将a 、b 代入公式0C log 303 .2kt C log +-= 得回归方程: 4954.0t 061.0C log --= ① 1h 1405.0)061.0(303.2b 303.2k -=-?-=?-= ② h 9323.41405 .0693 .0k 693.0T 2/1=== ③ mg/ml 3196.0)4954.0(log C 10=-=- ④ 6.258L ml)(62583196 .02000C X V 00==== ⑤ L/h 8792.0258.61405.0kV Cl =?== ⑥ )(mg/ml h 2747.21405 .03196.0k C AUC 00 ?=== ∞ ⑦ 3495.14954.014061.0C log -=-?-= g/ml 44.7mg/ml)(0477.0C μ== 即14h 的血药浓度为g/ml 44.7μ。 2.某患者单次静脉注射某药1000mg ,定期测得尿药量如下: 时间(h) 1 2 3 6 12 24 36 48 60 72 每次尿药量(mg) 4.02 3.75 3.49 9.15 13.47 14.75 6.42 2.79 1.22 0.52 设此药属一室模型,表观分布容积30L ,用速度法求k ,T 1/2,k e ,Cl r ,并求出80h 的累积药量。 【解】单室模型静脉注射尿药数据符合方程0e c u X k log 303 .2kt t X log +-=??, t X log u ??对c t 作图应为一直线。根据所给数据列表如下: t (h) 1 2 3 6 12 t ? 1 1 1 3 6

药代动力学论文

药物代谢动力学的研究 摘要:超高效液相色谱(UPLC)和PBPK模型在药物代谢动力学研究发挥的重要的作用。UPLC是一种柱效高、发展前景好的液相色谱技术,是一种基于机制的数学模型;PBPK用于模拟化学物质在体内的分布代谢更方面对药物动力学的研究。药物代谢动力学的更深研究在药物研发中起到了重要意义及作用。 关键词:药物代谢动力学UPLC PBPK模型药物研发 Abstract: the high performance liquid chromatography (UPLC) and PBPK model in the study of the pharmacokinetic play an important role. UPLC is a column efficiency high, the prospects of the development of good performance liquid chromatography, is based on a mathematical model of the mechanism; PBPK used for simulation of the chemical substances in the body of metabolic distributed more medicine dynamics research. The pharmacokinetic deeper in drug development research has important significance and role. Keywords: Pharmacokinetic UPLC PBPK model Drug development 前言:动力学的基本理论和方法已经渗透到生物药剂学,药物治疗学,临床药理学及毒理学等多学科领域中。药物代谢动力学是应用数学处理方法,定量描述药物及其他外源性物质在体内的动态变化规律,研究机体对药物吸收、分布、代谢和排泄等的处置以及所产生的药理学和毒理学意义;并且探讨药物代谢转化途径,确证代谢产物结构,研究代谢产物的药效或毒性;提供药物效应和毒性的靶器官,阐明药效或毒性的物质基础,弄清药物疗效和毒性与药物浓度的关系[1]。 1、药物动力学的研究进展 1.1 群体药物动力学 群体药物动力学是研究药物动力学群体参数的估算,药物动力学参数群体值不仅是临床用药所必需,而且有可能成为新药评价的一个必备参数。药物动力学参数群体值的估算有两种方法,一种是传统的二步法,另一种是近年来发展的一步法。后者亦名Nonmen程序法,它把药物动力学参数在患者身上的自身变异及患者间的变异全估算在内。根据变异值的大小也可预估一些生理、病理因素对药物动力学参数的影响。因而更具优越性,在个体化给药中,Nonmen常与Bayesian反馈法结合使用。 1.2 时辰药物动力学 时辰药物动力学是指同一剂量在l天内不同时间给予时药物处置出现显著变异。如多数脂溶性药物的吸收,清晨比傍晚吸收更佳,另外象单硝酸异山梨酯在清晨服用时所导致的体位性低血压最为明显,同时达峰时间也较其他时间给药为短。一些疾病并非1天24小时机体均需要同等水平的药物,如心脏病患者在凌晨发病较多,若制成脉冲式给药,可产生预防作用;相反,如药物浓度始终维持在同一水平却容易带来耐药性,例如硝酸甘油和许多抗菌素类药物;再如只有当血浆中糖分较高时才需要较高的胰岛素。人们开始研究能够自动感知血糖水平,以调节胰岛素释放速率的智能给药装置。

药代动力学参数

一、吸收 溶出度:药物分子在消化道中溶解的程度 生物利用度:药物吸收的程度 绝对生物利用度 最大血药浓度(Cmax) 达峰时间(Tmax) 二、分布 由于体内环境的非均一性(血液、组织),导致药物浓度变化的速度不同。 隔室(compartment):同一隔室药物浓度的变化速度相同,均相。 一室模型:药物进入血液迅速分布全身,并不断被清除。 二室模型: 药物进入体内后,首先快速分布于组织中,然后进入较慢的消除过程。 表观分布体积(Vd)(aparent volume of distribution):表征药物在体内被组织摄取的能力。表观容积大的药物体内存留时间较长。 药物浓度-时间曲线下面积(AUC);系统药物暴露(Systemic Exposure) 血脑屏障;蛋白结合率;分布半衰期(t 1/2(α) 三、消除 消除(elimination):原药在体内消失的过程。包括肾(尿)或胆汁(粪)或呼吸排泄及代谢转化的总和。

消除速率常数(elimination constants):反映药物在体内消失的快慢。不完全反映药物的作用时间(代谢物也有活性)。 半寿期或半衰期(t1/2):药物浓度或药量降低50%所需的时间。消除半衰期t1/2(β))Terminal Half-life ,Elimination Half-life。 清除率(clearance,廓清率)或肾清除率(renal clearance):反映药物或代谢物经肾被排出体外的速度。 一方面是药物对机体的作用,产生药效、毒性或副作用,表现为药物的药理作用或毒理作用,决定于特定的化学结构,具有较强的结构特异性。 另一方面是机体对药物的作用:吸收、分布,生物转化和排泄,表现为药物的药代动力学性质。主要取决于药物的溶解性、脂水分配系数、电荷等药物分子整体的理化性质,结构特异性不强。 药物的吸收是药物由给药部位通过生物膜进入血液循环的过程。 吸收部位 消化道(口服给药,口腔、胃、小肠、大肠)、呼吸道(鼻腔给药,肺)、肌肉(肌肉注射)、粘膜(栓剂)。 吸收部位不同,药物被吸收的程度和快慢,有差异(静注、肌注;皮下给药,口服。) 共性:药物是通过生物膜吸收的。 吸收过程 扩散

(完整版)药物非临床药代动力学研究技术指导原则

附件5 药物非临床药代动力学研究技术指导原则 一、概述 非临床药代动力学研究是通过体外和动物体内的研究方法,揭示药物在体内的动态变化规律,获得药物的基本药代动力学参数,阐明药物的吸收、分布、代谢和排泄(Absorption, Distribution, Metabolism, Excretion, 简称ADME)的过程和特征。 非临床药代动力学研究在新药研究开发的评价过程中起着重要 作用。在药物制剂学研究中,非临床药代动力学研究结果是评价药物制剂特性和质量的重要依据。在药效学和毒理学评价中,药代动力学特征可进一步深入阐明药物作用机制,同时也是药效和毒理研究动物选择的依据之一;药物或活性代谢产物浓度数据及其相关药代动力学参数是产生、决定或阐明药效或毒性大小的基础,可提供药物对靶器官效应(药效或毒性)的依据。在临床试验中,非临床药代动力学研究结果能为设计和优化临床试验给药方案提供有关参考信息。 本指导原则是供中药、天然药物和化学药物新药的非临床药代动力学研究的参考。研究者可根据不同药物的特点,参考本指导原则,科学合理地进行试验设计,并对试验结果进行综合评价。 本指导原则的主要内容包括进行药物非临床药代动力学研究的 基本原则、试验设计的总体要求、生物样品的测定方法、研究项目(血

药浓度-时间曲线、吸收、分布、排泄、血浆蛋白结合、生物转化、对药物代谢酶活性及转运体的影响)、数据处理与分析、结果与评价等,并对研究中其他一些需要关注的问题进行了分析。附录中描述了生物样品分析和放射性同位素标记技术的相关方法和要求,供研究者参考。 二、基本原则 进行非临床药代动力学研究,要遵循以下基本原则: (一)试验目的明确; (二)试验设计合理; (三)分析方法可靠; (四)所得参数全面,满足评价要求; (五)对试验结果进行综合分析与评价; (六)具体问题具体分析。 三、试验设计 (一)总体要求 1. 受试物 中药、天然药物:受试物应采用能充分代表临床试验拟用样品和/或上市样品质量和安全性的样品。应采用工艺路线及关键工艺参数确定后的工艺制备,一般应为中试或中试以上规模的样品,否则应有充分的理由。应注明受试物的名称、来源、批号、含量(或规格)、保存条件、有效期及配制方法等,并提供质量检验报告。由于中药的特殊性,建议现用现配,否则应提供数据支持配制后受试物的质量稳定性及均匀性。当给药时间较

药物代谢动力学公式计算总结

Harvard-MIT 卫生科学与技术部 HST.151: 药理学原理 授课教师: Carl Rosow 博士 药物代谢动力学公式计算总结 下列公式来自Steven Shafer博士的药理学讲义,对药物代谢动力学有关概念进行了总结和描述。 1.一室模型注射用药时体内药量变化(降低)的速率(公式为一级消除动力学) 2.瞬时药物浓度C(t),其中C0为0时刻时的药物浓度 3.半衰期t?,为血浆药物浓度下降一半所需的时间 4.根据半衰期可以得到速率常数K 5.药物浓度定义为药物剂量与体积的比值,其中X为剂量,V为体积 6.一次静脉注射给药中药物的浓度以下式表示,其中X0/V为起始药物浓度 7.如果一室模型中药物总清除率以Cl T表示,则药物清除速率可以下式计算 8.将第7项和第8项的公式合并为 将半衰期的公式带入,可得到更为有意义的公式 从公式中可以得到。当清除率(Cl T)增加,k值增加,半衰期降低;容积(V)增大,k值降低,半衰期增加。

9.如果药物以k0的速率滴注,则达到平衡是药物的浓度以下式表示,其中Css表示稳态 浓度 10.稳态浓度Css可以通过滴注速率和清除率计算 11.半衰期为给药后浓度下降一半所需的时间,同样也可理解为静脉滴注达到稳态浓度的 50%时的时间。一次用药,药物浓度降至起始浓度的25%、13%、6%和3%时分别需经历2、3、4、5个半衰期;恒速静脉滴注,药物浓度达到稳态浓度的45%、88%、94%和97%时分别需经历2、3、4、5个半衰期。 应用这些公式有何意义? 1.如果知道注射剂量和药物浓度,则可以计算药物分布体积 2.如果知道注射剂量X0、药物分布体积V和速率常数k,则可以计算出任意时刻的药物浓 度 3.如果知道两个时间点t1和t2,以及相应的浓度C1和C2,则可以计算出速率常数k 4.如欲求清除率(一室模型),可以根据速率常数k和分布体积V求得,但若是多室模型, 即速率常数k值有多个,或者k和V不知,则可按照以下公式,其中AUC为药时曲线下的面积 5.根据欲达到的靶浓度(C target)可以求得出负荷剂量(X loading) 6.欲维持靶浓度(C target)恒定,则需要恒速静脉滴注药物,滴注的速度与药物消除的速 度相同。如果首次给药为C target (V),消除的药物为C target (Cl T),则药物的维持剂量X maintenance为

药物代谢动力学完整版

药物代谢动力学完整版 第二章药物体内转运 肾脏排泄药物及其代谢物涉及三个过程:肾小球的滤过、肾小管主动分泌、肾小管重吸收。 一、药物跨膜转运的方式及特点 1. 被动扩散 特点:①顺浓度梯度转运②无选择性,与药物的油/水分配系数有关③无饱和现象④无竞争性抑制作用⑤不需要能量 2. 孔道转运 特点:①主要为水和电解质的转运②转运速率与所处组织及膜的性质有关 3. 特殊转运 包括:主动转运、载体转运、受体介导的转运 特点:①逆浓度梯度转运②常需要能量③有饱和现象④有竞争性抑制作用⑤有选择性 4. 其他转运方式 包括:①易化扩散类似于主动转运,但不需要能量②胞饮主要转运大分子化合物 二、影响药物吸收的因素有哪些 ①药物和剂型的影响②胃排空时间的影响③首过效应④肠上皮的外排⑤疾病⑥药物相互作用 三、研究药物吸收的方法有哪些,各有何特点? 1. 整体动物实验法 能够很好地反映给药后药物的吸收过程,是目前最常用的研究药物吸收的实验方法。缺点: ①不能从细胞或分子水平上研究药物的吸收机制; ②生物样本中的药物分析方法干扰较多,较难建立; ③由于试验个体间的差异,导致试验结果差异较大; ④整体动物或人体研究所需药量较大,周期较长。 2. 在体肠灌流法:本法能避免胃内容物和消化道固有生理活动对结果的影响。 3. 离体肠外翻法:该法可根据需要研究不同肠段的药物吸收或分泌特性及其影响因素。 4. Caco-2细胞模型法 Caco-2细胞的结构和生化作用都类似于人小肠上皮细胞,并且含有与刷状缘上皮细胞相关的酶系。优点: ①Caco-2细胞易于培养且生命力强,细胞培养条件相对容易控制,能够简便、快速地获得大量有价值的信息; ②Caco-2细胞来源是人结肠癌细胞,同源性好,可测定药物的细胞摄取及跨细胞膜转运; ③存在于正常小肠上皮中的各种转运体、代谢酶等在Caco-2细胞中大都也有相同的表达,因此更接近药物在人体内吸收的实际环境,可用于测定药物在细胞内的代谢和转运机制; ④可同时研究药物对粘膜的毒性; ⑤试验结果的重现性比在体法好。 缺点: ①酶和转运蛋白的表达不完整,此外来源,培养代数,培养时间对结果有影响; ②缺乏粘液层,需要时可与HT-29细胞共同培养。

药代动力学参数

药代动力学参数 This model paper was revised by the Standardization Office on December 10, 2020

一、吸收 溶出度:药物分子在消化道中溶解的程度 生物利用度:药物吸收的程度 绝对生物利用度 最大血药浓度(Cmax) 达峰时间(Tmax) 二、分布 由于体内环境的非均一性(血液、组织),导致药物浓度变化的速度不同。 隔室(compartment):同一隔室药物浓度的变化速度相同,均相。 一室模型:药物进入血液迅速分布全身,并不断被清除。 二室模型: 药物进入体内后,首先快速分布于组织中,然后进入较慢的消除过程。 表观分布体积(Vd)(aparent volume of distribution):表征药物在体内被组织摄取的能力。表观容积大的药物体内存留时间较长。 药物浓度-时间曲线下面积(AUC);系统药物暴露(Systemic Exposure) 血脑屏障;蛋白结合率;分布半衰期(t 1/2(α) 三、消除 消除(elimination):原药在体内消失的过程。包括肾(尿)或胆汁(粪)或呼吸排泄及代谢转化的总和。

消除速率常数(elimination constants):反映药物在体内消失的快慢。不完全反映药物的作用时间(代谢物也有活性)。 半寿期或半衰期(t1/2):药物浓度或药量降低50%所需的时间。消除半衰期t1/2(β))Terminal Half-life ,Elimination Half-life。 清除率(clearance,廓清率)或肾清除率(renal clearance):反映药物或代谢物经肾被排出体外的速度。 一方面是药物对机体的作用,产生药效、毒性或副作用,表现为药物的药理作用或毒理作用,决定于特定的化学结构,具有较强的结构特异性。 另一方面是机体对药物的作用:吸收、分布,生物转化和排泄,表现为药物的药代动力学性质。主要取决于药物的溶解性、脂水分配系数、电荷等药物分子整体的理化性质,结构特异性不强。 药物的吸收是药物由给药部位通过生物膜进入血液循环的过程。 吸收部位 消化道(口服给药,口腔、胃、小肠、大肠)、呼吸道(鼻腔给药,肺)、肌肉()、粘膜(栓剂)。 吸收部位不同,药物被吸收的程度和快慢,有差异(静注、肌注;皮下给药,口服。) 共性:药物是通过生物膜吸收的。 吸收过程 扩散

常用的药物代谢动力学参数包括那些

常用的药物代谢动力学参 数包括那些 Prepared on 24 November 2020

常用的药物代谢动力学参数包括那些. (1).表观分布容积 表示体内药量与血药浓度之间相互关系的一个比列常数。即体内药量按血浆中同样浓度分布时,所需体液的总容积。其数值反映了药物在体内的分布程度。表观分布容积是一个假设的容积,是假定药物在体内均匀分布情况下求得的药物分布容积,其意义在于:可计算出达到期望血浆药物浓度时的给药剂量;可以推测药物在体内的分布程度和组织中摄取程度。 (2).血浆药物浓度 指药物吸收后在血浆内的总浓度,包括与血浆蛋白结合的或在血浆游离的药物,有时也可泛指药物在全血中的浓度。药物作用的强度与药物在血浆中的浓度成正比,同时药物在血浆中的浓度也随时间变化。 (3).血药浓度—时间曲线 指给药后,以血浆(或尿液)药物浓度为纵坐标,时间为横坐标,绘制的曲线,简称药—时曲线,如图:

(4).血浆药物峰度浓度 简称峰浓度,指药—时曲线上的最高血浆药物浓度值,即用药后所能达到的最高血浆药物浓度,常以符号C max表示,单位以 ug/mL或者mg/L来表示。药物血浆浓度与药物的有效性与安全性直接相关。一般来说,峰浓度达到有效浓度才能显效,浓度越高效果越强,但超出安全范围则可出现毒性反应。另外,峰浓度还是衡量制剂吸收的一个重要指标。 (5).血浆药物浓度达峰时间 简称达峰时间,指在给药后人体血浆药物浓度曲线上达到最高浓度(峰浓度)所需时间,常以符号t max表示,单位一小时或分钟表示。达峰时间短,表示药物吸收快、起效迅速,但同时消除也快;而达峰时间长,则表示药物吸收和起效较慢,药物作用持续的时间也越长。达峰时间是应用药物和研究自己的一个重要指标。(6).血浆生物半衰期

临床药代动力学试验的常见设计类型与统计分析

发布日期 20140327 化药药物评价 >> 临床安全性和有效性评价 临床药代动力学试验的常见设计类型与统计分析 张学辉,卓宏,王骏 化药临床二部 一、临床药代动力学试验的统计分析问题现状 临床药代动力学试验在新药上市注册申请中占有重要地位。 与大样本量的 临床试验相比,这类试验样本数少、 观测指标少,其统计分析问题要简单很多, 未引起申请人或研究者的重视,一般较少邀请统计专业人员参与。甚至一些人 认为这类试验是描述性试验,不需要进行专业的统计分析。其实正是因为这类 试验的样本数少,才要更加重视其试验设计和统计分析的规范性,才能得出相 对可靠的专业结论。从目前申报资料看,存在较多问题: 1 )研究设计时未充 分考虑三要素”(受试者、试验因素、观察指标),无法满足研究目标的专业 需要;2)研究设计不符合 四原则”(随机、对照、重复和均衡),不采用常见 的设计类型,设计出一些不同寻常的异型试验; 3)资料整理和统计分析方法 选用不当,与研究设计类型不匹配,尤其是滥用 t 检验和单因素多水平设计资 料的方差分析方法。 临床药代动力学试验的一般要求参见技术指导原则 ⑴。本文拟介绍这类试 验的常见研栏目 标题 作者 部门 正文内容

究设计类型与统计分析方法,供大家参考。 二、创新药物临床药代动力学试验 这里的创新药物是指新化学实体。这类药物通常在健康受试者中进行多项 的临床药代动力学试验,包括单次给药、多次给药、食物影响、药代动力学相互作用等药代动力学试验。后续还要进行目标适应症患者和特殊人群的药代动力学试验。 2.1创新药物单次给药药代动力学试验 创新药物的健康受试者单次给药药代动力学试验通常在I期耐受性试验结 束后进行。受试者例数一般要求每个剂量组8?12例,男女各半。药物剂量, 一般选用低、中、高三种剂量,有时会选用更多剂量。剂量的确定主要根据I 期临床耐受性试验的结果,并参考动物药效学、药代动力学及毒理学试验的结果,以及经讨论后确定的拟在∏期临床试验时采用的治疗剂量推算。高剂量组剂量必须接近或等于人最大耐受的剂量。 由于该类药物初上人体试验,出于安全性和伦理的考虑,每位受试者只给药一次,最常采用多剂量组平行设计。一般设计为在健康受试者(男女各半)中、随机、开放、多剂量组平行、单次给药的药代动力学试验。整理这类试验的药代动力学参数时,可以归类为两因素(剂量、性别)析因设计。各剂量组内性别间差异无统计学意义或者不考虑性别因素时,可以将该试验简化为单因素(剂量)的平行组设计。 安全性好的药物,在伦理允许情况下,也可采用多剂量组、多周期的交叉设计。交叉设计的优点是节省样本量、自身对照、减少个体间变异,缺点是多周期时间长、重复测量次数多、受试者依从性差易脱落、统计分析方法复杂。 当选用低、中、高三个剂量组时,通常采用随机、开放、单次给药、三剂量组

体内药代动力学及药效学研究

体内药代动力学及药效学研究 中药药代动力学是指在中医理论的指导下,利用动力学原理和数学模型处理方法,定量描述中药有效成分、有效部位、单味中药和中药复方通过各种给药途径进入体内后的吸收、分布、代谢和排泄等过程的动态变化规律,即研究给药后体内的药物位置、数量、疗效和时间之间关系的科学。目前常用于研究中药制剂体内药物动力学的方法主要有:(1)以某一成分为代表研究体内药物动力学:它适用于化学成分比较明确的制剂;(2)生物药效法:包括药理效应法、药物累积法和效量半衰期法。在本研究中,牡丹皮为组方中的君药,丹皮酚为其主要有效成分,因此,以血药浓度法测定血浆中代表成分丹皮酚的含量,并测定对豚鼠冠脉流量的增加百分率以考察其综合药效,从而将二者结合来考察通栓救心缓释微丸的体内药动学过程。 1.血药浓度法药物动力学研究将原料药粉按处方比例混合装胶囊作为参比制剂,受试与参比制剂的服用量均相当于丹皮酚500mg。采用健康家犬进行交叉实验,受试制剂(T)与参比制剂(R)的药一时曲线如图9-30所示。根据所测血药浓度结果,得到受试制剂的相对生物利用度为123. 08%。 2.生物效应法药物动力学研究离体豚鼠心脏冠脉流量实验具体方法‘3:为:取豚鼠( 300~350g),雌雄兼用;击头处死后迅速取出心脏,按Langendoff法制备离体心脏,以氧饱和的任洛氏液(任洛氏液的配制: NaCl 9g, KCl o.42g, NaHC()30.Sg, CaCl2 o.24g,葡萄糖lg,加蒸馏水至1 000ml)恒温、恒压灌流,待稳定后,从灌流系统中注入各组血清Iml,测定给药后5分钟内每分冠脉流量,计算给药后流量的最大增加百分 率,剂量一效应曲线、时间一效应曲线分别如图9-31、9-32所示,药动学参数结果见表9-11。

临床药代动力学基础

临床药代动力学基础总结 一、被动转运 1、简单扩散:属于脂溶性扩散。 一、(1)特点:1、从浓度高的一侧转运向浓度低的一侧顺着浓度梯度差通过生物膜。 2、转运过程不消耗能量,不需要载体,各药物之间没有竞争抑制现象,没有饱和性。 3、当生物膜两侧药物浓度达到平衡状态时,转运即停止。 一、影响简单扩散的因素 1、膜两侧的浓度差2药物的脂溶性3药物的解离度:取决于解离常数(Ka)和环境的PH 值 (2)影响简单扩散的因素-Handersoh-hasselbalch公式:-弱酸性药物: 结论:1、酸性药物在酸性环境中,解离少容易跨膜转运达到平衡时,主要分布在碱侧。2、碱性药物在碱性环境中解离少,容易跨膜转运,达到扩散平衡,主要分布在酸侧。 2、膜孔扩散1、滤过或水溶性扩散2、分子量小,分子直径膜孔的水溶性极性或非极性物 质(水、乙醇、尿素、乳酸)借助膜两侧的液体和渗透压差,被水带到低压一侧的过程。 影响因素:膜两侧浓度差。 3、易化扩散分类1经载体的易化扩散2经通道的易化扩散 4、特殊转运 药物体内吸收过程 1吸收:药物从用药部位向血液循环中转运的过程。多数药物的吸收属于被动转运。 影响药物最主要的因素:1、给药途径:经肠给药口服:舌下、直肠、 2、非经肠给药:肌肉注射、皮下注射、静脉注射 吸入、皮肤 一、消化道给药 1、口服给药吸收途径:肠道内吸收-通过毛细血管-肝门静脉-体循环 2、影响因素首关效应:首过效应、第一关卡效应药物在肠粘膜上皮细胞内,肝脏内通过时, 被某些酶灭火代谢,进入体内循环的药物量减少,这一过程成为首关效应或首过消除。 3、药物方面:药物性质、剂型、溶出度在消化道稳定性。 胃肠功能:胃肠道蠕动速度、血流量。 其他:胃内容物、胃肠内PH值,肠道细菌对药物的代谢。 2舌下药:舌下含服,直接吸入体循环,不经过肝门静脉因此无首过消除效应。 3吸入给药:吸入途径:肺泡-肺部毛细血管-体循环 4皮肤给药 二、分布 药物随血液循环进入器官,组织甚至细胞内的过程。 影响因素1药物与血浆蛋白的结合2器官血流量与组织亲和力3体内屏障4体液PH值和药物溶解度 结合性药物分子量变大不易通过生物膜。 药物与血浆蛋白的结合特点:1可逆性2饱和性3竞争性4常用血浆蛋白结婚率来表现 一、体内屏障1血脑屏障分类:1血液-脑脊液2血液-脑组织3脑脊液-脑组织 特点:致密、通透性差2胎盘屏障 药物转化(代谢)过程 三催化转化的酶种类1专一性酶特点:具有专一性(选择性)如乙酰胆碱酯酶-单胺氧化酶2非专一性酶:即肝脏微粒体混合功能酶系统。 存在于肝脏的微粒内,参与多种化合物的转化,与药物的代谢密切相关,因此又称为肝药酶,

一期临床试验及药代动力学测试的主要内容

一期临床试验及药代动力学测试的主要内容 Ⅰ期临床试验就是新药人体试验的起始阶段。 Ⅰ期临床试验目的: 1.在健康志愿者中,对通过临床前安全有效性评价的新药,从绝对安全的初始剂量开始,考察人体对该药的耐受性; 2.对人体能够耐受的剂量进行药代动力学研究,为研究Ⅱ期临床试验提出合理的给药方案。 Ⅰ期临床试验工作程序 1、接到药政管理当局(SDA)下达的批件; 2、签订合同; 3、阅读有关资料及文献,选择、组织试验研究小组; 4、计算并确定耐受性试验最小初始剂量与最大剂量; 5、制定、讨论、确定Ⅰ期临床试验方案; 6、试验方案呈报伦理委员会审批; 7、Ⅰ期临床试验前准备工作: 1)筛选志愿受试者; 2)准备知情同意书; 3)准备记录表格与试验流程图; 4)血药浓度监测考核; 5)Ⅰ期病房准备; 8、Ⅰ期临床试验方案伦理委员会批准后,制定试验进度计划; 9、试验前受试者签署知情同意书; 10、受试者随机分组; 11、试验前24小时内完成每例受试者病例登记:体格检查、心电图检查、脑电图检查、 眼科检查、血液学检查、血生化检查、尿液学分析等各项指标检查; 12、准备每例受试者试验流程图; 13、按照试验方案与进度计划进行Ⅰ期临床试验; 14、数据处理、统计分析;

15、总结报告。 Ⅰ期临床试验方案程序 1)单次给药耐受性试验(随机分组,逐组进行,有主观或其它因素影响时设安慰剂对照); 2)单次给药药代动力学研究(设高、中、低三个剂组,三向交叉拉丁方设计,确定临床有效量与给药量,每组均有三个剂量,每次均有三个剂量,以排除仪器、个体差异); 3)连续给药耐受性与药代动力学研究,要求达稳态后再继续二天,一般连续七至十天)。 Ⅰ期临床试验方案模式 1、首页:项目名称、研究者姓名、单位,申办者负责人姓名、单位 2、简介:试验药物中文名、国际非专利药名、结构式、化学名、分子式、分子量、理化性 质、药理作用、作用机制、临床前药理、毒理研究结果摘要(如已在国外进入临床试验,介绍初步试验结果); 3、研究目的:在健康志愿受试者中,观察单次给药耐受性,单次给药药代动力学参数,连续给药药代动力学与耐受性; 4、试验样品:样品名称、代号、制剂与规格,制剂制备单位、制备日期、批号、有效期、药 检部门检验人用合格报告、给药途径、贮存条件、数量(剂量总数、制剂总数); 5、受试者选择:志愿受试者来源,入选标准,淘汰标准(根据各类具体药物制定)。入选人数、姓名、年龄、性别、体重、身高、籍贯、民族。 6、受试者签署知情同意书; 7、伦理委员会报批:三个试验方案需分别报送医学伦理委员会审批; 8、试验设计与方法; 9、观察指标:体检检查、心电图、脑电图、神经科检查、眼科检查、血液学、血生化及尿 液分析等各项指标均需写明; 10、数据处理统计分析:事先规定数据处理方法,确定正常值与异常值确定标准,统计分析方法及单位等; 11、总结报告:规定试验周期、总结报告完成日期; 12、末页:试验地点、研究者与申办者签名。 健康志愿者耐受性试验步骤与方法

常用的药物代谢动力学参数包括那些

常用的药物代谢动力学 参数包括那些 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

常用的药物代谢动力学参数包括那些. (1).表观分布容积 表示体内药量与血药浓度之间相互关系的一个比列常数。即体内药量按血浆中同样浓度分布时,所需体液的总容积。其数值反映了药物在体内的分布程度。表观分布容积是一个假设的容积,是假定药物在体内均匀分布情况下求得的药物分布容积,其意义在于:可计算出达到期望血浆药物浓度时的给药剂量;可以推测药物在体内的分布程度和组织中摄取程度。 (2).血浆药物浓度 指药物吸收后在血浆内的总浓度,包括与血浆蛋白结合的或在血浆游离的药物,有时也可泛指药物在全血中的浓度。药物作用的强度与药物在血浆中的浓度成正比,同时药物在血浆中的浓度也随时间变化。 (3).血药浓度—时间曲线 指给药后,以血浆(或尿液)药物浓度为纵坐标,时间为横坐标,绘制的曲线,简称药—时曲线,如图:

(4).血浆药物峰度浓度 简称峰浓度,指药—时曲线上的最高血浆药物浓度值,即用药后所能达到的最高血浆药物浓度,常以符号Cmax表示,单位以ug/mL或者mg/L来表示。药物血浆浓度与药物的有效性与安全性直接相关。一般来说,峰浓度达到有效浓度才能显效,浓度越高效果越强,但超出安全范围则可出现毒性反应。另外,峰浓度还是衡量制剂吸收的一个重要指标。 (5).血浆药物浓度达峰时间 简称达峰时间,指在给药后人体血浆药物浓度曲线上达到最高浓度(峰浓度)所需时间,常以符号tmax表示,单位一小时或分钟表示。达峰时间短,表示药物吸收快、起效迅速,但同时消除也快;而达峰时间长,则表示药物吸收和起效较慢,药物作用持续的时间也越长。达峰时间是应用药物和研究自己的一个重要指标。 (6).血浆生物半衰期

Stata与药代动力学参数10页word

Stata与药代动力学参数 jiayounet 目录: 一、药代动力学概述 二、药物在体内的转运和转化 1.药物在体内的过程 2.被动转运 3.载体转运 三、药物的体内过程 1.吸收(absorption) 2.分布(distribution) 3.代谢(metabolism) 4.排泄(excretion) 5.药物体内过程的图示 四、药代动力学参数 1.吸收过程相关参数 2.分布过程相关参数 3.消除过程相关参数 4.房室模型 五、stata与药代动力学参数估计 1.计算单个受试者药代动力学参数_pkexamine 2.计算所有受试者药代动力学参数_pkcollapse 3.查看药代动力学参数的汇总统计量 一、药代动力学概述 药代动力学:定量研究药物在体内吸收、分布、代谢和排泄等动态变化规律的一门学科。研究方法:药代动力学常借助统计学方法,根据不同时间的血药浓度与时间的数据,建立数学模型,来得到相应的药动学参数, 作用:根据药动学参数,可以制定合理的给药方案,已达到安全有效的目的。 二、药物在体内的转运和转化 1.药物在体内的过程 药物在体内的过程分为:吸收(absorption)、分布(disribution)、代谢(metablism)和排泄(excretion)即ADME,其中药物的吸收、分布、代谢过程都涉及药物的跨膜转运过程。而药物的体内过程又直接影响药物在其作用部位的浓度和有效浓度维持时间,从而决定药物的发生、发展和消除。常见的跨膜转运类型主要有:被动扩散(passive processes, passive diffusion)、易化扩散(facilitate diffusion)、孔道扩散(filtration through pores)、特殊转运

最新化学药物临床药代动力学研究技术指导原则汇编

化学药物临床药代动力学研究技术指导原则化学药物临床药代动力学研究 技术指导原则 二○○五年三月 目录 一、概述 (1) 二、药代动力学研究生物样品分析方法的建立和确证 (2) (一)常用分析方法 (2) (二)方法学确证 (2) 1、特异性 (3) 2、标准曲线和定量范围 (3) 3、定量下限 (4) 4、精密度与准确度 (4) 5、样品稳定性 (5) 6、提取回收率·········································································································

(5) 7、微生物学和免疫学分析 (5) 8、方法学质控 (6) (三)分析数据的记录与保存 (6) 1、方法建立与确认的数据 (7) 2、样品分析的数据 (7) 3、其他相关信息 (7) 三、药代动力学研究的具体内容 (7) (一)健康志愿者药代动力学研究 (8) 1、单次给药药代动力学研究 (8) 2、多次给药药代动力学研究 (11) 3、进食对口服药物制剂药代动力学影响的研究 (13) 4、药物代谢产物的药代动力学研究 (14) 5、药物-药物的药代动力学相互作用研究 (14) (二)目标适应症患者的药代动力学研究 (15) (三)特殊人群药代动力学研究 (15) 1、肝功能损害患者的药代动力学研究 (15) 2、肾功能损害患者的药代动力学研究 (16) 3、老年人药代动力学研

究 (17) 4、儿科人群药代动力学研究 (17) 四、结语 (18) 五、参考文献 (19) 六、著者 (20) 化学药物临床药代动力学研究技术指导原则 一、概述 新药的临床药代动力学研究旨在阐明药物在人体内的吸收、分布、代谢和排泄的动态变化规律。对药物上述处置过程的研究,是全面认识人体与药物间相互作用不可或缺的重要组成部分,也是临床制定合理用药方案的依据。 在药物临床试验阶段,新药的临床药代动力学研究主要涉及如下内容: 1、健康志愿者药代动力学研究 包括单次给药的药代动力学研究、多次给药的药代动力学研究、进食对口服药物药代动力学影响的研究、药物代谢产物的药代动力学研究以及药物-药物的药代动力学相互作用研究。 2、目标适应症患者的药代动力学研究 3、特殊人群药代动力学研究 包括肝功能损害患者的药代动力学研究、肾功能损害患者的药代动力学研究、老年患者的药代动力学研究和儿童患者的药代动力学研究。 上述研究内容反映了新药临床药代动力学研究的基本要求。在新药研发实践中,可结合新药临床试验分期分阶段逐步实施,以期阐明临床实践所关注的该药药代动力学的基本特征,为临床合理用药奠定基础。 鉴于不同类型药物的临床药代动力学特征各不相同,故应根据所研究品种的实际情况进行综合分析,确定不同阶段所拟研究的具体内容,合理设计试验方案,采用科学可行的试验技术,实施相关研究,并作出综合性评价,为临床合理用药提供科学依据。 二、药代动力学研究生物样品分析方法的建立和确证 由于生物样品一般来自全血、血清、血浆、尿液或其他临床生物样品,具有取样量少、药物浓度低、干扰物质多(如激素、维生素、胆汁以及可能同服的其他药物)以及个体差异大等特点,因此必须根据待测物的结构、生物介质和预期的浓度范围,建立灵敏、专一、精确、可靠的生物样品定量分析方法,并对方法进行确证。 (一)常用分析方法 目前常用的分析方法有:

药代主要参数

药代主要参数标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

药物代谢动力学的主要参数 根据时间-药物浓度曲线,采用相应的药代动力学计算机程序包进行数学处理,可估算 出药物在体内吸收、分布、转化和排泄等相关的若干药代动力学参数(pharmacokineticparameters),以反映药物在体内的动力学规律和特点。常用的药代动力学参数有: (一)药峰时间(Tmax)和药峰浓度(Cmax) 药峰时间(Tmax)是指用药以后,血药浓度达到峰值所需的时间。药峰时间短,表示药物吸收快、起效迅速,但同时消除也快;药峰时间长,则表明药物吸收和起效较慢,但作用持续时间也往往较长(图3-7)。药峰时间是研究药物制剂的一个重要指标。 药峰浓度(Cmax)又称峰值(peakvalue),是指用药后所能达到的最高血药浓度(见图3-9)。药峰浓度与药物的临床应用密切相关,药峰浓度要达到有效浓度才能显效,但若高出安全范围则可表现为毒性反应。 (二)时量曲线下面积(areaunderthetimeconcentrationcurve,AUC) 又称曲线下面积,是指由坐标横轴与时间-药物浓度曲线围成的面积。它代表一段时间 内,血液中的药物的相对累积量,也是研究药物制剂的一个重要指标(图3-11)。其单位为μg/ml·h,通常采用梯形法计算,计算公式为: (三)生物利用度(bioavailability,afractionofdose,F) 生物利用度是指血管外给药时,药物吸收进入血液循环的相对数量。生物利用度也是 评价药物制剂质量的一个十分重要的指标。通常用吸收百分率表示,即给药量与吸收进入体循环的药量的比值(见式①): 相对F是评价厂家产品质量的重要标准之一。如果制剂质量不合格,生物利用度低, 临床疗效肯定差。一般药典上都规定药厂生产的制剂,生物利用度的差距不应超过 ±10%。生物利用度的意义在于:①从制剂方面而言,剂量和剂型相同的药物,如果厂家的制剂工艺不同,甚至同一药厂生产的同一制剂的药物,仅因批号不同,都可以使药物的晶型、颗粒大小或其他物理特性,以及药物的生产质量控制等发生改变,从而影响药物的崩解和溶解度,使药物的生物利用度发生明显的改变,导致时间-药物浓度曲线的改变(见图3-12)。②从机体方面而言,剂量、剂型甚至制剂都完全相同的药物,因为在不同生理或病理条件下应用,也可引起生物利用度的改变,使时间-药物浓

相关主题
文本预览
相关文档 最新文档