当前位置:文档之家› 微积分 求极限的方法

微积分 求极限的方法

微积分 求极限的方法
微积分 求极限的方法

求极限

方法一:直接代入法

例一:=24

例二:=

类似这种您直接把x趋近的值代入到函数里面,就可以直接得到函数的极限了。

知识点1:当x趋近值代入后,分子为0,分母不为0时,函数极限等于0

知识点2:当x趋近值代入后,分子不为0,分母为0时,函数极限等于

方法二:因式分解法(一般就是平方差,完全平方,十字相乘)

普通的就就是分子分母约去相同的项,因为x就是趋近值,所以上下就是可以约去的,不用考虑

0的问题。类似=

下面讲个例

知识点3:=(x-y)()

例三:==

方法三:分母有理化(用于分母有根式,分子无根式)

例四:=

方法四:分子有理化(用于分子有根式,分母无根式)

例五:==1

方法五:分子分母同时有理化(用于分子有根式,分母有根式)

例六:

知识点4:(使用这个知识点时,必须注意只能在x趋近于无穷时使用,且使用时只用瞧各项的最高次数,不用管其她)

例七:=(分子的最高次就是两次,大于分母最高次一次,所以直接得出极限为无穷大)

例八:=0 (分子的最高次就是一次,小于分母最高次两次,所以直接得出极限为零)

例九:(分子的最高次就是一次,等于分母最高次一次,所以直接得出极限为

)

方法六:通分法(若函数为两个分数相加减时,通常先同分再做处理,一般情况下同分后都要进行因式分解,然后分子分母约去相同的多项式)

例十:-

知识点5:当一个无穷小的函数乘以一个有界函数时,新函数的极限仍为无穷小。(有限个无穷小仍为无穷小=常量与无穷小量的乘积仍就是无穷小量)

例十一:=0 函数左边用知识点4得出就是无穷小,右边3+cosx就是有界函数,所以新函数极限为无穷小,即0

所有求极限的题中,代入x趋近值后,若出现或,都可以使用洛必达法则求解极限。

几种定积分的数值计算方法

几种定积分的数值计算方法 摘要:本文归纳了定积分近似计算中的几种常用方法,并着重分析了各种数值方法的计 算思想,结合实例,对其优劣性作了简要说明. 关键词:数值方法;矩形法;梯形法;抛物线法;类矩形;类梯形 Several Numerical Methods for Solving Definite Integrals Abstract:Several common methods for solving definite integrals are summarized in this paper. Meantime, the idea for each method is emphatically analyzed. Afterwards, a numerical example is illustrated to show that the advantages and disadvantages of these methods. Keywords:Numerical methods, Rectangle method, Trapezoidal method, Parabolic method, Class rectangle, Class trapezoid

1. 引言 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数 )(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用. 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用.另外,对于求导数也有一系列的求导公式和求导法则.但是,在实际问题中遇到求积分的计算,经常会有这样的情况: (1)函数)(x f 的原函数无法用初等函数给出.例如积分 dx e x ?-1 02 , ? 1 sin dx x x 等,从而无法用牛顿-莱布尼茨公式计算出积分。 (2)函数)(x f 使用表格形式或图形给出,因而无法直接用积分公式或导数公式。 (3)函数)(x f 的原函数或导数值虽然能够求出,但形式过于复杂,不便使用. 由此可见,利用原函数求积分或利用求导法则求导数有它的局限性,所以就有了求解数值积分的很多方法,目前有牛顿—柯特斯公式法,矩形法,梯形法,抛物线法,随机投点法,平均值法,高斯型求积法,龙贝格积分法,李查逊外推算法等等,本文对其中部分方法作一个比较. 2.几何意义上的数值算法 s 在几何上表示以],[b a 为底,以曲线)(x f y =为曲边的曲边梯形的面积A ,因此,计 算s 的近似值也就是A 的近似值,如图1所示.沿着积分区间],[b a ,可以把大的曲边梯形分割成许多小的曲边梯形面积之和.常采用均匀分割,假设],[b a 上等分n 的小区间 ,x 1-i h x i +=b x a x n ==,0,其中n a b h -= 表示小区间的长度. 2.1矩形法

微积分的基本运算

第4章微积分的基本运算 本章学习的主要目的: 1.复习高等数学中有关函数极限、导数、不定积分、定积分、二重积分、级数、方程近似求解、常微分方程求解的相关知识. 2.通过作图和计算加深对数学概念:极限、导数、积分的理解. 3.学会用MatLab软件进行有关函数极限、导数、不定积分、级数、常微分方程求解的符号运算; 4.了解数值积分理论,学会用MatLab软件进行数值积分;会用级数进行近似计算. 1 有关函数极限计算的MatLab命令 (1)limit(F,x,a) 执行后返回函数F在符号变量x趋于a的极限 (2)limit(F,a) 执行后返回函数F在符号变量findsym(F)趋于a的极限 (3)limit(F) 执行后返回函数F在符号变量findsym(F)趋于0的极限 52

53 (4)limit(F,x,a,’left’) 执行后返回函数F 在符号变量x 趋于a 的左极限 (5)limit(F,x,a,’right’) 执行后返回函数F 在符号变量x 趋于a 的右极限 注:使用命令limit 前,要用syms 做相应符号变量说明. 例7 求下列极限 (1)42 20 x cos lim x e x x -→- 在MatLab 的命令窗口输入: syms x limit((cos(x)-exp(-x^2/2))/x^4,x,0) 运行结果为 ans =-1/12 理论上用洛必达法则或泰勒公式计算该极限: 方法1 =-+-=---=-- - →- →-→2 2 222 20 x 3 22 x 4 2 20 x 12cos lim 4) (sin lim cos lim x x e e x x x e x x e x x x x x 12112112)2(2 lim 1211cos lim 222 220x 2 2 22220 x -=--+=--++-- →- - →x x x e x x x x x e e x 方法2 4 42 224420x 4 2 20 x ))(2) 2()2(1()(!421lim cos lim x x o x x x o x x x e x x +-+---++-=-→- →

高等数学求极限的常用方法附例题和详解完整版

高等数学求极限的常用 方法附例题和详解 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→? =→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下:

1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了 无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 )(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=,这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候) 12)! 1(!!21+++++++=n x n x x n e n x x x e θ ; cos=221242)! 22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ

微积分入门

序 中国战国时代(公元前7世纪),我国的庄周所着的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”,即老庄哲学中所有的无限可分性和极限思想;公元前4世纪《墨经》中有了有穷、无穷、无限小(最小无内)、无穷大(最大无外)的定义和极限、瞬时等概念。这是朴素的、也是很典型的极限概念。而极限理论便是微分学的基础。 古希腊时期(公元前3世纪),阿基米德用内接正多边形的周长来穷尽圆周长,而求得圆周率愈来愈好的近似值,也用一连串的三角形来填充抛物线的图形,以求得其面积。这是穷尽法的古典例子之一,可以说是积分思想的起源。 17世纪,许多着名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。 17世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。 19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。才使微积分进一步的发展开来。 1874年,德国数学家外尔斯特拉斯构造了一个没有导数的连续函数,即构造了一条没有切线的连续曲线,这与直观概念是矛盾的。它使人们认识到极限概念、连续性、可微性和收敛性对实数系的依赖比人们想象的要深奥得多。外尔斯特拉斯最终完成了对实数系更深刻的性质的理解,使得数学分析完全由实数系导出,脱离了知觉理解和几何直观。 人类对自然的认识永远不会止步,微积分这门学科在现代也一直在发展着,人类认识微积分的水平在不断深化。 ※ 微积分学(Calculus,拉丁语意为用来计数的小石头)是研究极限、微分学、积分学和无穷级数的一个数学分支,并成为了现代大学教育的重要组成部分。历史上,微积分曾经指无穷小的计算。更本质的讲,微积分学是一门研究变化的科学,正如几何学是研究空间的科学一样。 客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。 由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。 微积分学在科学、经济学和工程学领域被广泛的应用,来解决那些仅依靠代数学不能有效解决的问题。微积分学在代数学、三角学和解析几何学的基础上建立起来,并包括微分学、积分学两大分支。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。微积分学基本定理指出,微分和积分互为逆运算,这也是两种理论被统一成微积分学的原因。我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。在更深的数学领域中,微积分学通常被称为分析学,并被定义为研究函数的科学。 ※ 在高二上学期的数学学习过程中,我们认识了导数和定积分,并开始了对其应用的理解和练习。其实,早在高中物理开始不久后的学习中,我们就接触到了微积分的原型——微元法。同当年的科学家一样,我们也因物理上的应用需要,开始了对微积分学的认识之旅。 借着这次研究性学习的契机,我们就了解一下微积分学的发展历史,认识数学研究对社会发展的重要意义,本着“以史为镜”的态度了解其中波折而有趣的发展历程;并由此拓展自己的知识面,

高等数学求极限的常用方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii )A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (iii) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 ) (lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候)

高等数学求极限的14种方法(完整资料).doc

【最新整理,下载后即可编辑】 高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件。是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“0 0”“∞ ∞”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成

微积分计算公式

§3-6 常用积分公式表·例题和点评 ⑴ d k x kx c =+? (k 为常数) ⑵1 1 d (1)1 x x x c μ μμμ+≠-= ++? 特别, 2 1 1d x c x x =- +?, 3 223 x x c = +? , x c =? ⑶ 1 d ln ||x x c x =+? ⑷d ln x x a a x c a = +?, 特别, e d e x x x c =+? ⑸sin d cos x x x c =-+? ⑹cos d sin x x x c =+? ⑺ 2 2 1 d csc d cot sin x x x x c x ==-+?? ⑻ 2 2 1 d sec d tan cos x x x x c x ==+?? ⑼arcsin (0)x x c a a =+>?,特别,arcsin x x c =+? ⑽2 2 1 1d arctan (0)x x c a a a a x = +>+?,特别, 21 d arctan 1x x c x =++? ⑾2 2 1 1d ln (0)2a x x c a a a x a x += +>--? 或 2 2 1 1d ln (0)2x a x c a a x a x a -= +>+-? ⑿ tan d ln cos x x x c =-+? ⒀cot d ln sin x x x c =+? ⒁ln csc cot 1csc d d ln tan sin 2x x c x x x x c x ?-+? = =?+?? ? ? ⒂πln sec tan 1 sec d d ln tan cos 24x x c x x x x c x ?++?= =?? ?++ ?????? ?

高等数学-求极限的各种方法

求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方; (2) ???? ??? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ 3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 01 32lim 2 2 =+++=+∞ →x x x

例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim , 第一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 + ,最后凑指数部分。 【解】22 212 12112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =??? ??-++∞→x x a x a x ,求a 。 5.用等价无穷小量代换求极限 【说明】 (1)常见等价无穷小有: 当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x -, ()abx ax x x b ~11,2 1~ cos 12-+-; (2) 等价无穷小量代换,只能代换极限式中的因式.. ;

微积分基本定理 教案

微积分基本定理 一:教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的内容,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二:教学重难点 重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基 本定理的含义,并能正确运用基本定理计算简单的定积分。 难点:了解微积分基本定理的含义 三:教学过程: 1、知识链接: 定积分的概念: 用定义计算的步骤: 2、合作探究: ⑴导数与积分的关系; 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。有没有计算定积分的更直接方法,也是比较一般的方法呢? 下面以变速直线运动中位置函数与速度函数之间的联系为例: 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为2 1()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1()T T v t dt ?=12()()S T S T - 而()()S t v t '=。 说出你的发现 ⑵ 微积分基本定理 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-?? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差

导数的数值计算方法[文献综述]

毕业论文文献综述 信息与计算科学 导数的数值计算方法 一、 前言部分 导数概念的产生有着直觉的起源,与曲线的切线和运动质点的速度有密切的关系.导数用于描述函数变化率,刻画函数的因变量随自变量变化的快慢程度.比如说,物理上考虑功随时间的变化率(称为功率),化学上考虑反应物的量对时间的变化率(称为反应速度),经济学上考虑生产某种产品的成本随产量的变化率(称为边际成本)等等,这些变化率在数学上都可用导数表示. 导数由于其应用的广泛性,为我们解决所学过的有关函数问题提供了一般性的方法,导数是研究函数的切线、单调性、极值与最值等问题的有力工具;运用它可以简捷地解决一些实际问题,导数的概念是用来研究函数在一点及其附近的局部性质的精确工具,而对于函数在某点附近的性质还可以应用另一种方法来研究,就是通过最为简单的线性函数来逼近,这就是微分的方法.微分学是数学分析的重要组成部分,微分中值定理作为微分学的核心,是沟通导数和函数值之间的桥梁, Rolle 中值定理, Lagrange 中值定理, Cauchy 中值定理, Taylor 公式是微分学的基本定理, 统称为微分学的中值定理,这四个定理作为微分学的基本定理,是研究函数形态的有力工具 ] 1[.在微分学中,函数的导数是通过极限定义的,但 当函数用表格给出时,就不可用定义来求其导数,只能用近似方法求数值导数] 2[.最简单 的数值微分公式是用差商近似地代替微商,常见的有 [3] . ()()() 'f x h f x f x h +-≈ , ()()() 'f x f x h f x h --≈, ()()() '2f x h f x h f x h +--≈ . 需要注意的是微分是非常敏感的问题,数据的微小扰动会使结果产生很大的变化] 4[.

微积分-求极限的方法

求极限方法一:直接代入法 例一:()=24 例二:()= 类似这种你直接把x趋近的值代入到函数里面,就可以直接得到函数的极限了。 知识点1:当x趋近值代入后,分子为0,分母不为0时,函数极限等于0 知识点2:当x趋近值代入后,分子不为0,分母为0时,函数极限等于 方法二:因式分解法(一般是平方差,完全平方,十字相乘) 普通的就是分子分母约去相同的项,因为x是趋近值,所以上下是可以约去的,不用考虑0的问题。类似=() 下面讲个例 知识点3:=(x-y)() 例三:== 方法三:分母有理化(用于分母有根式,分子无根式) 例四:= 方法四:分子有理化(用于分子有根式,分母无根式) 例五:==1 方法五:分子分母同时有理化(用于分子有根式,分母有根式) 例六:

知识点4:(使用这个知识点时,必须注意只能在x趋近于无穷时使用,且使用时只用看各项的最高次数,不用管其他) 例七:()=(分子的最高次是两次,大于分母最高次一次,所以直接得出极限为无穷大) 例八:=0 (分子的最高次是一次,小于分母最高次两次,所以直接得出极限为零) ) 例九:(分子的最高次是一次,等于分母最高次一次,所以直接得出极限为分子最高次数项系数 分母最高次数项系数 方法六:通分法(若函数为两个分数相加减时,通常先同分再做处理,一般情况下同分后都要进行因式分解,然后分子分母约去相同的多项式) 例十:- 知识点5:当一个无穷小的函数乘以一个有界函数时,新函数的极限仍为无穷小。(有限个无穷小仍为无穷小=常量与无穷小量的乘积仍是无穷小量) 例十一:()=0 函数左边用知识点4得出是无穷小,右边3+cosx是有界函数,所以新函数极限为无穷小,即0 所有求极限的题中,代入x趋近值后,若出现或,都可以使用洛必达法则求解极限。

微积分求极限的方法2·完整版

专题一 求极限的方法 【考点】求极限 1、 近几年来的考试必然会涉及求极限的大题目,一般为2-3题12-18分左右,而用极限的概念求极限的题目已不会出现。一般来说涉及到的方法主要涉及等价量代换、洛必达法则与利用定积分的概念求极限,使用这些方法时要注意条件,如等价量代换就是在几块式子乘积时才可使用,洛必达法则就是在0比0,无穷比无穷的情况下才可使用,运用极限的四则运算时要各部分极限存在时才可使用等。 2、 极限收敛的几个准则:归结准则(联系数列与函数)、夹逼准则(常用于数列的连加)、单调有界准则、子数列收敛定理(可用于讨论某数列极限不存在) 3、 要注意除等价量代换与洛必达法则之外其她辅助方法的运用,比如因式分解,分子有理化,变量代换等等。 4、 两个重要极限0sin lim 1x x x →= 101lim(1)lim(1)x x x x x e x →∞→+=+=,注意变形,如将第二个式子10lim(1)x x x e →+=中的x 变成某趋向于0的函数()f x 以构造“1∞”的形式的典型求极限题目。 5、 一些有助于解题的结论或注意事项需要注意总结,如: (1) 利用归结原则将数列极限转化为函数极限 (2) 函数在某点极限存在的充要条件就是左右极限存在且相等。有时可以利用这点进行 解题,如111lim x x e -→因左右极限不相等而在这点极限不存在。(当式子中出现绝对值与e 的无穷次方的结构时可以考虑从这个角度出发) (3) 遇到无限项与式求极限时想三种方法: ①瞧就是否能直接求出这个与式(如等比数列求与)再求极限 ②夹逼定理 ③用定积分的概念求解。 (4)如果f(x)/g(x)当x →x0时的极限存在,而当x→x0时g(x)→0,则当x →x 0时f(x)也 →0 (5)一个重要的不等式:sin x x ≤(0x >) *其中方法②③考到的可能性较大。 6、 有关求极限时能不能直接代入数据的问题。 7、 闭区间上连续函数的性质(最值定理、根的存在性定理、介值定理) 8、 此部分题目属于基本题型的题目,需要尽量拿到大部分的分数。 【例题精解·求极限的方法】 方法一:直接通过化简,运用极限的四则运算进行运算。 【例1】求极限 11lim 1 m n x x x →--

微积分的数值计算方法

第七章 微积分的数值计算方法 7.1 微积分计算存在的问题/数值积分的基本概念 1. 微分计算问题 求函数的导数(微分),原则上没有问题。当然,这是指所求函数为连续形式且导数存在的情形。但如果函数一表格形式给出,要求函数在某点的导数值;或者是希望某点的导数值只用其附近离散点上的函数值近似地表示,这就是新问题了,它称为微分的数值计算,或称为数值微分。 2.定积分计算问题 计算函数f 在],[b a 上的定积分 dx x f I b a ?= )( 当被积函数f 的原函数能用有限形式)(x F 给出时,可用积分基本公式来计算: )()()(a F b F dx x f I b a -==? 然而,问题在于:① f 的原函数或者很难找到,或者根本不存在;②f 可能给出一个函数表;③仅仅知道f 是某个无穷级数的和或某个微分方程的解等等。这就迫使人们不得不寻求定积分的近似计算,也称数值积分。 3.数值积分的基本形式 数值积分的基本做法是构造形式如下的近似公式 ∑?=≈n k k k b a x f A dx x f 0 )()( (7.1.1) 或记成 ∑?=+=n k n k k b a f R x f A dx x f 0 ][)()( (7.1.2) ∑==n k k k x f A I 0 * )( 和 ][f R n 分别成为],[b a 上的f 的数值求积公式及其 余项(截断误差),k x 和k A ),,1,0(n k =分别称为求积节点和求积系数(求积系数与被积函数无关)。 这种求积公式的特点是把求积过(极限过程)程转化为乘法与加法的代数运算。构造这种求积公式需要做的工作是:确定节点k x 及系数 k A ),,1,0(n k =,估计余项][f R n 以及讨论* I 的算法设计及其数值稳定 性。 4.插值型求积公式 如何构造求积公式呢?基本的技术是用被积函数f 的Lagrange 插值多项式 )(x L n 近似代替f ,也即对],[b a 上指定的1+n 个节点

高等数学求极限的16种方法

高等数学求极限的16种方法 首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。 为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先对极限的总结如下 极限的保号性很重要就是说在一定区间内函数的正负与极限一致 1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种) 2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记 (x趋近无穷的时候还原成无穷小) 2落笔他法则(大题目有时候会有暗示要你使用这个方法) 首先他的使用有严格的使用前提!!!!!! 必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!) 必须是 0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0 落笔他法则分为3中情况 1 0比0 无穷比无穷时候直接用 2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方 对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0) 3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)

基础实验二 定积分数值计算

基础实验二 定积分数值计算 一、实验目的 学习定积分的数值计算方法,理解定积分的定义,掌握牛顿-莱布尼兹公式。 二、实验材料 2.1定积分的数值计算 计算定积分?b a dx x f )(的近似值,可将积分区间n 等分而得矩形公式 n a b n a b i a f dx x f n i b a ---+≈∑?=]) 1([)(1 或 n a b n a b i a f dx x f n i b a --+≈∑?=][)(1 也可用梯形公式近似计算 n a b b f a f n a b i a f dx x f n i b a -++-+≈∑?-=]2)()()([)(11 如果要准确些,可用辛普森公式 n a b b f a f a b i a f n a b i a f dx x f n i n i b a 6)]()()2)21((4)(2[)(111-++--++-+≈∑∑?=-= 对于?1 0sin xdx ,矩形公式、梯形公式、辛普森公式的Mathematica 程序为 a=0;b=1;k=10; f[x_]:=Sin[x]; d=N[Integrate[f[x],{x,a,b}],k];(计算精确值) s1[m_]:=N[Sum[f[a+i*(b-a)/m]*(b-a)/m,{i,0,m-1}],k];(取小区间左端点的矩形公式) s2[m_]:=N[Sum[f[a+(i+1/2)*(b-a)/m]*(b-a)/m,{i,0,m-1}],k]; (取小区间中点的矩形公式) s3[m_]:=N[Sum[f[a+i*(b-a)/m]*(b-a)/m,{i,1,m}],k]; (取小区间右端点的矩形公式) s4[m_]:=N[Sum[(f[a+i*(b-a)/m]+f[a+(i+1)*(b-a)/m])/2*(b-a)/m,{i,0,m-1}],k]; (梯形公式) s5[m_]:=N[(b-a)/m/6*((f[a]+f[b])+2*Sum[f[a+i*(b-a)/m],{i,1,m-1}]

微积分计算方法

学号 1330101009 毕业论文 对概率积分解法的研究和讨论 院(系)名称:书信学院 专业名称:数学教育 学生姓名:李建鹏 指导教师:杜争光 二○一五年

摘要:文章给出了计算概率积分 2 x e dx ∞- -∞ ?的几种简便的计算方法;对以 后概率积分的研究和应用具有较好的帮助。 关键词:格林公式;奥高公式;重积分;含参变量 概率积分 2 x e dx ∞- -∞ ?是重要的积分之一,再数理方程、概率论等方面经 常用到,且有广泛的应用。而关于这个积分值的计算问题,有不少人讨论过,大多数方法要用到较深的预备知识,本文给出了几种所需预备知识而又简便的计算方法。

目录 方法一:二重积分法 (1) 方法二:三重积分法 (1) 方法三:线积分法 (2) 方法四:面积分法 (3) 方法五:含参变量的无穷积分法 (4) 方法六:二重积分证明法 (6) 参考文献: (8) 致谢: (9)

对概率积分2 x e dx ∞ --∞ ? 解法的研究和讨论 概率积分 2 x e dx ∞ --∞ ? 是重要的积分之一,再数理方程、概率论等方面经常用 到,且有广泛的应用。而关于这个积分值的计算问题,有不少人讨论过,大多数方法要用到较深的预备知识,本文给出了几种所需预备知识而又简便的计算方法。 方法一:二重积分法 现有连续函数 22() (,)x y f x y e -+=在正方形区域:(;)D a x a a y a -≤≤-≤≤; 圆域2 2 2 1:()R x y a +≤;圆域:2 222 :(2)R x y a +≤上的二重积分分别为12,,I I I , 即: 22 22 2 () () 2 ()a a a x y x y x a a a D I e d x d y d x e d y e d x -+-+----===????? 22 22 1 2() 10 .(1) a x y r a R I e d x d y d r e d r e πθπ-+--===-???? 2222 2 22() 220 .(1) a x y r a R I e dxdy d r e dr e πθπ-+--===-???? (用极坐标) 同时又因:1 2I I I ≤≤,故有 12 lim lim lim a a a I I I →∞ →∞ →∞ ≤≤,即有2 2 lim()a t a a e dt π--→∞ =? ,从而 2 x e dx π ∞ --∞ =? [] 4 方法二:三重积分法 首先我们把旋转体的体积概念推广到积分限无穷的情况。再设XOZ 平面上的曲线2 x Z e -=绕Z 轴旋转一周得到的曲面22() x y Z e -+=与平面XOY 围成 的体V 。显然,一方面,该体的体积 22() 2 2 () x y e x v V dxdydz dx dy dz e dx -+∞ ∞ ∞ --∞ -∞ -∞ ===?????? ? 另一方面,根据旋转体的体积公式有:

最新微积分的基本运算

微积分的基本运算

第4章微积分的基本运算 本章学习的主要目的: 1.复习高等数学中有关函数极限、导数、不定积分、定积分、二重积分、级数、方程近似求解、常微分方程求解的相关知识. 2.通过作图和计算加深对数学概念:极限、导数、积分的理解. 3.学会用MatLab软件进行有关函数极限、导数、不定积分、级数、常微分方程求解的符号运算; 4.了解数值积分理论,学会用MatLab软件进行数值积分;会用级数进行近似计算. 1 有关函数极限计算的MatLab命令 (1)limit(F,x,a) 执行后返回函数F在符号变量x趋于a的极限 (2)limit(F,a) 执行后返回函数F在符号变量findsym(F)趋于a的极限 (3)limit(F) 执行后返回函数F在符号变量findsym(F)趋于0的极限 仅供学习与交流,如有侵权请联系网站删除谢谢87

(4)limit(F,x,a,’left’) 执行后返回函数F在符号变量x趋于a的左极限 (5)limit(F,x,a,’right’) 执行后返回函数F在符号变量x趋于a的右极限 注:使用命令limit前,要用syms做相应符号变量说明. 例7 求下列极限 (1)?Skip Record If...? 在MatLab的命令窗口输入: syms x limit((cos(x)-exp(-x^2/2))/x^4,x,0) 运行结果为 ans =-1/12 理论上用洛必达法则或泰勒公式计算该极限: 方法1 ?Skip Record If...? ?Skip Record If...? 方法2 ?Skip Record If...? ?Skip Record If...? (2) ?Skip Record If...? %自变量趋于无穷大,带参数t 在MatLab的命令窗口输入: 仅供学习与交流,如有侵权请联系网站删除谢谢87

微积分求极限的方法

求极限 方法一:直接代入法 例一:=24 例二:= 类似这种你直接把x趋近的值代入到函数里面,就可以直接得到函数的极限了。 知识点1:当x趋近值代入后,分子为0,分母不为0时,函数极限等于0 知识点2:当x趋近值代入后,分子不为0,分母为0时,函数极限等于 方法二:因式分解法(一般是平方差,完全平方,十字相乘) 普通的就是分子分母约去相同的项,因为x是趋近值,所以上下是可以约去的,不用考虑0 的问题。类似= 下面讲个例 知识点3:=(x-y)() 例三:== 方法三:分母有理化(用于分母有根式,分子无根式) 例四:= 方法四:分子有理化(用于分子有根式,分母无根式) 例五:==1 方法五:分子分母同时有理化(用于分子有根式,分母有根式) 例六: 知识点4:(使用这个知识点时,必须注意只能在x趋近于无穷时使用,且使用时只用看各项的最高次数,不用管其他) 例七:=(分子的最高次是两次,大于分母最高次一次,所以直接得出极限为无穷大)

例八:=0 (分子的最高次是一次,小于分母最高次两次,所以直接得出极限为零) 例九:(分子的最高次是一次,等于分母最高次一次,所以直接得出极限为 ) 方法六:通分法(若函数为两个分数相加减时,通常先同分再做处理,一般情况下同分后都要进行因式分解,然后分子分母约去相同的多项式) 例十:- 知识点5:当一个无穷小的函数乘以一个有界函数时,新函数的极限仍为无穷小。(有限个无穷小仍为无穷小=常量与无穷小量的乘积仍是无穷小量) 例十一:=0 函数左边用知识点4得出是无穷小,右边3+cosx是有界函数,所以新函数极限为无穷小,即0 所有求极限的题中,代入x趋近值后,若出现或,都可以使用洛必达法则求解极限。

相关主题
文本预览
相关文档 最新文档