当前位置:文档之家› 生物信息学:功能预测与注释

生物信息学:功能预测与注释

生物信息学课后题及答案-推荐下载

生物信息学课后习题及答案 (由10级生技一、二班课代表整理) 一、绪论 1.你认为,什么是生物信息学? 采用信息科学技术,借助数学、生物学的理论、方法,对各种生物信息(包括核酸、蛋 白质等)的收集、加工、储存、分析、解释的一门学科。2.你认为生物信息学有什么用?对你的生活、研究有影响吗?(1)主要用于: 在基因组分析方面:生物序列相似性比较及其数据库搜索、基因预测、基因组进化和分 子进化、蛋白质结构预测等 在医药方面:新药物设计、基因芯片疾病快速诊断、流行病学研究:SARS 、人类基因组计划、基因组计划:基因芯片。 (2)指导研究和实验方案,减少操作性实验的量;验证实验结果;为实验结果提供更多的支持数据等材料。 3.人类基因组计划与生物信息学有什么关系? 人类基因组计划的实施,促进了测序技术的迅猛发展,从而使实验数据和可利用信息急剧增加,信息的管理和分析成为基因组计划的一项重要的工作 。而这些数据信息的管理、分析、解释和使用促使了生物信息学的产生和迅速发展。 4简述人类基因组研究计划的历程。 通过国际合作,用15年时间(1990-2005)至少投入30亿美元,构建详细的人类基因组遗传图和物理图,确定人类DNA 的全部核苷酸序列,定位约10万基因,并对其他生物进行类似研究。 1990,人类基因组计划正式启动。 1996,完成人类基因组计划的遗传作图,启动模式生物基因组计划。 1998完成人类基因组计划的物理作图,开始人类基因组的大规模测序。Celera 公司加入,与公共领域竞争启动水稻基因组计划。 1999,第五届国际公共领域人类基因组测序会议,加快测序速度。 2000,Celera 公司宣布完成果蝇基因组测序,国际公共领域宣布完成第一个植物基因组——拟南芥全基因组的测序工作。 2001,人类基因组“中国卷”的绘制工作宣告完成。 2003,中、美、日、德、法、英等6国科学家宣布人类基因组序列图绘制成功,人类基因组计划的.目标全部实现。2004,人类基因组完成图公布。 2.我国自主知识产权的主要基因组测序计划有哪些?水稻(2002),家鸡(2004),家蚕(2007),家猪(2012),大熊猫(2010) 2.第一章 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

生物信息学分析实例

ORF预测的可靠性检验 设计引物:Primer Premier 5.0 评估引物质量:Oligo 6.65 或Oligonucleotide Properties Calculator NCBI的BLAST 2 SEQUENCES程序 https://www.doczj.com/doc/725126000.html,/blast/bl2seq/wblast2.cgi 核苷酸序列=>氨基酸序列 制作密码子用法表 蛋白质理化性质分析 在线分析 ExPasy服务器上的ProtParam https://www.doczj.com/doc/725126000.html,/tools/protparam.html 生物学软件 BioEdit-氨基酸成分 Seqtools-亲、疏水性残基,蛋白溶解度 蛋白质功能性区域分析 疏水性分析 在线的ProtScale 程序 https://www.doczj.com/doc/725126000.html,/cgi-bin/protscale.pl 使用生物学软件BioEdit7.05 采用Kyte-Doolittle的TGRESE算法 调整计算窗口大小n=9 附:该参数用于估计每种氨基酸残基的平均显示尺度,有助于对数据进行平滑。 跨膜区分析 在线分析 TMHMM Server v. 2.0 http://www.cbs.dtu.dk/services/TMHMM/ TMpred https://www.doczj.com/doc/725126000.html,/software/TMPRED_form.html TMP http://www.mbb.ki.se/tmap/ 信号肽预测 SignalP 3.0 Server 几种人工神经网络法的组合 G+、G-、真核生物为训练集 http://www.cbs.dtu.dk/services/SignalP/

生物信息学的主要研究内容

常用数据库 在DNA序列方面有GenBank、EMBL和等 在蛋白质一级结构方面有SWISS-PROT、PIR和MIPS等 在蛋白质和其它生物大分子的结构方面有PDB等 在蛋白质结构分类方面有SCOP和CATH等 生物信息学的主要研究内容 1、序列比对(Alignment) 基本问题是比较两个或两个以上符号序列的相似性或不相似性。序列比对是生物信息学的基础,非常重要。两个序列的比对有较成熟的动态规划算法,以及在此基础上编写的比对软件包BLAST和FASTA,可以免费下载使用。这些软件在数据库查询和搜索中有重要的应用。 2、结构比对 基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性。已有一些算法。 3、蛋白质结构预测,包括2级和3级结构预测,是最重要的课题之一 从方法上来看有演绎法和归纳法两种途径。前者主要是从一些基本原理或假设出发来预测和研究蛋白质的结构和折叠过程。分子力学和分子动力学属这一范畴。后者主要是从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构。同源模建(Homology)和指认(Threading)方法属于这一范畴。虽然经过30余年的努力,蛋白结构预测研究现状远远不能满足实际需要。 4、计算机辅助基因识别(仅指蛋白质编码基因)。最重要的课题之一 基本问题是给定基因组序列后,正确识别基因的范围和在基因组序列中的精确位置.这是最重要的课题之一,而且越来越重要。经过20余年的努力,提出了数十种算法,有十种左右重要的算法和相应软件上网提供免费服务。原核生物计算机辅助基因识别相对容易些,结果好一些。从具有较多内含子的真核生物基因组序列中正确识别出起始密码子、剪切位点和终止密码子,是个相当困难的问题,研究现状不能令人满意,仍有大量的工作要做。 5、非编码区分析和DNA语言研究,是最重要的课题之一 在人类基因组中,编码部分进展总序列的3~5%,其它通常称为“垃圾”DNA,其实一点也不是垃圾,只是我们暂时还不知道其重要的功能。分析非编码区DNA 序列需要大胆的想象和崭新的研究思路和方法。DNA序列作为一种遗传语言,不仅体现在编码序列之中,而且隐含在非编码序列之中。 6、分子进化和比较基因组学,是最重要的课题之一 早期的工作主要是利用不同物种中同一种基因序列的异同来研究生物的进化,构建进化树。既可以用DNA序列也可以用其编码的氨基酸序列来做,甚至于可通过相关蛋白质的结构比对来研究分子进化。以上研究已经积累了大量的工作。近年来由于较多模式生物基因组测序任务的完成,为从整个基因组的角度来研究分子进化提供了条件。 7、序列重叠群(Contigs)装配 一般来说,根据现行的测序技术,每次反应只能测出500或更多一些碱基对的序列,这就有一个把大量的较短的序列全体构成了重叠群(Contigs)。逐步把它们拼接起来形成序列更长的重叠群,直至得到完整序列的过程称为重叠群装配。拼接EST数据以发现全长新基因也有类似的问题。已经证明,这是一个NP-完备

生物信息学复习资料全

一、名词解释(31个) 1.生物信息学:广义:应用信息科学的方法和技术,研究生物体系和生物过程 息的存贮、信息的涵和信息的传递,研究和分析生物体细胞、组织、器官的生理、病理、药理过程中的各种生物信息,或者也可以说成是生命科学中的信息科学。狭义:应用信息科学的理论、方法和技术,管理、分析和利用生物分子数据。 2.二级数据库:对原始生物分子数据进行整理、分类的结果,是在一级数据库、 实验数据和理论分析的基础上针对特定的应用目标而建立的。 3.多序列比对:研究的是多个序列的共性。序列的多重比对可用来搜索基因组 序列的功能区域,也可用于研究一组蛋白质之间的进化关系。 4.系统发育分析:是研究物种进化和系统分类的一种方法,其常用一种类似树 状分支的图形来概括各种(类)生物之间的亲缘关系,这种树状分支的图形称为系统发育树。 5.直系同源:如果由于进化压力来维持特定模体的话,模体中的组成蛋白应该 是进化保守的并且在其他物种中具有直系同源性。 指的是不同物种之间的同源性,例如蛋白质的同源性,DNA序列的同源性。(来自百度) 6.旁系(并系)同源:是那些在一定物种中的来源于基因复制的蛋白,可能会 进化出新的与原来有关的功能。用来描述在同一物种由于基因复制而分离的同源基因。(来自百度) 7.FASTA序列格式:将一个DNA或者蛋白质序列表示为一个带有一些标记的 核苷酸或氨基酸字符串。 8.开放阅读框(ORF):是结构基因的正常核苷酸序列,从起始密码子到终止 密码子的阅读框可编码完整的多肽链,其间不存在使翻译中断的终止密码子。(来自百度) 9.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区 域,折叠得较为紧密,各行其功能,称为结构域。 10.空位罚分:序列比对分析时为了反映核酸或氨基酸的插入或缺失等而插入空 位并进行罚分,以控制空位插入的合理性。(来自百度) 11.表达序列标签:通过从cDNA文库中随机挑选的克隆进行测序所获得的部分 cDNA的3’或5’端序列。(来自文献) 12.Gene Ontology 协会: 13.HMM 隐马尔可夫模型:将核苷酸序列看成一个随机序列,DNA序列的编 码部分与非编码部分在核苷酸的选用频率上对应着不同的Markov模型。14.一级数据库:数据库中的数据直接来源于实验获得的原始数据,只经过简单 的归类整理和注释 15.序列一致性:指同源DNA顺序的同一碱基位置的相同的碱基成员, 或者蛋 白质的同一氨基酸位置的相同的氨基酸成员, 可用百分比表示。 16.序列相似性:指同源蛋白质的氨基酸序列中一致性氨基酸和可取代氨基酸所 占的比例。 17.Blastn:是核酸序列到核酸库中的一种查询。库中存在的每条已知序列都将 同所查序列作一对一地核酸序列比对。(来自百度) 18.Blastp:是蛋白序列到蛋白库中的一种查询。库中存在的每条已知序列将逐 一地同每条所查序列作一对一的序列比对。(来自百度)

基因组学与生物信息学教案

《基因组学与生物信息学》教案 授课专业:生物学大类各专业 课程名称:基因组学与生物信息学 主讲教师:夏庆友程道军赵萍徐汉福

课程说明 一、课程名称:基因组学与生物信息学 二、总课时数:36学时(理论27学时实验9学时) 三、先修课程:遗传学、分子生物学、基因工程 四、使用教材: 杨金水. 基因组学. 北京:高等教育出版社,2002. 张成岗. 贺福初, 生物信息学方法与实践. 北京:科学出版社,2002. 五、教学参考书: T.A.布朗著,袁建刚译著,基因组(2rd版),北京:科学出版社,2006. 沈桂芳,丁仁瑞,走向后基因组时代的分子生物学,杭州:浙江教育出版社,2005. 罗静初译,生物信息学概论,北京:北京大学出版社,2002. 六、考核方式:考查 七、教案编写说明: 教案又称课时授课计划,是任课教师的教学实施方案。任课教师应遵循专业教学计划制订的培养目标,以教学大纲为依据,在熟悉教材、了解学生的基础上,结合教学实践经验,提前编写设计好每门课程每个章、节或主题的全部教学活动。教案可以按每堂课(指同一主题连续1~2节课)设计编写。教案编写说明如下: 1、编号:按施教的顺序标明序号。 2、教学课型表示所授课程的类型,请在相应课型栏内选择打“√”。 3、题目:标明章、节或主题。 4、教学内容:是授课的核心。将授课的内容按逻辑层次,有序设计编排,必要时标以“*”、“#”“?” 符号分别表示重点、难点或疑点。 5、教学方式既教学方法,如讲授、讨论、示教、指导等。教学手段指教科书、板书、多媒体、模型、 标本、挂图、音像等教学工具。 6、讨论、思考题和作业:提出若干问题以供讨论,或作为课后复习时思考,亦可要求学生作为作业 来完成,以供考核之用。 7、参考书目:列出参考书籍、有关资料。 8、日期的填写系指本堂课授课的时间。

浅谈生物信息学在生物方面的应用

浅谈生物信息学在生物方面的应用 生物信息学(bioinformaLics)是以核酸和蛋白质等生物大分子数据库及其相关的图书、文献、资料为主要对象,以数学、信息学、计算机科学为主要手段,对浩如烟海的原始数据和原始资料进行存储、管理、注释、加工,使之成为具有明确生物意义的生物信息。并通过对生物信息的查询、搜索、比较、分析,从中获得基因的编码、凋控、遗传、突变等知识;研究核酸和蛋白质等生物大分子的结构、功能及其相互关系;研究它们在生物体内的物质代谢、能量转移、信息传导等生命活动中的作用机制。 从生物信息学研究的具体内容上看,生物信息学可以用于序列分类、相似性搜索、DNA 序列编码区识别、分子结构与功能预测、进化过程的构建等方面的计算工具已成为变态反应研究工作的重要组成部分。针对核酸序列的分析就是在核酸序列中寻找过敏原基因,找出基因的位置和功能位点的位置,以及标记已知的序列模式等过程。针对蛋白质序列的分析,可以预测出蛋白质的许多物理特性,包括等电点分子量、酶切特性、疏水性、电荷分布等以及蛋白质二级结构预测,三维结构预测等。 生物信息学中的主要方法有:序列比对,结构比对,蛋白质结构的预测,构造分子进化树,聚类等。基因芯片是基因表达谱数据的重要来源。目前生物信息学在基因芯片中的应用主要体现在三个方面。 1、确定芯片检测目标。利用生物信息学方法,查询生物分子信息数据库,取得相应的序列数据,通过序列比对,找出特征序列,作为芯片设计的参照序列。 2、芯片设计。主要包括两个方面,即探针的设计和探针在芯片上的布局,必须根据具体的芯片功能、芯片制备技术采用不同的设计方法。 3、实验数据管理与分析。对基因芯片杂交图像处理,给出实验结果,并运用生物信息学方法对实验进行可靠性分析,得到基因序列变异结果或基因表达分析结果。尽可能将实验结果及分析结果存放在数据库中,将基因芯片数据与公共数据库进行链接,利用数据挖掘方法,揭示各种数据之间的关系。 生物信息学在人类基因组计划中也具有重要的作用。 大规模测序是基因组研究的最基本任务,它的每一个环节都与信息分析紧密相关。目前,从测序仪的光密度采样与分析、碱基读出、载体标识与去除、拼接与组装、填补序列间隙,到重复序列标识、读框预测和基因标注的每一步都是紧密依赖基因组信息学的软件和数据库的。特别是拼接和填补序列间隙更需要把实验设计和信息分析时刻联系在一起.拼接与组装中的难点是处理重复序列,这在含有约30%重复序列的人类基因组中显得尤其突出。 人类基因组的工作草图即将完成,因此发现新基因就成了当务之急。使用基因组信息学的方法通过超大规模计算是发现新基因的重要手段,可以说大部分新基因是靠理论方法预测出来的。比如啤酒酵母完整基因组(约1300万bp)所包含6千多个基因,大约60%是通过信息分析得到的。 当人类基因找到之后,自然要解决的问题是:不同人种间基因有什么差别;正常人和病人基因又有什么差别。”这就是通常所说的SNPs(单核苷酸多态性)。构建SNPs及其相关数据库是基因组研究走向应用的重要步骤。1998年国际已开展了以EST为主发现新Spps 的研究。在我国开展中华民族SNPs研究也是至重要的。总之,生物信息学不仅将赋予人们各种基础研究的重要成果,也会带来巨大的经济效益和社会效益。在未来的几年中DNA 序列数据将以意想不到的速度增长,这更离不开利用生物信息学进行各类数据的分析和解释,研制有效利用和管理数据新工具。生物信息学在功能基因组学同样具有重要的应用目前应用最多的是同源序列比较、模式识别以及蛋白结构预测。所谓同源序列,是指从某一共同祖先经趋异进化而形成的不同序列。利用数据库搜索找出未知核酸或蛋白的同源序列,是序列分析的基础[lol。如利用BLASTn和BLASTx两种软件分别进行核苷酸和氨基

生物信息学完整版

一、名词解释 1. 生物信息学: 1)生物信息学包含了生物信息的获取、处理、分析、和解释等在内的一门交叉学科; 2)它综合运用了数学、计算机学和生物学的各种工具来进行研究; 3)目的在于阐明大量生物学数据所包含的生物学意义。 2. BLAST(Basic Local Alignment Search Tool) 直译:基本局部排比搜索工具 意译:基于局部序列排比的常用数据库搜索工具 含义:蛋白质和核酸序列数据库搜索软件系统及相关数据库 3. PSI-BLAST:是一种迭代的搜索方法,可以提高BLAST和FASTA的相似序列发现率。 4. 一致序列:这些序列是指把多序列联配的信息压缩至单条序列,主要的缺点是除了在特 定位置最常见的残基之外,它们不能表示任何概率信息。 5. HMM 隐马尔可夫模型:一种统计模型,它考虑有关匹配、错配和间隔的所有可能的组合 来生成一组序列排列。(课件定义)是蛋白质结构域家族序列的一种严格的统计模型,包括序列的匹配,插入和缺失状态,并根据每种状态的概率分布和状态间的相互转换来生成蛋白质序列。 6. 信息位点:由位点产生的突变数目把其中的一课树与其他树区分开的位点。 7. 非信息位点:对于最大简约法来说没有意义的点。 8. 标度树:分支长度与相邻节点对的差异程度成正比的树。 9. 非标度树:只表示亲缘关系无差异程度信息。 10. 有根树:单一的节点能指派为共同的祖先,从祖先节点只有唯一的路径历经进化到达其 他任何节点。 11. 无根树:只表明节点间的关系,无进化发生方向的信息,通过引入外群或外部参考物种, 可以在无根树中指派根节点。 12. 注释:指从原始序列数据中获得有用的生物学信息。这主要是指在基因组DNA中寻找基 因和其他功能元件(结构注释),并给出这些序列的功能(功能注释)。 13. 聚类分析:一种通过将相似的数据划分到特定的组中以简化大规模数据集的方法。 14. 无监督分析法:这种方法没有内建的分类标准,组的数目和类型只决定于所使用的算法 和数据本身的分析方法。 15. 有监督分析法:这种方法引入某些形式的分类系统,从而将表达模式分配到一个或多个 预定义的类目中。 16. 微阵列芯片:将探针有规律地排列固定于载体上,与标记荧光分子的样品进行杂交,通 过扫描仪扫描对荧光信号的强度进行检测,从而迅速得出所要的信息。 17. 虚拟消化:是基于已知蛋白序列和切断酶的特异性的情况下进行的理论酶切(课件定 义)。是在已知蛋白质序列和蛋白外切酶之类切断试剂的已知特异性的基础上,由计算机进行的一种理论上的蛋白裂解反应。 18. 质谱(MS)是一种准确测定真空中离子的分子质量/电荷比(m/z)的方法,从而使分子质量 的准确确定成为可能。 19. 分子途径是指一组连续起作用以达到共同目标的蛋白质。 20. 虚拟细胞:一种建模手段,把细胞定义为许多结构,分子,反应和物质流的集合体。 21. 先导化合物:是指具有一定药理活性的、可通过结构改造来优化其药理特性而可能导致 药物发现的特殊化合物。就是利用计算机在含有大量化合物三维结构的数据库中,搜索能与生物大分子靶点匹配的化合物,或者搜索能与结合药效团相符的化合物,又称原型物,简称先导物,是通过各种途径或方法得到的具有生物活性的化学结构

最新生物信息学学习心得

生物信息学学习心得 第一篇:生物信息学 生物信息学是上世纪90年代初人类基因组计划(hgp)依赖,随着基因组学、蛋白组学等新兴学科的建立,逐渐发展起来的生物学、数学和计算机信息科学的一门交叉应用学科。目前生物信息学的研究领域主要包括基于生物序列数据的整理和注释、生物信息挖掘工具开发及利用这些工具揭示生物学基础理论知识等领域。生物信息学作为新型交叉应用学科,可以依托本校已有的计算机科学、信息学、生物学和数学等学科优势,充分展现投入少、见效快、起点高的特色,推动学校学科建设和本科教学水平。 本实验指导书中的8个实验均设计为综合性开发实验,面向生物信息学院全体本科学生和研究生,以及全校对生物信息学感兴趣的其他专业学生开放。生物信息学实验室将提供系统的保障,包括采用mail服务器和linux帐号管理等进行实验过程管理和支持。限选《生物信息学及实验》的生物技术专业本科生至少选择其中5个实验,并不少于8个学时,即为课程要求的0.5个学分。其他选修者按照课时和学校相关规定计算创新学分。实验一熟悉生物信息学网站及其数据的生物学意义 实验目的:

培养学生利用互联网资源获取生物信息学研究前沿和相关数据的能力,熟悉生物信息学相关的一些重要国内外网站,及其核酸序列、蛋白质序列及代谢途径等功能相关数据库,学会下载生物相关的信息数据,了解不同的数据文件格式和其中重要的生物学意义。 实验原理: 利用互联网资源检索相关的国内外生物信息学相关网站,如:ncbi、sanger、tigr、kegg、sble、中科院北京基因组研究所、北大生物信息 学中心等,下载其中相关的数据,如fasta、genbank格式的核算和蛋白质序列、pathatdb格式化库文件,并输入blast命令进行计算,获得结果文件。 实验内容: 1. 向网上blast服务器提交序列,得到匹配结果; 2. 本地使用blast,格式化库文件,输入命令行得到匹配结果;

生物信息学发展概况及研究进展

生物信息学发展概况及研究进展 韩龙生物化学与分子生物学2010200531 1 概述 生物信息学是在生命科学、计算机科学和数学的基础上逐步发展而形成的一门新兴的边缘学科,它以核酸和蛋白质为主要研究对象,以数学、计算机科学为主要研究手段,对生物学实验数据进行获取、加工、存储、检索与分析,从而达到揭示数据所蕴含的生物学意义的目的[1]。 生物信息学的发展大致经历了前基因组时代、基因组时代和后基因组时代。目前,它的主要研究内容已经从对DNA和蛋白质序列比较、编码区分析、分子进化转移到大规模的数据整合、可视化,转移到比较基因组学、代谢网络分析、基因表达谱网络分析、蛋白质技术数据分析处理、蛋白质结构与功能分析以及药物靶点筛选等[1]。在后基因组时代的今天,生物信息学已经成为目前极其热门的系统生物学研究的重要手段。 利用各种功能的软件系统平台,目前生物信息学方法主要通过序列比对与分析、功能基因组与基因表达数据的分析、蛋白质结构预测以及基于结构的药物设计等方面应用于各个生命科学研究领域。 1.1序列比对与分析 序列比对是生物信息学的基础,是比较两个或两个以上符号序列的相似性或不相似性。两个序列的比对现在已有较成熟的动态规划算法,以及在此基础上编写的比对软件包——BLAST和FASTA;两个以上序列的多重序列是生物信息学中尚未解决的一个NP完全的组合优化问题,是目前研究的热点[2]。比较经典的算法有SAGA算法[3]、CLUSTAL算法以及隐马尔可夫模型(Hidden Markov Models,HMM)多重序列比对算法,另外,如Notredame等[4]开发的T-Coffee算法、Timo等[5]设计的Kalign算法、张琎等[6]设计的基于GC-GM多序列比对穷举遗传算法,是通过穷举某个特定范围内的所有序列的长度取值,来确定最终最佳比对长度的一种多序列比对算法。这些算法已应用于各种多序列比对软件,并在应用中不断得到优化。 1.2 功能基因组学 在后基因时代的今天,基因组学的研究已从结构基因组学(Structural genomics)转向功能基因组学(Functional genomics)[1] 。功能基因组的任务是进行基因组功能注释(Genome annotation),了解基因功能、认识基因与疾病的关系、掌握基因的产物及其在生命活动中的作用。基因的时空差异表达是功能基因组学研究的理论基础。

生物信息学主要内容和发展前景

生物信息学主要内容和发展前景 学生:xxx (x学院xxxx班,学号xxxxxxxxxxx) 摘要:21世纪是生命科学的世纪,伴随着人类基因组计划的胜利完成,人类基因组以及其它模式生物基因组计划的全面实施,使分子生物数据以爆炸性速度增长。及时、充分、有效地利用网络上不断增长的生物信息数据库资源,已经成为生命科学和生物技术研究开发的必要手段,从而诞生了生物信息学。 关键字:生物信息学;产生;研究内容;展现状;前景 随着生物科学技术的迅猛发展,生物信息数据资源的增长呈现爆炸之势,同时计算机运算能力的提高和国际互联网络的发展使得对大规模数据的贮存、处理和传输成为可能,为了快捷方便地对已知生物学信息进行科学的组织、有效的管理和进一步分析利用,一门由生命科学和信息科学等多学科相结合特别是由分子生物学与计算机信息处理技术紧密结合而形成的交叉学科——生物信息学(Bioinformatics)应运而生,并大大推动了相关研究的开展,被誉为“解读生命天书的慧眼”。 一、生物信息学的产生 21世纪是生命科学的世纪,伴随着人类基因组计划的胜利完成,与此同时,诸如大肠杆菌、结核杆菌、啤酒酵母、线虫、果蝇、小鼠、拟南芥、水稻、玉米等等其它一些模式生物的基因组计划也都相继完成或正在顺利进行。人类基因组以及其它模式生物基因组计划的全面实施,使分子生物数据以爆炸性速度增长。在计算机科学领域,按照摩尔定律飞速前进的计算机硬件,以及逐步受到各国政府重视的信息高速公路计划的实施,为生物信息资源的研究和应用带来了福音。及时、充分、有效地利用网络上不断增长的生物信息数据库资源,已经成为生命科学和生物技术研究开发的必要手段,从而诞生了生物信息学。 二、生物信息学研究内容 (一)序列比对 比较两个或两个以上符号序列的相似性或不相似性。序列比对是生物信息学的基础。两个序列的比对现在已有较成熟的动态规划算法,以及在此基础上编写的比对软件包BALST和FASTA,可以免费下载使用。这些软件在数据库查询和搜索中有重要的应用。有时两个序列总体并不很相似,但某些局部片断相似性很高。Smith-Waterman算法是解决局部比对的好算法,缺点是速度较慢。两个以上序

生物信息学的内容及发展

生物信息学的内容及发展 学生:XXX (X学院XXX班,学号:XXXXXXXXXXXXX) 摘要:生物信息学(Bioinformatics)是80年代末随着人类基因组计划的启动而兴起的一门新的交叉学科,最初常被称为基因组信息学。广义地说,生物信息学是用数理和信息科学的理论、技术和方法去研究生命现象、组织和分析呈现指数增长的生物数据的一门学科。伴随着人类基因组计划的胜利完成,生物信息学的作用愈显重要。 关键字:生物信息学;科学技术;内容;发展 生物信息学以计算机为其主要工具,发展各种软件,对逐日增长的浩如烟海的DNA和蛋白质的序列和结构进行收集、整理、储存、发布、提取、加工、分析和研究,目的在于通过这样的分析逐步认识生命的起源、进化、遗传和发育的本质,破译隐藏在DNA序列中的遗传语言,揭示生物体生理和病理过程的分子基础,为探索生命的奥秘提供最合理和有效的方法或途径。生物信息学已经成为生物医学、农学、遗传学、细胞生物学等学科发展的强大推动力量,也是药物设计、环境监测的重要组成部分。 一、生物信息学的定义与定位 生物信息学(Bioinformatics)是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。它是当今生命科学和自然科学的重大前沿领域之一,同时也将是21世纪自然科学的核心领域之一。其研究重点主要体现在基因组学(Genomics)和蛋白质组学(Proteomics)两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。 生物信息学是在大分子方面的概念型的生物学,并且使用了信息学的技术,这包括了从应用数学、计算机科学以及统计学等学科衍生而来各种方法,并以此在大尺度上来理解和组织与生物大分子相关的信息。(Luscombe,2001) 具体而言,生物信息学作为一门新的学科领域,它是把基因组DNA序列信息分析作为源头,在获得蛋白质编码区的信息后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行必要的药物设计。基因组信息学,蛋白质空间结构模拟以及药物设计构成了生物信息学的3个重要组成部分。从生物信息学研究的具体内容上看,生物信息学应包括这3个主要部分:⑴新算法和统计学方法研究;⑵各类数据的分析和解释;⑶研制有效利用和管理数据新工具。 生物信息学是一门利用计算机技术研究生物系统之规律的学科。 目前的生物信息学基本上只是分子生物学与信息技术(尤其是因特网技术)的结合体。生物信息学的研究材料和结果就是各种各样的生物学数据,其研究工具是计算机,研究方法包括对生物学数据的搜索(收集和筛选)、处理(编辑、整理、管理和显示)及利用(计算、模拟)。 二、生物信息学的研究内容和方向 生物信息学的主要研究内容:基因组学 - 蛋白质组学- 系统生物

蛋白质结构与功能的生物信息学研究

实验名称:蛋白质结构与功能的生物信息学研究 实验目的:1.掌握运用BLAST工具对指定蛋白质的氨基酸序列同源性搜索的方法。 2.掌握用不同的工具分析蛋白质的氨基酸序列的基本性质 3掌握蛋白质的氨基酸序列进行三维结构的分析 4.熟悉对蛋白质的氨基酸序列所代表蛋白的修饰情况、所参与的 代谢途径、相互作用的蛋白,以及与疾病的相关性的分析。实验方法和流程: 一、同源性搜索 同源性从分子水平讲则是指两个核酸分子的核苷酸序列或两个蛋白质分子的氨基酸序列间的相似程度。BLAST工具能对生物不同蛋白质的氨基酸序列或不同的基因的DNA序列极性比对,并从相应数据库中找到相同或相似序列。对指定的蛋白质的氨基酸序列进行同源性搜索步骤如下: ↓ 登录网址https://www.doczj.com/doc/725126000.html,/blast/ ↓ 输入序列后,运行blast工具 ↓ 序列比对的图形结果显示

序列比对的图形结果:用相似性区段(Hit)覆盖输入序列的范围判断两个序列 的相似性。如果图形中包含低得分的颜色(主要是红色) 区段,表明两序列的并非完全匹配。 ↓ 匹配序列列表及得分

各序列得分 可选择不同的比对工具 备注: Clustal是一款用来对()的软件。可以用来发现特征序列,进行蛋白分类,证明序列间的同源性,帮助预测新序列二级结构与三级结构,确定PCR引物,以及 在分子进化分析方面均有很大帮助。Clustal包括Clustalx和Clustalw(前者是 图形化界面版本后者是命令界面),是生物信息学常用的多序列比对工具。 该序列的比对结果有100条,按得分降序排列,其中最大得分2373,最小得分 分为1195. ↓ 详细的比对序列的排列情况 第一个匹配 序列 第一个序列的匹配率为100% Score表示打分矩阵计算出来的值,由搜索算法决定的,值越大说明匹配程度

生物信息学试题精编版

物信息学试题 '0— GE GROUP system office room [GEIHUA16H-GEIHUA GEIHUA8Q8-

UTR的含义是(B )o A.编码区 B.非编码区C低复杂度区域 D.开放阅读框 motif的含义是(D)。 A.基序 B.跨叠克隆群 C.碱基对 D.结构域 algorithm 的含义是(B )。 A.登录号 B.算法 C. 比对 D.类推 RGP 是(D ) o A.在线人类孟德尔遗传数据 B.国家核酸数据库 C.人类基因组计划 D.水稻基因组计划 下列Fasta格式正确的是(B )。 A. seql: agcggatccagacgctgcgtttgctggctttgatgaaaactctaactaaacactccctta B. >seql agcggatccagacgctgcgtttgctggctttgatgaaaactctaactaaacactccctta C. seql:agcggatccagacgctgcgtttgctggctttgatgaaaactctaactaaacactccctta D. >seqlagcggatccagacgctgcgtttgctggctttgatgaaaactctaactaaacactccctta 如果我们试图做蛋白质亚细胞定位分析,应使用(D) o

mRNA 5Z端有(A )结构。 A.帽子 B.尾巴 C.帽子和尾巴 D.多聚核甘酸 利用中国知网文献数据库(中国知网)查找论文题目是“扩张蛋白家族蛋白序列分析”发表在期刊“生物信息学” 2008年第7卷第3期上(C) o A.第3-5 页 B.第93-95 页 C.第193-195 页 D.第293-295 页 目前应用于基因芯片表达数据统计分析的主要方法是(C) O A.卡方检验 B.相关分析 C.聚类分析 D.正态性分布检验 SAGE的含义是(A )。 A.基因表达连续分析 B.聚丙烯酰胺凝胶电泳 C.基因组分析 D.双 向电泳分析 domain的含义是(D)。 A.基序 B.跨叠克隆群 C.碱基对 D.结构域 mRNA 3,端有(B )结构。 A.帽子 B.尾巴 C.帽子和尾巴 D.多聚胞喀咤 NCBI中人类无冗余基因数据库是(A )o alignment 的含义是(C)。 A. UniGene B. UniPro C. UniRef D. URF

蛋白质抗原的表位分析

有鉴定表位的相关技术和文献。也有一些表位预测软件。 一般来说,目前研究主要集中在线性表位上,而构象表位的预测和鉴定方法目前不是很成熟。 找到一个帖子,楼主可以参考: 1、B细胞表位预测对于多种免疫学研究是必不可少的。针对不同的蛋白,应选择不同的方法。一般来说,蛋白质的C端具有较好的亲水性、表面可及性和柔性,所以是很好的抗原决定簇区域。本课题选用的蛋白质C-末端序列标签都是唯一的、或是其家族中的几个成员所共有的。在人蛋白质中,约81%的蛋白质其C末端的5个氨基酸残基的小肽是该蛋白质所特有的,制备针对蛋白质C末端小肽的抗体,常常能得到特异性识别该全蛋白的抗体。另外,蛋白的二级结构是B细胞表位计算机预测的重要参数之一,β转角为凸出结构,多出现在蛋白质抗原表面,有利于与抗体结合,较可能成为抗原表位。而α螺旋和β折叠结构规则不易变形,较难结合抗体,一般不作为抗原表位。含有5个以上的氨基酸残基的转角又常称为环(loop)。以往的研究表明,蛋白表面的loop区可能为功能性抗体的识别位点,特异性好,可及性强。本课题选用的HPO、G-CSF、HSA空间结构已明确,所以直接选择loop区或无规卷曲作为B细胞表位。 举例: 人Pif1基因编码至少两种蛋白亚型,分子量分别为74kDa和80kDa,与酵母具有高度的同源性,α型和β型Pif1只有C末端不同[20>,其余部分完全相同,并且二者的C末端在蛋白数据库中都是唯一的,选择α型和β型的C末端作为B细胞表位,既满足特异性的需要,也能区分亚型。 GPAA1是一种跨膜蛋白,原核表达非常困难,形成包涵体,且包涵体难以溶解和复性。对这一类型的蛋白,非常适合选择其特有的B细胞表位免疫动物,来最终制备识别全蛋白质的抗体。ABCpred是基于人工神经网络模型的线性B细胞表位预测工具,该系统检验了源于Bcipep数据库的700个非冗余B细胞表位和源于Swiss-Prot 数据库的700个长度为10~20个氨基酸的随机选择多肽,准确率近66%。Bepipred 结合隐马尔科夫模型和亲水性参数评分预测线性B细胞表位,AROC评分达到0.671。将两种预测方法得到的预测结果进行比较,其共有的预测表位是真正B细胞表位的几率更大,如果能进一步结合蛋白质二级结构预测结果,就可以选出可信度更高的B细胞表位。如何选择有效的B细胞表位是能否实现无完整蛋白质抗原条件下抗体制备的关键。 2、对于B细胞表位的选择,对于已有空间结构信息的蛋白质抗原,直接选择蛋白分子表面的loop区或无规卷曲区域的小肽序列作为候选B细胞表位;对于缺乏空间结构信息的蛋白质抗原,需要根据蛋白质抗原的特点具体分析。若蛋白质抗原C末端的序列亲水性好,可以选择C末端的6~10个氨基酸的序列作为候选B细胞表位,并且最好该序列为该蛋白质所特有;也可采用B细胞表位预测程序进行分析,选择不同程序预测的共有B细胞表位;对于同源性很高的家族蛋白,根据序列比对结果选择差异较大的区域,并且所选序列应该符合B细胞表位的特征。基于以上原则,本实验选择了10个蛋白的14个表位,并对其中的12个表位进行了验证。 3、对于B细胞表位的选择, (1)对于空间结构已知的蛋白质,直接选择蛋白分子表面的loop区或无规卷曲区域的小肽序列。 (2)对于空间结构未知的蛋白质,可采用以下策略进行选择:

六生物信息学和进化研究方法

生物信息学和进化的研究方法 蛋白质序列清楚地反映出生物的进化关系。Jane Goodall和一只黑猩猩互动提示人类与黑猩猩亲缘关系近。血红蛋白的氨基酸序列也证明人类与黑猩猩的亲缘关系。在血红蛋白153个氨基酸残基中,人血红蛋白(红色)与黑猩猩血红蛋白(蓝色)只有一个氨基酸残基不同。[左边, Kennan Ward/Corbis.] 如同人类家族的成员一样,分子家族的成员有一些共同的特征。比较蛋白质的三维结构(即与蛋白功能关系最密切的参数),我们很容易鉴定蛋白家族成员。我们在蛋白质折叠章节介绍过的牛核酸酶,其三维结构与人核酸酶的三维结构颇为类似(图6.1)。虽然这种类似性在意料之中(因为这两个蛋白质的功能是一样的),但是有些情况下这种比较却获得了我们意料之外的结果。例如血管生成素(angiogenin)是能够刺激血管生成的蛋白质。但是血管生成素的三维结构与核酸酶三维结构非常相似,说明血管生成素和核酸酶属于同一蛋白家族(图6.2)。因此它们肯定来自同一祖先分子。 图6.1 牛和人核酸酶结构。功能类似性的蛋白质常常具有结构类似性。[Drawn from 8RAT.pdb. and 2RNF.pdb] 图6.2 血管生成素的结构。该蛋白质能促进血管生长,具有与核酸酶非常相似的三维结构。 遗憾的是,知道三维结构的蛋白质数量有限。我们知道很多蛋白质的编码基因序列或氨基酸序列(得益于DNA克隆和DNA序列测定)。在蛋白质氨基酸序列水平就能观测到蛋白质的进化关系。例如牛核糖核酸酶和血管生成素的氨基酸序列有35%的氨基酸残基是一致的。那么这种相似性水平是否足以保证蛋白质的进化关系?如果不够,需要多高的相似性才能说明蛋白质有进化关系?本章介绍氨基酸序列比较的方法和推测蛋白质进化关联的方法。 序列比较已经成为现代生物化学研究的最有力工具之一。最新鉴定的新序列与数据库比较,确定与该序列相关的分子。利用这些信息,能够研究具有这种新近测序分子功能和机制。如果三维结构也清楚,我们能比较三维结构、证实序列比较的结论,还能揭示那些序列比较没有发现的成员。 考察现有蛋白序列的脚印,生化学家成了分子考古学家,能了解分子进化史所发生的事件。序列比较能够确定进化途径、估计特定进化事件发生的时间。利用这些信息能够构建特定蛋白质或核酸从古生菌和细菌到真核生物(包括人类)的进化树。也可以用实验方法研究分子进化。有些化石的DNA分子也可以进行PCR扩增和测序,直接观察古代的分子序列。此外科研人员也可以进行一些核酸复制实验观察实验室的分子进化。这些研究的结果能揭示更多的分子进化机制。 6.1 同源物来自同一祖先 生物化学进化的研究主要是确定蛋白质、其它生物分子、以及生物化学途径如何随着时间发生的变化。来自同一祖先的两个物体就是同源关系。同源(homologus)分子或同源物(homologs)可以分为两类(图6.3)。侧向同源物(paralogs)指同种生物的同源物。直向同源物(orthologs)指不同物种间具有非常相似甚至一致功能的同源物。了解分子间的同源性能够揭示分子的进化历史和它们的生物功能。如果新近测序的蛋白质与功能已知蛋白具有同源性,那么这个新近测序的蛋白质也可能具有这样的生物功能。 如何确定人类两种蛋白质具有侧向同源?如何确定人类蛋白和酵母蛋白具有直向同源?我们在6.2节要介绍这方面的内容。核酸序列或氨基酸序列之间有显著的类似性常常表

B细胞表位预测

1、B细胞表位预测对于多种免疫学研究是必不可少的。针对不同的蛋白,应选择不同的方 法。一般来说,蛋白质的C端具有较好的亲水性、表面可及性和柔性,所以是很好的抗原决定簇区域。本课题选用的蛋白质C-末端序列标签都是唯一的、或是其家族中的几个成员所共有的。在人蛋白质中,约81%的蛋白质其C末端的5个氨基酸残基的小肽是该蛋白质所特有的,制备针对蛋白质C末端小肽的抗体,常常能得到特异性识别该全蛋白的抗体。另外,蛋白的二级结构是B细胞表位计算机预测的重要参数之一,β转角为凸出结构,多出现在蛋白质抗原表面,有利于与抗体结合,较可能成为抗原表位。而α螺旋和β折叠结构规则不易变形,较难结合抗体,一般不作为抗原表位。含有5个以上的氨基酸残基的转角又常称为环(loop)。以往的研究表明,蛋白表面的loop区可能为功能性抗体的识别位点,特异性好,可及性强。本课题选用的HPO、G-CSF、HSA空间结构已明确,所以直接选择loop区或无规卷曲作为B细胞表位。 举例: 人Pif1基因编码至少两种蛋白亚型,分子量分别为74kDa和80kDa,与酵母具有高度的同源性,α型和β型Pif1只有C末端不同[20],其余部分完全相同,并且二者的C末端在蛋白数据库中都是唯一的,选择α型和β型的C末端作为B细胞表位,既满足特异性的需要,也能区分亚型。 GPAA1是一种跨膜蛋白,原核表达非常困难,形成包涵体,且包涵体难以溶解和复性。 对这一类型的蛋白,非常适合选择其特有的B细胞表位免疫动物,来最终制备识别全蛋白质的抗体。ABCpred是基于人工神经网络模型的线性B细胞表位预测工具,该系统检验了源于Bcipep数据库的700个非冗余B细胞表位和源于Swiss-Prot数据库的700个长度为10~20个氨基酸的随机选择多肽,准确率近66%。Bepipred结合隐马尔科夫模型和亲水性参数评分预测线性B细胞表位,AROC评分达到0.671。将两种预测方法得到的预测结果进行比较,其共有的预测表位是真正B细胞表位的几率更大,如果能进一步结合蛋白质二级结构预测结果,就可以选出可信度更高的B细胞表位。如何选择有效的B细胞表位是能否实现无完整蛋白质抗原条件下抗体制备的关键。 2、对于B细胞表位的选择,对于已有空间结构信息的蛋白质抗原,直接选择蛋白分子 表面的loop区或无规卷曲区域的小肽序列作为候选B细胞表位;对于缺乏空间结构信息的蛋白质抗原,需要根据蛋白质抗原的特点具体分析。若蛋白质抗原C末端的序列亲水性好,可以选择C末端的6~10个氨基酸的序列作为候选B细胞表位,并且最好该序列为该蛋白质所特有;也可采用B细胞表位预测程序进行分析,选择不同程序预测的共有B细胞表位;对于同源性很高的家族蛋白,根据序列比对结果选择差异较大的区域,并且所选序列应该符合B细胞表位的特征。基于以上原则,本实验选择了10个蛋白的14个表位,并对其中的12个表位进行了验证。 3、对于B细胞表位的选择, (1)对于空间结构已知的蛋白质,直接选择蛋白分子表面的loop区或无规卷曲区域的小肽序列。 (2)对于空间结构未知的蛋白质,可采用以下策略进行选择: A:若蛋白质C末端序列的亲水性好,可以选择C末端的6~10氨基酸的序列作为候选B细胞表位,最好该序列为该蛋白质所特有。可采用SIB BLASTNetwork Service (http://www.expasy.ch/tools/blast/)的BLAST软件进行比对,数据库选择homo sapiens; B:采用B细胞表位预测程序ABCpred和BepiPred等进行表位预测,选择不同程序预测的共有B细胞表位;

相关主题
文本预览
相关文档 最新文档