当前位置:文档之家› 基于柔性双足信息的助力机器人行走控制方法研究

基于柔性双足信息的助力机器人行走控制方法研究

基于柔性双足信息的助力机器人行走控制方法研究
基于柔性双足信息的助力机器人行走控制方法研究

四足机器人研究现状及其展望

四足步行机器人研究现状及展望 (郑州轻工业学院机电工程学院河南郑州) 摘要:文章对国内外四足步行机器人研究现状进行了综述,归纳分析了四足机器人质心距离测量系统研究的关键技术,并展望了四足机器人的发展趋势。 关键词:四足步行机器人;研究现状;关键技术;发展趋势 引言:目前,常见的步行机器人以两足式、四足式、六足式应用较多。其中,四足步行机器人机构简单且灵活,承载能力强、稳定性好,在抢险救灾、探险、娱乐及军事等许多方面有很好的应用前景,其研制工作一直受到国内外的重视。1国内外研究四足步行机器人的历史和现状 20世纪60年代,四足步行机器人的研究工作开始起步。随着计算机技术和机器人控制技术的研究和应用,到了 20 世纪 80 年代,现代四足步行机器人的研制工作进入了广泛开展的阶段。 世界上第一台真正意义的四足步行机器人是由 Frank 和 McGhee 于 1977 年制作的。该机器人具有较好的步态运动稳定性,但其缺点是,该机器人的关节是由逻辑电路组成的状态机控制的,因此机器人的行为受到限制,只能呈现固定的运动形式[1]。 20 世纪 80、90 年代最具代表性的四足步行机器人是日本 Shigeo Hirose 实验室研制的 TITAN 系列。1981~1984年Hirose教授研制成功脚部装有传感和信号处理系统的TITAN-III[2]。它的脚底部由形状记忆合金组成,可自动检测与地面接触的状态。姿态传感器和姿态控制系统根据传感信息做出的控制决策,实现在不平整地面的自适应静态步行。 TITAN-Ⅵ[3]机器人采用新型的直动型腿机构,避免了上楼梯过程中各腿间的干涉,并采用两级变速驱动机构,对腿的支撑相和摆动相分别进行驱动。

(完整版)基于单片机控制的双足行走机器人的设计

基于单片机控制的双足行走机器人设计 摘要:21世纪机器人发展日新月异,从传统的履带式机器人到如今的双足行走机器人,机器人的应用范围越来越广。本系统以单片机(STC89c52)为系统的中央控制器,以单片机(STC12c5410ad)为舵机控制模块。将中央控制器与舵机控制器,舵机,各类传感设备及受控部件等有机结合,构成整个双足行走机器人,达到行走、做动作的目的。单片机中央控制器与舵机控制器以串口通信方式实现。系统的硬件设计中,对主要硬件舵机控制器和STC89C52单片机及其外围电路进行了详细的讲述。硬件包括舵机控制器,STC12C5410AD 单片机,按键,各种传感器和数据采集与处理单元。软件包括单片机初始化、主程序、信号采集中断程序、通过串口通讯的接收和发送程序。论文的最后部分以双足行走机器人为基础,结合传感器,外围控制设备组成控制系统,并给出了此系统应用领域的一些探讨和研究。 关键词:单片机;舵机控制; STC12C5410AD

Bipedal robot design based on MCU Abstract:In the 21st century robot development changes with each passing day, from the traditional crawler robot to now bipedal robot, the robot's application scope is more and more widely.This system by single chip microcomputer (STC89c52) as the central controller in the system, STC12c5410ad MCU as the steering gear control module. The central controller and the servo controller, Steering gear, all kinds of sensing and control components such as organic combination, make up the whole bipedal robot, the purpose of to walk, do the action.Single chip microcomputer central controller and the servo controller to realize serial communication way.System hardware design, the main hardware servo controller and STC89C52 single-chip microcomputer and peripheral circuit in detail. Hardware including servo controller, STC12C5410AD micro controller, buttons, all kinds of sensor and data acquisition and processing unit. Software includes MCU initialization, the main program, and interrupts program signal collection, through a serial port communication to send and receive procedures. The last part of the paper on the basis of bipedal robot, combined with the sensor, the peripheral control device of control system, this system is also given some discussions and research in the field of application. Keywords:MCU; Servo Control; STC12C5410AD

四足机器人步行腿运动学正反解

四足机器人步行腿的运动学正反解摘要:本文设计的步行腿具有3个驱动关节,分析了该步行机器人的机构及其等效简化,给出了运动学正反解,正解问题要比反解问题复杂很多。该分析方法准确率高,为步行腿的运动空间、轨迹规划和位置控制奠定了基础。 关键词:步行腿运动学正反解 abstract: in this paper, the design of walking legs with three drive joint analysis of the institutions of the walking robot and its equivalent simplified kinematics and inverse solution positive solution of the problem is much more complex than the inverse solution. the analytical method with high accuracy, and laid the foundation for walking space for the movement of the legs, trajectory planning and position control. keywords: walking legs kinematics positive and negative solution 0 前言 四足机器人的行走机构是步行腿,它是步行机器人中最为重要也是最复杂的构件[1],步行腿的灵活度这届决定了步行机器人的行走姿态和完成任务的复杂程度。本文设计的步行腿具有三个驱动关节,采用混连机构设计。给出了步行腿的运动正解和反解,是整个四足步行机器人系统设计的基础,也是机器人运动空间分析和尺

双足步行机器人设计及运动控制

目录 第1章序言 (2) 1.1 双足机器人现状 (2) 1.2 技能综合训练意义 (2) 1.3 技能训练的内容 (2) 第2章元件选择、结构设计 (3) 2.1元件选择 (3) 2.2结构设计三维设计图 (4) 2.2.1零件三位模型以及装配 (4) 2.2.2装配三维模型 (7) 第3章控制系统设计 (10) 第4章系统软件编程与仿真 (12) 第5章结论...................................................................... 错误!未定义书签。参考文献 (17)

第1章序言 1.1双足机器人现状 随着世界第一台工业机器人1962年在美国诞生,机器人已经有了三十多年的发展史。三十多年来,机器人由工业机器人到智能机器人,成为21世纪具有代表性的高新技术之一,其研究涉及的学科涵盖机械、电子、生物、传感器、驱动与控制等多个领域。 世界著名机器人学专家,日本早稻田大学的加藤一郎教授说过:“机器人应当具有的最大特征之一是步行功能。”双足机器人属于类人机器人,典型特点是机器人的下肢以刚性构件通过转动副联接,模仿人类的腿及髋关节、膝关节和踝关节,并以执行装置代替肌肉,实现对身体的支撑及连续地协调运动,各关节之间可以有一定角度的相对转动。 双足机器人不仅具有广阔的工作空间,而且对步行环境要求很低,能适应各种地面且具有较高的逾越障碍的能力,其步行性能是其它步行结构无法比拟的。研究双足行走机器人具有重要的意义 1.2技能综合训练意义 技能训练是在学生修完除毕业设计外全部理论和时间课程以后的一次综合性时间教学环节,其目的和意义在于: 通过技能训练,了解机器人机构及控制系统设计的基础知识; 掌握机器人系统中元部件的正确选择方法和特性参数的确定; 培养学生对所学知识的综合应用,理论联系实际的能力; 培养学生的动手能力和实际操作能力; 1.3技能训练的内容 1、主要内容: 1)、机器人结构设计; 2)、控制系统软硬件设计与仿真; 3)、八自由度机器人运动控制。 2、训练形式 学生以小组为单位,集体讨论确定整体方案;指导教师给出实训方向,技术指标等,协助学生完成训练任务。

自做六自由度双足步行机器人

自制六自由度双足机器人 一、制作六自由度双足机器人步骤: 1、确定舵机:舵机的好坏直接影响机器人的效果; 2、自制舵机后盖:它是连接舵机和U型架的重要组成部件;(买一 个标准的舵机后盖是最好不过,但你的动手能力 和思考问题解决问题的能力就没有提高,因此我 选择自制一个舵机后盖) ①选择铁皮为制作材料; ②测量舵机尺寸,截取合适铁皮条(尺寸为20mm*116mm); ③折弯,注意左右对称; ④确定固定用定位孔的位置,并使用1mm钻头打孔; ⑤打固定用螺丝孔(使用3mm钻头); ⑥确定舵机输出同轴定位孔的位置,并使用1mm钻头打孔; ⑦打舵机输出同轴螺丝孔(使用3mm钻头); ⑧打舵机后盖过线孔(6mm*8mm); 注:脚上的舵机后盖比较特殊,要考虑它要和脚底板相连,我的解决方法是在上述舵机后盖的基础上,增加宽度,并折弯,打孔,同脚底板相连。 3、自制U型架:在双足机器人中,舵机相当于人的关节,那U型架 就是人的骨骼。U型架的制作:(以下是我的设计, 可根据具体需求,自行设计尺寸) ①选择铝合金板(厚度一般为1.5mm);

②将铝合金板切成细条(尺寸为20mm*116mm); ③折弯,注意左右高度相等; ④打定位孔(使用1mm钻头),注意孔的位置以U型架的“U” 字底为基准; ⑤打螺丝孔(使用3mm钻头); ⑥磨削加工。 4、自制脚底板:脚底板的设计可以多种多样,但要保证一点,即机 器人抬脚走路时,要保证重心用你设计的脚底板可 以承受得住。 5、自制机器人腰部:其实就是连接两条腿的部件,长宽是根据设计 的脚底板的大小确定的。 二、需要注意的问题: 1、机器人左右质量要保证尽量一致,否则走路会有偏差。 2、制作部件时,要注意基准。 三、软件编程: 软件编程,主要是靠控制舵机旋转不同的角度。

北航adams实验报告-四足机器人

成绩 采用ADAMS和MATLAB建立机械装置或机电装置虚拟样机 ——四足机器人建模与仿真 实验报告 院(系)名称自动化科学与电气工程 专业名称控制工程 学生学号0 学生姓名0 指导教师0 2016年4月

一、实验背景 1. 参照自然界四足哺乳动物如猫狗的运动形式,对四足机器人进行建模,结合虚拟样机技术软件ADAMS,对四足机器人进行步态规划、运动学和动力学分析,使四足机器人模型良好运行。 2. 利用拉格朗日能量法建立四足机器人坐标系并对四足机器人进行运动学分析。 3.在Solidworks中建立四足机器人三维模型,之后将三维模型导入至虚拟样机软件ADAMS中,在ADAMS中建立虚拟样机模型,并利用样条曲线来规划机器人的运动轨迹,进行仿真,实现机器人的直线行走。 二、实验原理 2.1 研究对象背景分析 移动机器人按移动方式大体分为两大类;一是由现代车辆技术延伸发展成轮式移动机器人(包括履带式);二是基于仿生技术的运动仿生机器人。运动仿生机器人按移动方式分为足式移动、蠕动、蛇行、游动及扑翼飞行等形式,其中足式机器人是研究最多的一类运动仿生机器人。 自然环境中有约50%的地形,轮式或履带式车辆到达不了,而这些地方如森林,草地湿地,山林地等地域中拥有巨大的资源,要探测和利用且要尽可能少的破坏环境,足式机器人以其固有的移动优势成为野外探测工作的首选,另外,如海底和极地的科学考察和探索,足式机器人也具有明显的优势,因而足式机器人的研究得到世界各国的广泛重视。现研制成功的足式机器人有1足,2足,4足,6足,8足等系列,大于8足的研究很少。 曾长期作为人类主要交通工具的马,牛,驴,骆驼等四足动物因其优越的野外行走能力和负载能力自然是人们研究足式机器人的重点仿生对象。因而四足机器人在足式机器人中占有很大的比例,四足机器人的研究深具社会意义和实用价值。 2.2 研究对象数学模型分析 四足机器人整体结构由躯体、左前腿、右前腿、左后腿、右后腿五部分组成。

工业机器人控制的功能组成和分类

1、对机器人控制系统的一般要求 机器人控制系统就是机器人的重要组成部分,用于对操作机的控制,以完成特定的工作任务,其基本功能如下: ·记忆功能:存储作业顺序、运动路径、运动方式、运动速度与与生产工艺有关的信息。 ·示教功能:离线编程,在线示教,间接示教。在线示教包括示教盒与导引示教两种。 ·与外围设备联系功能:输入与输出接口、通信接口、网络接口、同步接口。 ·坐标设置功能:有关节、绝对、工具、用户自定义四种坐标系。 ·人机接口:示教盒、操作面板、显示屏。 ·传感器接口:位置检测、视觉、触觉、力觉等。 ·位置伺服功能:机器人多轴联动、运动控制、速度与加速度控制、动态补偿等。 ·故障诊断安全保护功能:运行时系统状态监视、故障状态下的安全保护与故障自诊断。 2.机器人控制系统的组成(图1) (1)控制计算机控制系统的调度指挥机构。一般为微型机、微处理器有32位、64位等,如奔腾系列CPU以及其她类型CPU。 (2)示教盒示教机器人的工作轨迹与参数设定,以及所有人机交互操作,拥有自己独立的CPU以及存储单元,与主计算机之间以串行通信方式实现信息交互。 (3)操作面板由各种操作按键、状态指示灯构成,只完成基本功能操作。 (4)硬盘与软盘存储存储机器人工作程序的外围存储器。 (5)数字与模拟量输入输出各种状态与控制命令的输入或输出。 (6)打印机接口记录需要输出的各种信息。 (7)传感器接口用于信息的自动检测,实现机器人柔顺控制,一般为力觉、触觉与视觉传感器。 (8)轴控制器完成机器人各关节位置、速度与加速度控制。 (9)辅助设备控制用于与机器人配合的辅助设备控制,如手爪变位器等。 (10)通信接口实现机器人与其她设备的信息交换,一般有串行接口、并行接口等。 (11)网络接口 1)Ethernet接口:可通过以太网实现数台或单台机器人的直接PC通信,数据传输速率高达10Mbit/s,可直接在PC上用windows库函数进行应用程序编程之后,支持TCP/IP通信协议,通过Ethernet接口将数据及程序装入各个机器人控制器中。 2)Fieldbus接口:支持多种流行的现场总线规格,如Device net、AB Remote I/O、Interbus-s、profibus-DP、M-NET 等。 3.机器人控制系统分类 ·程序控制系统:给每一个自由度施加一定规律的控制作用,机器人就可实现要求的空间轨迹。 ·自适应控制系统:当外界条件变化时,为保证所要求的品质或为了随着经验的积累而自行改善控制品质,其过程就是基于操作机的状态与伺服误差的观察,再调整非线性模型的参数,一直到误差消失为止。这种系统的结构与参数能随时间与条件自动改变。 人工智能系统:事先无法编制运动程序,而就是要求在运动过程中根据所获得的周围状态信息,实时确定控制作用。

国内外四足机器人发展及普及

摘要:对四足机器人研究应用的历史与现状做了介绍,列举出国内外主要研究机构及其主要研究成果,对四足机器人研究的热点和难点问题进行了归纳总结,并展望了四足机器人的发展趋势。 关键词:四足机器人;研究与应用;历史与现状;难点与热点;发展趋势 1. 引言 移动机器人按移动方式大体分为两大类;一是由现代车辆技术延伸发展成轮式移动机器人(包括履带式);二是基于仿生技术的运动仿生机器人。运动仿生机器人按移动方式分为足式移动、蠕动、蛇行、游动及扑翼飞行等形式,其中足式机器人是研究最多的一类运动仿生机器人。 自然环境中有约50%的地形,轮式或履带式车辆到达不了,而这些地方如森林,草地湿地,山林地等地域中拥有巨大的资源,要探测和利用且要尽可能少的破坏环境,足式机器人以其固有的移动优势成为野外探测工作的首选,另外,如海底和极地的科学考察和探索,足式机器人也具有明显的优势,因而足式机器人的研究得到世界各国的广泛重视。现研制成功的足式机器人有1足,2足,4足,6足,8足等系列,大于8足的研究很少。 曾长期作为人类主要交通工具的马,牛,驴,骆驼等四足动物因其优越的野外行走能力和负载能力自然是人们研究足式机器人的重点仿生对象。因而四足机器人在足式机器人中占有很大的比例。长期从事足式机器人研究的日本东京工业大学的広濑茂男等学者认为:从稳定性和控制难易程度及制造成本等方面综合考虑,四足机是最佳的足式机器人形式[1],四足机器人的研究深具社会意义和实用价值。 2. 国内外四足机器人研究历史与现状 四足机器人的研究可分为早期探索和现代自主机器人研究两个阶段。 2.1 四足机器的早期探索 中国古代的“木牛流马”以及国外十九世纪由Rygg设计的“机械马”,是人类对足式行走行机器的早期探索。而Muybridge在1899年用连续摄影的方法研究动物的行走步态,则是人们研究足式机器人的开端。20世纪60年代,机器人进入了以机械和液压控制实现运动的发展阶段。美国学者Shigley(1960)和Baldwin(1966)都使用凸轮连杆机构设计了机动的步行车[2]。这一阶段的研究成果最具代表性的是美国的Mosher于1968年设计的四足车“Walking Truck” [3](图1)。 图1 Walking truck 80年代,随着计算机技术和机器人控制技术的广泛研究和应用,真正进入了具有自主行为的现代足式机器人的广泛研究阶段。

双足机器人制作及其步态运行

双足机器人制作及其步态运行 一、实验目的 1 . 掌握实验室设备使用方法 2 . 学会AutoCAD知识并运用以及学习arduino单片机的基本开发 3 . 了解双足机器人平衡控制方法。 二、原理说明 1.Arduino使用说明 Arduino是一款便捷灵活、方便上手的开源电子原型平台。包含硬件(各种型号的Arduino板)和软件(Arduino IDE)。它构建于开放原始 码simple I/O介面版,并且具有使用类似Java、C语言的 Processing/Wiring开发环境。主要包含两个主要的部分:硬件部分是可 以用来做电路连接的Arduino电路板;另外一个则是Arduino IDE,你的 计算机中的程序开发环境。你只要在IDE中编写双足步态程序代码,将 程序上传到Arduino电路板后,程序便会告诉Arduino电路板要做怎样 的步态运行。 2 . 双足步态算法 双足机器人平衡控制方法其中的“静态步行”(static walking),这种方法是在机器人步行的整个过程中,重心(COG,Center of Gravity)在机器人底部水平面的投影一直处在不规则的支撑区域(support region)内,这种平衡控制方法的好处是整个机器人行走的过程中,保证机器人 稳定行动,不会摔倒。但是这个平衡控制方法缺点是行动速度非常缓慢 (因为整个过程中重心的投影始终位于支撑区域)。另一种使用的平衡 控制方法是“动态步行”(dynamic walking),在这个控制方法中机器 人的步行速度得到了极大的飞跃,显而易见,在得到快速的步行速度同 时,机器人很难做到立即停止。从而使得机器人在状态转换的过程中显 现不稳定的状态,为了避免速度带来的影响。零力矩点(ZMP)被引入 到这个控制策略中,在单脚支撑相中,引入ZMP=COG。引入ZMP的好 处在于,如果ZMP严格的存在于机器人的支撑区域中,机器人绝不摔倒。

双足机器人设计

小型双足步行机器人的结构及其控制电路设计 两足步行是步行方式中自动化程度最高、最为复杂的动态系统。两足步行系统具有非常丰富的动力学特性,对步行的环境要求很低,既能在平地上行走,也能在非结构性的复杂地面上行走,对环境有很好的适应性。与其它足式机器人相比,双足机器人具有支撑面积小,支撑面的形状随时间变化较大,质心的相对位置高的特点。是其中最复杂,控制难度最大的动态系统。但由于双足机器人比其它足式机器人具有更高的灵活性,因此具有自身独特的优势,更适合在人类的生活或工作环境中与人类协同工作,而不需要专门为其对这些环境进行大规模改造。例如代替危险作业环境中(如核电站内)的工作人员,在不平整地面上搬运货物等等。此外将来社会环境的变化使得双足机器人在护理老人、康复医学以及一般家务处理等方面也有很大的潜力。 双足步行机器人自由度的确定 两足步行机器人的机构是所有部件的载体,也是设计两足步行机器人最基本的和首要的工作[1]。它必须能够实现机器人的前后左右以及爬斜坡和上楼梯等的基本功能,因此自由度的配置必须合理:首先分析一下步行机器人的运动过程(前向)和行走步骤:重心右移(先右腿支撑)、左腿抬起、左腿放下、重心移到双腿中间、重心左移、右腿抬起、右腿放下、重心移到双腿间,共分8个阶段。从机器人步行过程可以看出:机器人向前迈步时,髓关节与踝关节必须各自配置有一个俯仰自由度以配合实现支撑腿和上躯体的移动;要实现重心转移,髋关节和踝关节的偏转自由度是必不可少的;机器人要达到目标位置,有时必须进行转弯,所以需要有髋关节上的转体自由度。另外膝关节处配置一个俯仰自由度能够调整摆动腿的着地高度,使上下台阶成为可能,还能实现不同的步态。这样最终决定髋关节配置3个自由度,包括转体(roll)、俯仰(pitch)和偏转(yaw)自由度,膝关节配置一个俯仰自由度,踝关节配置有俯仰和偏转两个自由度。这样,每条腿配置6个自由度,两条腿共12个自由度。髋关节、膝关节和踝关节的俯仰自由度共同协调动作可完成机器人的在纵向平面(前进方向)内的直线行走功能;髋关节的转体自由度可实现机器人的转弯功能;髋关节和踝关节的偏转自由度协调动作可实现在横向平面内的重心转移功能。 机器人的转体(roll)、俯仰(pitch)和偏转(yaw)定义如图1所示[2]。

工业机器人控制的功能、组成和分类

1. 对机器人控制系统的一般要求 机器人控制系统是机器人的重要组成部分,用于对操作机的控制,以完成特定的工作任务,其基本功能如下: ·记忆功能:存储作业顺序、运动路径、运动方式、运动速度和与生产工艺有关的信息。 ·示教功能:离线编程,在线示教,间接示教。在线示教包括示教盒和导引示教两种。 ·与外围设备联系功能:输入和输出接口、通信接口、网络接口、同步接口。 ·坐标设置功能:有关节、绝对、工具、用户自定义四种坐标系。 ·人机接口:示教盒、操作面板、显示屏。 ·传感器接口:位置检测、视觉、触觉、力觉等。 ·位置伺服功能:机器人多轴联动、运动控制、速度和加速度控制、动态补偿等。 ·故障诊断安全保护功能:运行时系统状态监视、故障状态下的安全保护和故障自诊断。 2.机器人控制系统的组成(图1) (1)控制计算机控制系统的调度指挥机构。一般为微型机、微处理器有32位、64位等,如奔腾系列CPU以及其他类型CPU。 (2)示教盒示教机器人的工作轨迹和参数设定,以及所有人机交互操作,拥有自己独立的CPU以及存储单元,与主计算机之间以串行通信方式实现信息交互。 (3)操作面板由各种操作按键、状态指示灯构成,只完成基本功能操作。 (4)硬盘和软盘存储存储机器人工作程序的外围存储器。 (5)数字和模拟量输入输出各种状态和控制命令的输入或输出。 (6)打印机接口记录需要输出的各种信息。 (7)传感器接口用于信息的自动检测,实现机器人柔顺控制,一般为力觉、触觉和视觉传感器。 (8)轴控制器完成机器人各关节位置、速度和加速度控制。 (9)辅助设备控制用于和机器人配合的辅助设备控制,如手爪变位器等。 (10)通信接口实现机器人和其他设备的信息交换,一般有串行接口、并行接口等。 (11)网络接口 1)Ethernet接口:可通过以太网实现数台或单台机器人的直接PC通信,数据传输速率高达10Mbit/s,可直接在PC 上用windows库函数进行应用程序编程之后,支持TCP/IP通信协议,通过Ethernet接口将数据及程序装入各个机器人控制器中。 2)Fieldbus接口:支持多种流行的现场总线规格,如Device net、AB Remote I/O、Interbus-s、profibus-DP、M-NET 等。

双足行走机器人稳定性控制方法

双足行走机器人稳定性控制方法 1 引言人作为双足行走生物,是在长期的生物进化过程中形成的。人能 够不自觉地保持身体的直立性和平衡性,不论是在静止不动还是在行走过程中。一旦失去平衡,人就会产生相应的动作,使身体保持平衡。例如,在静止时, 当人的重心偏向一侧时,就会不自觉地向该侧跨出一脚,以使重心位置落于支 撑面内。这里,支撑面定义为两脚之间的面积以及两脚的面积。当重心落于支 撑面内时,就不会倾倒。再如,在行走过程中,人的重心不断向前移动,超出 了两脚尖的位置,迫使人向前迈出脚,这样才使人的行走成为可能,使人的行 走自然流畅。因此,控制机器人重心的位置及重心位置的速度,是机器人保持 稳定及产生有效步态的关键。本文就是控制机器人的重心位置,使其落于支撑 面内,从而达到了机器人稳定性控制的目的。机器人的重心可以由安装在机器 人脚底的力传感器测知。当重心偏向一侧,这一侧的传感器输出偏大,相反的 一侧的力传感器等于零,或趋近于零。本文用感知器来感知机器人重心位置的 变化,当重心超出支撑面时,系统将发出动作指令,使机器人保持稳定。本 文采用的神经网络感知器(perception)是最简单的人工神经网络,它是ro senb l a tt于1958 年提出的具有自学习能力的感知器。在这种人工神经网络中,记忆的信息存储在连接权上,外部刺激通过连接通道自动激活相应的神经元,以达到自动识别的目的。感知器模型如图1 所示,通常由感知层s(sensory)、连接层a(association)和反应层构成r(response)。 2 人工神经元感知器的学习算法可以用下面的方法训练网络:(1) 初始化s 层至连接层(a 层)的连接权矩阵 中的各个元素及a层各单元的阀值赋予[-1,+1]之间的随机 值,一般情况下vij=1θj=0i=1,2,λ,pj=1,2,λ,n 且在整个学习

新型四足机器人步态仿真与实现

M ac hine B uilding A uto mation,Jun 2008,37(3):21~23,33 作者简介:马东兴(1982— ),男,江苏省丹阳市人,在读硕士研究生,主要从事虚拟样机和四足机器人技术研究。 新型四足机器人步态仿真与实现 马东兴,王延华,岳林 (南京航空航天大学机电学院,江苏南京210016) 摘 要:研究一种背部带关节的新型四足机器人,通过三维建模软件Pr o /E 和机械系统动力学 仿真分析软件ADAMS 建立了四足机器人虚拟样机,规划了四足机器人的步态,并且利用AD 2AM S 仿真软件对该四足机器人进行了步态仿真,同时利用单个AT89C52单片机成功实现对四足机器人5个舵机的独立控制以及舵机的速度控制。仿真与实验结果表明四足机器人能够根据设计步态实现直线行走。 关键词:四足机器人;步态仿真;舵机;单片机中图分类号:TP24 文献标识码:A 文章编号:167125276(2008)0320021203 Ga it S i m ul a ti on and I m plem en t a ti on of a New Quadruped Robot MA Dong 2xing,WANG Yan 2hua,Y UE L in (Co ll ege o f M echan i ca l and E l ec tri ca l Eng i nee ri ng,N a n ji ng U n i ve rs ity o f Ae r o na u ti c s & A s tr o na u ti c s,N a n ji ng 210016,C h i na ) Abstract:A new qua drup e d r obo t w ith w a ist 2j o i nt is d iscu sse d i n this p ap e r .The virtua l p r o t o type o f quad rup ed r obo t is c re a te d by P r o /E a nd ADAM S a nd the ga it o f the r obo t is p l a nne d.The ga it s i m ul a ti o n of the qua drupe d r o bo t is do ne by ADAM S virtua lp r o t o ty 2p i ng so ft w a re.M e a nw hil e ,w e succe s sfull y con tr o l fi ve rudde r se rvo s by a s i ngl e AT89C52SCM a nd a lso rea li ze the ve l o c ity co ntr o l of the rudde r se rvo.The s i m ul a ti o n a nd e xp e ri m e nta l re sults show tha t the qua drup e d r o t w ith w a is t 2j o i n t ca n w a l k s tra i ght s te a dil y thr ough the de s i gned ga it . Key words:qua drup e d r obo t;ga it s i m ul a ti o n;rudde r se rvo;SCM 0 引言 与轮式机器人或履带式机器人相比,由于足式机器人的立足点是离散的点,可以在可能到达的地面上选择最优的支撑点,足式机器人对崎岖路面也具有很好的适应能力,因此足式机器人受到各国研究人员的普遍重视,目前已成功开发了多款足式机器人。例如日本东京工业大学 研发的TI T AN 2V III [1] 机器人,每个腿具有3个自由度,其 中大腿关节具有前后转动和上下转动2个自由度,膝关节具有1个上下转动自由度。采用新型的电机驱动和绳传动。上海交通大学马培荪等人研制的JT UWM 2III 四足机器人[2, 3] ,腿为开链式关节型结构,膝关节为一纵摇自由 度,髋关节为纵摇和横摇2个自由度。每一腿有3个自由度,共12个自由度。机体重心较高,与哺乳类动物相似,适应于动态行走。华中科技大学研发的“4+2”多足步行机器人[4, 5] ,其腿部件由髖关节、大腿关节、小腿关节和踝 关节四部分组成,大、小腿关节之间由线轮传动,每一腿有 3个自由度。但是先前研制的机器人的本体大多是一个 刚性整体,没有考虑机器人的背部关节。 因此,在分析卡内基梅隆大学(Carnegie Mell on Uni 2 versity )研制的RGR 仿壁虎机器人[628] ,以及韩国庆北大学(Kyungpook Nati onal University )设计的E L I RO 2II 四足步行机器人的基础上[9, 10] ,研究了一种新型四足机器人。 该机器人与传统的足式机器人相比,其机器人本体不再是 一个单一的刚性整体,而是在本体上用一个主动关节将机 器人的本体分为前后两个部分,通过背部主动关节的运动来实现四足机器人的直线行走。通过机械系统动力学仿真分析软件(aut omatic dynam ic analysis of mechanical sys 2te m s,ADAMS )对该四足机器人虚拟样机进行步态仿真,同时利用单个AT89C52单片机成功实现对四足机器人5个舵机的独立控制以及舵机的速度变化,四足机器人的直线行走平均速度达到12.14mm /s 。 1 四足机器人虚拟样机 1.1 四足机器人结构 传统的四足机器人每个腿有2个或3个自由度,本文研究的四足机器人结构简单,每个腿只有1个自由度,但是在机器人背部增加了1个自由度。四足机器人的结构如图1所示。该四足机器人有5个主动关节(图中关节1至关节5)和1个被动关节(6点),各关节的运动方向如图1所示。主动关节由舵机驱动。z 轴正方向为四足机器人前进方向。关节1至关节4四个主动关节可以使各腿在xoy 平面上下摆动。关节5可以使前后本体在xoz 平面转动。 1.2 四足机器人接触力 当足与地面之间发生接触时,这两个物体就在接触的 ? 12?

一种双足步行机器人的步态规划方法

?16? 一种双足步行机器人的步态规划方法 □胡洪志马宏绪 国防科技大学机电工程与自动化学院 [摘要]本文介绍了一种双足步行机器人的步态规划方法,以前向运动为例,详细介绍了先分阶段规划然后合成的方法,并 讨论了行走过程中的冲击振动问题及减振措施,实验及仿真结果验证了这一规划方法的有效性。[关键字]双足步行机器人步态规划减振 [Abstract]In this p a p er ,w e p ut forw ard a m ethod for hum anoid robot g ait p lannin g .W e take forw ard m otion for exam p le ,illustrate the p hase p lannin g and com p ound m ethod in detail.T his p a p er also discusses the im p act v ibration p roblem and how to g et rid of it.T he ex 2p erim ent and simulation result verified the validation of the m ethod. [K e y w ords]bi p ed robot ;g ait p lannin g ;v ibration decrease [作者简介]胡洪志:男,1978年3月生,国防科技大学机电工程与自动化学院研究生,研究方向:智能机器人系统。 马宏绪:男,1966年8月生,国防科技大学机电工程与自动化学院教授,硕士生导师,研究方向:智能机器人系统。 1引言 双足步行机器人的研究是由仿生学、机械工程学和控制理论等多种学科相互融合而形成的一门综合学科,是机器人研究的一个重要分支。双足步行机器人的研究可以促进多个学科的研究,并为相关学科的研究提供一个平台,具有很大的理论价值。在实际应用中,双足步行机器人可用于有放射性、危险及其它对人体有害的环境中取代人类劳动,把人从高强度、长时间及单调乏味的工作中解脱出来,具有广阔的市场前景。步行机器人最大的特征是步行,步态是在步行运动过程中,步行体的身体各部位在时序和空间上的一种协调关系,步态规划是双足步行机器人研究中的一个关键技术。要实现和提高机器人的行走性能,必须研究实用 而有效的步态规划方法,实现机器人的稳定步行。 2双足步行机器人模型 本文的研究对象是一台具有12关节自由度的双足步行机构,每条腿各有6个自由度,即:踝关节有前向和侧向两个自由度;膝关节一个前向自由度,髋关节具有三个 自由度,包括前向、侧向及转弯自由度。由仿真分析及实验研究可知,在步行运动中,双足步行机器人前向各关节的运动与侧向各关节运动之间的耦合很小,可以忽略这一耦合的影响,对机器人前向和侧向的运动分开建模。本文主要讨论前向运动的步态规划问题。 前向运动模型如下图一: 定义:双腿关节,先左腿,后右腿,左腿由下至上,右腿由上至下,依次标注为1,2,3,...,10,11,12,各关节对应的转角依次为θ1,θ2,θ3,…,θ10,θ11,θ12,其中θ1,θ5,θ8,θ12,分别为双腿侧向关节对应的转角;θ2,θ3,θ4,θ11,θ10,θ9为双腿前向关节对应的转角;θ6, θ7转弯关节在前向运动中始终保持为零。 图一

双足机器人竞赛规则

双足机器人竞赛规则 竞赛项目:机器人通过步行的方式从起点线走到终点线,地面为水平的木板(长度2米宽度0.6米)起点线于终点线平行。在行走过程中机器人要按照比赛规则完成指定的动作 竞赛共分为两个项目(交叉足印、狭窄足印)其区别为关节构造及足部结构。 机器人结构及其规格设定: 交叉足印竞步机器人:结构只有双足、并只能以走路的方式来移动,机器人要分清楚正面及背面,以箭头方向作为正面,是自主式脱线控制,用不多于6只伺服马达及伺服马达控制板来完成,最大尺寸为200mm(长)X 200mm(宽)X 300mm(高),最大重量不超过1Kg。 狭窄足印竞步机器人:结构只有双足、并只能以走路的方式来移动,机器人要分清楚正面及背面,以箭头方向作为正面,是自主式脱线控制,用不多于6只伺服马达及伺服马达控制板来完成,最大尺寸为200mm(长)X 200mm(宽)X 300mm(高),最大重量不超过1Kg.,狭窄足印竞步机器人, 单足最大尺寸要能放入(长)150mm X (宽)60mm长方格内。 要求:对于机器人必须自主设计制造。 竞赛内容: 交叉足印竞步机器人:

竞赛开始时先走3步、立正、然后卧下、向前翻跟斗3次,再起立、向前走3步、立正、然后卧下(身体向后)、再向后翻跟斗3次、再起立、然后以轻快步履走向终点,参赛者要在指定3分钟或少于指定时间内完成所有动作,及要走到终点。 狭窄足印竞步机器人: 竞赛开始时先走3步、立正、然后卧下(身体向前)、向前翻跟斗3次,再起立、向前走3步、立正、然后卧下(身体向后)、再向后翻跟斗2次、再起立、然后以轻快步履走向终点、参赛者要在指定5分钟或少于指定时间内完成所有动作,及要走到终点。 双足机器人计分法: 1.机器人行走时每次跌倒扣10分,由栽判指定在原位将机器人重新放正继续 竞赛,不另补时。 2.不按指定动作次序运行的机器人将按次序偏差次数扣分,每次偏差扣10分。 3.机器人行走每出线一次扣10分。 4.裁判未指定情况下,人为干预一次扣10分。 5.以扣分少者为胜;在扣分相同条件下,以使用时间短者为胜。 交叉足印机器人狭窄足印竞步机器人

双足步行机器人论文

双足步行机器人

目录 第一章摘要 (3) 第二章系统简介 (4) 2.1系统方案 (4) 2.2功能与指标 (4) 2.3实现原理 (4) 2.3.1 机器人动作的实现 (4) 2.3.2 无线操控的实现 (5) 2.3.3 液晶屏实时显示机器人状态原理 (6) 2.3.4自适应跌倒爬起原理 (6) 2.4 软件流程图 (8) 第三章特色列举 (9) 第四章技术说明 (9) 第五章系统适用范围 (9)

第一章摘要 以ATMEGA128单片机为核心研制的双足步行机器人。集无线远程操控,自适应站立,状态实时无线传输于一体。本设计以创新为起点,以实用为目的,以方便服务人类生活为宗旨,符合社会发展需要。 关键字:ATMEGA128 无线操控状态实时无线传输自适应跌倒爬起

第二章系统简介 2.1系统方案 该机器人采用加藤伊朗架构,用舵机作为关节驱动,此机器人共有17个自由度,主要包含1个头部、1个躯干、2个手臂、2条腿。以ATMEGA128单片机为核心控制模块,采用24路舵机驱动模块,通过核心板来控制驱动模块使每个舵机转动,从而实现机器人的一系列动作。采用XL24L01无线传输模块,从而实现无线远程操控机器人和机器人的状态参数实时传输显示在液晶屏上。采用MPU-6050三轴陀螺仪加速度传感器,用它来检测机器人跌倒时,实现自适应跌倒爬起。 2.2功能与指标 (1)能够模拟人类的动作,站立,下蹲,行走等基本动作,还能实现跳舞,倒立,翻跟头等高难度动作。 (2)能够通过无线操作平台控制机器人做出相应的动作。 (3)能够将机器人状态通过无线传输实时显示在液晶屏上。 (4)机器人跌倒时,实现自适应跌倒爬起 2.3实现原理 2.3.1 机器人动作的实现 机器人采用加藤一郎架构,用舵机作为关节驱动,此机器人共有17个自由度。舵机是一种位置伺服的驱动器。它接收一定的控制信号,输出一定的角度,适用于那些需要角度不断变化并可以保持的控制系统。在微机电系统和航模中,它是一个基本的输出执行机构。其工作原理是:控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压它内部有一个基准电路,产生周期一般为10ms,宽度为0.75ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。舵机的控制信号是PWM信号,利用占空比的变化改变舵机的位置。标准的舵机有3条导线,分别是:电源线、地线、控制线,如图1所示。

双足机器人稳定行走步行模式的研究

万方数据

万方数据

万方数据

万方数据

万方数据

第2期 韩亚丽,等:双足机器人稳定行走步行模式的研究 243 制,基于此理论的控制器没计方法[131如下: 首先利用采样时间△f对连续系统方程(13)、(14)进行离散化 工t+?=A工t+6Htl (15) zzmp,I 2 C,,17k J 儿-=却t砌0 (16) Yz”rlp,^2cYk J 式中 工t兰{工(kAt),彳(kAt),茗(kAt)}7口t兰“(kAt),工:。P.女兰x:。p(kAt) Y女s{Y(kAt),)j(kAt),_j『(kAt)}T,vt兰v(kAt) 歹zm,.t;!yzm一(kAt),c;i{?,o,——j}) AE 1△f筚 二 01△f0 0 1 . 6暑 △f36 △f22 △t 为了使系统的输出工:。阱,Y:。阱尽可能精确地跟踪目标ZMP,即工:。酣,y:。酣,考虑一个使跟踪性能指标极小化的问题.以X方向运动为例,则有 -,=∑{Q。(J:mp√一J:。叫)2 4-Q:吩2} (17) 式中,Q。,Q:为正的加权系数,根据预观控制理论,这一性能指标可通过使用未来JV步目标参考值的输入进行极小化.即 比t=一Kxt+Ef,五…^】 j:。附+l 工‰.^+2 卫:。附+Ⅳ (18) K暑(Qz+6’Pb)。1西1PA 1(19) 正兰(Q2+bTPb)-1bT(A一6K)川-1’cTQJ式中,矩阵P为下列方程的解: P=A’PA+c1Q_r Jc—A1Pb(a2+61Pb)一1bTPA (20) 同理可以解决y方向的跟踪性能指标极小化问题.由式(18)可知,预观控制器由一个状态反馈和一个未来|V步目标参考值和加权因子之内积的前馈组成. 基于预观控制的步行模式生成方法用方框图描述为如图9所示.由双足机器人传感器系统得到未来目标ZMP参考值储存于缓冲器中,其输出值 作为当前的参考值.预观控制器用缓冲器中ZMP参考值和双足机器人的状态控制输入,而双足机器人的状态,如X及l,方向的位移及速度则是由基 于ZMP步行模式生成的结果,即满足目标ZMP的质心运动.基于预观控制系统的步行模式生成方法 得到的双足机器人步行模式可使机器人实现实时稳定行走的目的. 图9基于预观控制的步行模式生成系统 3双足机器人行走过程仿真 为了验证理论分析的正确性,对生成的步行模 式进行了仿真验证.首先在Pro/E下对简化的双足机器人进行建模,然后导人动力学仿真软件AD—AMS中,在Matlab/Simulink中建立关节运动控制,可对其进行联合仿真,仿真流程图如图10所示. 图10仿真流程图 由前文基于ZMP步行模式生成方法得到的步行模式信息(见图7)作为控制信息,结合误差补偿,双足机器人可实现稳定行走,行走过程系列图如图1 l所示. 万方数据

相关主题
文本预览
相关文档 最新文档