当前位置:文档之家› 高考物理经典大题练习及答案

高考物理经典大题练习及答案

高考物理经典大题练习及答案
高考物理经典大题练习及答案

14.(7分)如图14所示,两平行金属导轨间的距离

L=0.40 m,金属导轨所在的平面与水平面夹角θ=37°,在

导轨所在平面内,分布着磁感应强度B=0.50 T、方向垂直

于导轨所在平面的匀强磁场.金属导轨的一端接有电动势E=4.5 V、内阻r=0.50 Ω的直流电源.现把一个质量m=0.040 kg的导体棒ab放在金属导轨上,导体棒恰好静止.导体棒与金属导轨垂直、且接触良好,导体棒与金属导轨接图14

触的两点间的电阻R0=2.5 Ω,金属导轨电阻不计,g取

10 m/s2.已知sin 37°=0.60,cos 37°=0.80,求:

(1)通过导体棒的电流;

(2)导体棒受到的安培力大小;

(3)导体棒受到的摩擦力

15.(7分)如图15所示,边长L=0.20m的正方形导线框ABCD

由粗细均匀的同种材料制成,正方形导线框每边的电阻R0=1.0 Ω,

金属棒MN与正方形导线框的对角线长度恰好相等,金属棒MN的电

阻r=0.20 Ω.导线框放置在匀强磁场中,磁场的磁感应强度B=0.50

T,方向垂直导线框所在平面向里.金属棒MN与导线框接触良好,且

与导线框的对角线BD垂直放置在导线框上,金属棒的中点始终在BD

连线上.若金属棒以v=4.0 m/s的速度向右匀速运动,当金属棒运

动至AC的位置时,求(计算结果保留两位有效数字):

图15

(1)金属棒产生的电动势大小;

(2)金属棒MN上通过的电流大小和方向;

(3)导线框消耗的电功率.

16.(8分)如图16所示,正方形导线框abcd的质量为m、边长为l,

导线框的总电阻为R.导线框从垂直纸面向里的水平有界匀强磁场的上

方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直

平面内,cd边保持水平.磁场的磁感应强度大小为B,方向垂直纸面向

里,磁场上、下两个界面水平距离为l已.知cd边刚进入磁场时线框

恰好做匀速运动.重力加速度为g.

(1)求cd边刚进入磁场时导线框的速度大小.

(2)请证明:导线框的cd边在磁场中运动的任意瞬间,导线框克

服安培力做功的功率等于导线框消耗的电功率.图16 (3)求从导线框cd边刚进入磁场到ab边刚离开磁场的过程中,导

线框克服安培力所做的功.

17.(8分)图17(甲)为小型旋转电枢式交流发电机的原理图,其矩形线圈在匀强磁场中绕垂直于磁场方向的固定轴

OO′匀速转动,线圈的匝数

n=100、电阻r=10 Ω,线圈的两端经集流环与电阻R 连接,电阻R=90 Ω,与R 并联的交流电压表为理想电表.在t=0时刻,线圈平面与磁场方向平行,穿过每匝线圈的磁通量φ随时间t 按图17(乙)所示正弦规律变化.求:

(1)交流发电机产生的电动势最大值;

(2)电路中交流电压表

的示数.

18.(8分)图18为示波管的示意图,竖直偏转电极的极板

长l=4.0 cm ,两板间距离d=1.0 cm ,极板右端与荧光屏的

距离L=18 cm .由阴极发出的电子经电场加速后,以v=1.6

×107 m /s 的速度沿中心线进入竖直偏转电场.若电子由阴

极逸出时的初速度、电子所受重力及电子之间的相互作用力

均可忽略不计,已知电子的电荷量e=1.6×10—19 C ,质量

m=0.91×10-30 kg . 图18

(1)求加速电压U 0的大小;

(2)要使电子束不打在偏转电极的极板上,求加在竖直偏转电极上的电压应满足的条件;

(3)若在竖直偏转电极上加u=40sin 100πt (V )的交变电压,求电子打在荧光屏上产生亮线的长度.

19.(9分)如图19所示,在以O 为圆心,半径为R 的圆形区域内,有一个水平方向的匀强磁场,磁场的磁感应强度大小为B ,方向垂直纸面向外.竖

直平行正对放置的两金属板A 、K 连在电压可调的电路中.S 1、

S 2为A 、K 板上的两个小孔,且S 1、S 2和O 在同一直线上,另

有一水平放置的足够大的荧光屏D ,O 点到荧光屏的距离为

h .比荷(电荷量与质量之比)为k 的带正电的粒子由S 1进入

电场后,通过S 2射向磁场中心,通过磁场后打在荧光屏D 上.粒

子进入电场的初速度及其所受重力均可忽略不计.

(1)请分段描述粒子自S 1到荧光屏D 的运动情况;

(2)求粒子垂直打到荧光屏上P 点时速度的大小; 图

19 (

3)移动滑片P ,使粒子打在荧光屏上Q 点,PQ= h (如图19所示),求此时A 、K 两极板间的电压.

20.(9分)如图20所示,地面上方竖直界面N 左侧空间存在着水平的、垂直纸面向里的匀强磁场,磁感应强度B=2.0 T .与N 平行的竖直界面M 左侧存在竖直向下的匀强电场,电场强度E 1=100 N/C .在界面M 与N 之间还同时存在着水平向左的匀强电场,电场强度E 2=200 N/C .在紧靠界面M 处有一个固定在水平地面上的竖直绝缘支架,支架上表面光滑,支架上

放有质量m 2=1.8×10-4 kg 的带正电的小物体b (可视为质点),电荷量q 2=1.0×10-5 C .一个质

量m 1=1.8×10-4 kg ,电荷量q 1=3.0×10-5 C 的带负电小物体(可视为质点)a 以水平速度v 0

射入场区,沿直线运动并与小物体b 相碰,a 、b 两个小物体碰后粘合在一起成小物体c ,进入界面M 右侧的场区,并从场区右边界N 射出,落到地面上的Q 点(图中未画出).已知支

架顶端距地面的高度h=1.0 m ,M 和N 两个界面的距离L=0.10 m ,g 取10 m/s 2.求:

(1)小球a 水平运动的速率;

(2)物体c 刚进入M 右侧的场区时的

33

r R E +0加速度;

(3)物体c 落到Q 点时的速率.

14.(7分)

(1)导体棒、金属导轨和直流电源构成闭合电路,根据闭合电路欧姆定律有: I =

=1.5A …………………………………………………………………………2分

(2)导体棒受到的安培力

F 安

=B I L =0.30 N …………………………………………………………………………2分

(3)导体棒所受重力沿斜面向下的分力F 1=mgsin 37°=0.24 N

由于F 1小于安培力,故导体棒受沿斜面向下的摩擦力f (1)

根据共点力平衡条件

mgsin 37°+f=F 安 ………………………………………………………………………

1分

解得:f=6.0×10-2 N …………………………………………………………………1分

15.(7分)

(1)金属棒产生的电动势大小为:E=B 2Lv=0.42V=0.56 V ………………2分

(2)金属棒运动到AC 位置时,导线框左、右两侧电阻并联,其并联电阻为: R 并=1.0 Ω,根据闭合电路欧姆定律I= =0.47 A ………………………………2分 根据右手定则,电流方向从N 到M …………………………………………………1分

(3)导线框消耗的功率为:P 框=I 2R 并=0.22 W ……………………………………2分

16.(8分)

(1)设线框cd 边刚进入磁场时的速度为v ,则在cd 边进入磁场过程时产生的感应电动势为E=Blv , 根据闭合电路欧姆定律,通过导线框的感应电流为I= 导线框受到的安培力为F 安=BIl= ......................................................1分 因cd 刚进入磁场时导线框做匀速运动,所以有F 安=mg , (1)

以上各式联立,得:v= ……………………………………………………………1分 r

R E +并R Blv R

v l B 222

2l

B mgR

(2)导线框cd 边在磁场中运动时,克服安培力做功的功率为:P 安=F 安v

代入(1)中的结果,整理得:P 安= ……………………………………………1分

导线框消耗的电功率为:

P 电=I 2

R= R= ……………………………………………………………1分

(3)导线框ab 边刚进入磁场时,cd 边即离开磁场,因此导线框继续做匀速运动.导线框穿过磁场的整个过程中,导线框的动能不变.

设导线框克服安培力做功为W 安,根据动能定理有2mgl -W 安=0 .....................1分 解得W 安=2mgl (1)

17.(8分)

(1)交流发电机产生电动势的最大值E m =nBS ω ……………………………………1分

而Φm =BS 、ω= ,所以,E m = ………………………………………………1 由Φ-t 图线可知:Φm =2.0×10-2 Wb ,T=6.28×10-2

s .................................... 所以E m =200 V (1)

(2)电动势的有效值E= E m =1002V …………………………………………1分 由闭合电路的欧姆定律,电路中电流的有效值为I=r

R E + =2 A …………………1 交流电压表的示数为U=IR=902V=127 V …………………………………………2分

18.(8分)(1)对子通过加速电场的过程,根据动能定理有eU 0= mv 2

…………………2 解得U 0=728 V ……………………………………………………………………………1 (2)设偏转电场电压为U 1时,电子刚好飞出偏转电场,则此时电子沿电场方向的位移恰好为d/2,

即 = at 2= ·t 2……………………………………………………………………1 电子通过偏转电场的时间t= …………………………………………………………1分

解得U 1= =91 V , 所以,为使电子束不打在偏转电极上,加在偏转电极上的电压U 应小于91V ……1分

(3)由u=40sin100πt (V )可知ω=100π s -1,U m =40 V

偏转电场变化的周期T= =0.02 s ,而t= =2.5×10-9

s .T t ,可见每个电子通过偏转电场的过程中,电场可视为稳定的匀强电场.

R

v l B 2

22R v l B 22222

22R v l B T π

2T

n m π2Φ222

1

2d 21

21md

eU 1v

l 22et m d ωπ

2v l

r R E +0当极板间加最大电压时,电子有最大偏转量y m = at 2= ·t 2

=0.20 cm . 电子飞出偏转电场时平行极板方向分速度v x =v14.(7分)

(1)导体棒、金属导轨和直流电源构成闭合电路,根据闭合电路欧姆定律有: I =

=1.5A …………………………………………………………………………2分

(2)导体棒受到的安培力

F 安

=B I L =0.30 N …………………………………………………………………………2分

(3)导体棒所受重力沿斜面向下的分力F 1=mgsin 37°=0.24 N

由于F 1小于安培力,故导体棒受沿斜面向下的摩擦力f (1)

根据共点力平衡条件

mgsin 37°+f=F 安 ………………………………………………………………………

1分

解得:f=6.0×10-2 N …………………………………………………………………1分

15.(7分)

(1)金属棒产生的电动势大小为:E=B 2Lv=0.42V=0.56 V ………………2分

(2)金属棒运动到AC 位置时,导线框左、右两侧电阻并联,其并联电阻为: R 并=1.0 Ω,根据闭合电路欧姆定律I= =0.47 A ………………………………2分 根据右手定则,电流方向从N 到M …………………………………………………1分

(3)导线框消耗的功率为:P 框=I 2R 并=0.22 W ……………………………………2分

16.(8分)

(1)设线框cd 边刚进入磁场时的速度为v ,则在cd 边进入磁场过程时产生的感应电动势为E=Blv , 根据闭合电路欧姆定律,通过导线框的感应电流为I= 导线框受到的安培力为F 安=BIl= ………………………………………………1分 因cd 刚进入磁场时导线框做匀速运动,所以有F 安=mg , ……………………………1 以上各式联立,得:v= ……………………………………………………………1分

(2)导线框cd 边在磁场中运动时,克服安培力做功的功率为:P 安=F 安v

代入(1)中的结果,整理得:P 安= ……………………………………………1分

导线框消耗的电功率为:

21md

eU m 21r

R E +并R Blv R v l B 222

2l B mgR R

v l B 2

22

P 电=I 2

R= R= ……………………………………………………………1分

因此有P 安=P

电 ……………………………………………………………………………1分

(3)导线框ab 边刚进入磁场时,cd 边即离开磁场,因此导线框继续做匀速运动.导线框穿过磁场的整个过程中,导线框的动能不变.

设导线框克服安培力做功为W 安,根据动能定理有2mgl -W 安=0 .....................1分 解得W 安=2mgl (1)

17.(8分)

(1)交流发电机产生电动势的最大值E m =nBS ω ……………………………………1分 而Φm =BS 、ω= ,所以,E m = ………………………………………………1 由Φ-t 图线可知:Φm =2.0×10-2 Wb ,T=6.28×10-2

s ....................................1分 所以E m =200 V (1)

(2)电动势的有效值E= E m =1002V …………………………………………1分 由闭合电路的欧姆定律,电路中电流的有效值为I=r

R E + =2 A …………………1 交流电压表的示数为U=IR=902V=127 V …………………………………………2分

18.(8分)

(1)对于电子通过加速电场的过程,根据动能定理有eU 0= mv 2 …………………2分

解得U 0=728 V (1)

(2)设偏转电场电压为U 1时,电子刚好飞出偏转电场,则此时电子沿电场方向的位移恰好为d/2,

即 = at 2= ·t 2

……………………………………………………………………1 电子通过偏转电场的时间t= …………………………………………………………1分 解得U 1= =91 V ,

所以,为使电子束不打在偏转电极上,加在偏转电极上的电压U 应小于91V ……1分

(3)由u=40sin100πt (V )可知ω=100π s -1,U m =40 V

偏转电场变化的周期T= =0.02 s ,而t= =2.5×10-9

s .T t ,可见每个电子通过偏转电场的过程中,电场可视为稳定的匀强电场.

当极板间加最大电压时,电子有最大偏转量y m = at 2= ·t 2=0.20 cm . R v l B 22222

22R v l B T π

2T

n m π2Φ22212d 2

121md eU 1v l 22et m d ωπ

2v l 21

md

eU m 21

电子飞出偏转电场时平行极板方向分速度v x =v ,

垂直极板方向的分速度v y =a y t= ·t 电子离开偏转电场到达荧光屏的时间t ′= =

电子离开偏转电场后在竖直方向的位移为y 2=v y t ′=2.0 cm .

电子打在荧光屏上的总偏移量Y m =y m +y 2=2.2 cm ………………………………………1分 电子打在荧光屏产生亮线的长度为2Y m =4.4 cm ………………………………………1分 用下面的方法也给2分

设电子射出偏转电场时速度与水平线的夹角为θ,因此有tan θ= =0.11 因此电子的总偏转量y=( +L )tan θ …………………………………………………1分

电子打在荧光屏沿竖直方向的长度范围为2y=4.4 cm ………………………………1分

19.(9分)

(1)粒子在电场中自S 1至S 2做匀加速直线运动;自S 2至进入磁场前

做匀速直线运动;进入磁场后做匀速圆周运动;离开磁场至荧光屏做匀速

直线运动. ………………………………离开磁场后做匀速直线运动,给

1分.………………2分

说明:说出粒子在电场中匀加速运动,离开电场做匀速直线运动,给

1分;说出粒子在匀强磁场中做匀速圆周运动,

(2)设粒子的质量为m ,电荷量为q ,垂直打在荧光屏上的P 点时的

速度为v 1,粒子垂直打在荧光屏上,说明粒子在磁场中的运动是四分之一

圆周,运动半径

r 1=R , ………………………………………………………………………………………1分 根据牛顿第二定律Bqv 1=m

,依题意:k=q/m ………………………………………1分

解得:v 1=BkR ……………………………………………………………………………1分

(3)设粒子在磁场中运动轨道半径为r 2,偏转角为2θ,粒子

射出磁场时的方向与竖直方向夹角为α,粒子打到Q 点时的轨迹如

图所示,由几何关系可知

tan α= = ,α=30°,θ=30°

tan θ= 解得:r 2=3R ……………………………………1 设此时A 、K

两极板间的电压为U ,粒子离开S 2时的速度为vm 根据动能定理有qU= mv 22 …… 解得:U= kB 2R 2 …… md

eU

m x y

v v 2

1121

r v h

PQ 33

2r R 222r v 2123vx L v L

20.(9分)

(1)a 向b 运动过程中受向下的重力,向上的电场力和向下的洛伦兹力.

小球a 的直线运动必为匀速直线运动,a 受力平衡,因此有

q 1E 1-q 1v 0B -m 1g=0 ………………………………………………… …………………1分

解得v 0=20 m/s (2)

(2)二球相碰动量守恒m 1v 0=(m 1+m 2)v ,解得v =10 m/s …………………………1分

物体c 所受洛伦兹力f=(q 1-q 2)vB=4.0×10-4 N ,方向向下 (1)

物体c 在M 右场区受电场力:F 2=(q 1-q 2)E 2=4.0×10-3 N ,方向向右

物体c 受重力:G=(m 1+m 2)g= 3.6×10-3 N ,方向向下

物体c 受合力:F 合=22

)(2G f F ++=22×10-3 N 物体c 的加速度:a= = 2m/s 2=15.7 m/s 2 ………………………………1 设合力的方向与水平方向的夹角为θ,则tan θ= =1.0,解得θ=45°

加速度指向右下方与水平方向成45°角 (1)

(3)物体c 通过界面M 后的飞行过程中电场力和重力都对它做正功,

设物体c 落到Q 点时的速率为v t ,由动能定理

(m 1+m 2)gh+(q 1-q 2)E 2L= (m 1+m 2)v t 2- (m 1+m 2)v 2 ……………………1分 解得v t =2.122m/s=11 m/s . …………………………………………………………1分,

垂直极板方向的分速度v y =a y t= ·t

电子离开偏转电场到达荧光屏的时间t ′= =

电子离开偏转电场后在竖直方向的位移为y 2=v y t ′=2.0 cm .

电子打在荧光屏上的总偏移量Y m =y m +y 2=2.2 cm ………………………………………1分 电子打在荧光屏产生亮线的长度为2Y m =4.4 cm ………………………………………1分 用下面的方法也给2分

设电子射出偏转电场时速度与水平线的夹角为θ,因此有tan θ= =0.11 因此电子的总偏转量y=( +L )tan θ …………………………………………………1分

电子打在荧光屏沿竖直方向的长度范围为2y=4.4 cm ………………………………1分

19.(9分)

(1)粒子在电场中自S 1至S 2做匀加速直线运动;自S 2至进入磁场前做匀速直线运动;进入磁场后做匀速圆周运动;离开磁场至荧光

md eU m x y

v v 21vx L v

L 21m m F

+合91002F G f +2121

屏做匀速直线运动. ………………………………………………2分

说明:说出粒子在电场中匀加速运动,离开电场做匀速直线运动,给1分;说出粒子在匀强磁场中做匀速圆周运动,离开磁场后做匀速直线运动,给1分.

(2)设粒子的质量为m ,电荷量为q ,垂直打在荧光屏上的P 点时的速度为v 1,粒子垂

直打在荧光屏上,说明粒子在磁场中的运动是四分之一圆周,运动半径

r 1=R , ………………………………………………………………………………………1分

根据牛顿第二定律Bqv 1=m ,依题意:k=q/m ………………………………………1分

解得:v 1=BkR ……………………………………………………………………………1分

(3)设粒子在磁场中运动轨道半径为r 2,偏转角为2θ,粒子

射出磁场时的方向与竖直方向夹角为α,粒子打到Q 点时的轨迹如

图所示,由几何关系可知 tan α= = ,α=30°,θ=30°

tan θ= 解得:r 2=3R

……………………………………1分

设此时A 、K 两极板间的电压为U ,粒子离开S 2时的速度为v 2,根据牛顿第二定律

Bqv 2=m ………………………………………………………………………………1分

根据动能定理有qU= mv 22 ………………………………………………………………1 解得:U= kB 2R 2 …………………………………………………………………………1分 20.(9分)

(1)a 向b 运动过程中受向下的重力,向上的电场力和向下的洛伦兹力.

小球a 的直线运动必为匀速直线运动,a 受力平衡,因此有

q 1E 1-q 1v 0B -m 1g=0 ………………………………………………… …………………1分

解得v 0=20 m/s (2)

(2)二球相碰动量守恒m 1v 0=(m 1+m 2)v ,解得v =10 m/s …………………………1分

物体c 所受洛伦兹力f=(q 1-q 2)vB=4.0×10-4 N ,方向向下 (1)

物体c 在M 右场区受电场力:F 2=(q 1-q 2)E 2=4.0×10-3 N ,方向向右

物体c 受重力:G=(m 1+m 2)g= 3.6×10-3 N ,方向向下

物体c 受合力:F 合=22

)(2G f F ++=22×10-3 N 1

2

1r v h

PQ 33

2r R 222

r v 2123

物体c 的加速度:a= = 2m/s 2=15.7 m/s 2 ………………………………1分

设合力的方向与水平方向的夹角为θ,则tan θ= =1.0,解得θ=45°

加速度指向右下方与水平方向成45°角 ………………………………………………1分

(3)物体c 通过界面M 后的飞行过程中电场力和重力都对它做正功,

设物体c 落到Q 点时的速率为v t ,由动能定理

(m 1+m 2)gh+(q 1-q 2)E 2L= (m 1+m 2)v t 2- (m 1+m 2)v 2 ……………………1分 解得v t =2.122m/s=11 m/s . …………………………………………………………1分 21m m F

+合91002F G f +2121

2021年高考物理选择题专题训练含答案 (1)

2021模拟模拟-选择题专项训练之交变电流 本考点是电磁感应的应用和延伸.高考对本章知识的考查主要体现在“三突出”:一是突出考查交变电流的产生过程;二是突出考查交变电流的图象和交变电流的四值;三是突出考查变压器.一般试题难度不大,且多以选择题的形式出现.对于电磁场和电磁波只作一般的了解.本考点知识易与力学和电学知识综合,如带电粒子在加有交变电压的平行金属板间的运动,交变电路的分析与计算等.同时,本考点知识也易与现代科技和信息技术相联系,如“电动自行车”、“磁悬浮列车”等.另外,远距离输电也要引起重视.尤其是不同情况下的有效值计算是高考考查的主要内容;对变压器的原理理解的同时,还要掌握变压器的静态计算和动态分析. 北京近5年高考真题 05北京18.正弦交变电源与电阻R、交流电压表按照图1所示的方式连接,R=10Ω,交流电压表的示数是10V。图2是交变电源输出电压u随时间t变化的图象。则( ) A.通过R的电流i R随时间t变化的规律是i R=2cos100πt (A) B.通过R的电流 i R 随时间t变化的规律是i R=2cos50πt (A) C.R两端的电压u R随时间t变化的规律是u R=52cos100πt (V) D.R两端的电压u R随时间t变化的规律是u R=52cos50πt (V) 07北京17、电阻R1、R2交流电源按照图1所示方式连接,R1=10Ω,R2=20Ω。合上开关后S后,通过电阻R2的正弦交变电流i随时间t变化的情况如图2所示。则() A、通过R1的电流的有效值是1.2A B、R1两端的电压有效值是6V C、通过R2的电流的有效值是1.22A D、R2两端的电压有效值是62V 08北京18.一理想变压器原、副线圈匝数比n1:n2=11:5。原线圈与正弦交变电源连接,输入电压u如图所示。副线圈仅接入一个10 Ω的电阻。则() A.流过电阻的电流是20 A B.与电阻并联的电压表的示数是1002V C.经过1分钟电阻发出的热量是6×103 J D.变压器的输入功率是1×103 W 北京08——09模拟题 08朝阳二模16.在电路的MN间加一如图所示正弦交流电,负载电阻为100Ω,若不考 虑电表内阻对电路的影响,则交流电压表和交流电流表的读数分别为()A.220V,2.20 AB.311V,2.20 AC.220V,3.11A D.311V,3.11A t/×10-2s U/V 311 -311 1 2 3 4 A V M ~ R V 交变电源 ~ 图1 u/V t/×10-2s O U m -U m 12 图2

高考物理超经典力学题集萃

高考物理经典力学计算题集萃 =10m/s沿x1.在光滑的水平面内,一质量m=1kg的质点以速度v 0 轴正方向运动,经过原点后受一沿y轴正方向的恒力F=5N作用,直线OA与x轴成37°角,如图1-70所示,求(1)如果质点的运动轨迹与直线OA相交于P点,则质点从O点到P点所经历的时间以及P的坐标;(2)质点经过P点 时的速度. 2.如图1-71甲所示,质量为1kg的物体置于固定斜面上,对物体施以平行于斜面向上的拉力F,1s末后将拉力撤去.物体运动的v-t图象如图1-71乙,试求拉力F. 3.一平直的传送带以速率v=2m/s匀速运行,在A处把物体轻轻地放到传送带上,经过时间t=6s,物体到达B处.A、B相距L=10m.则物体在传送带上匀加速运动的时间是多少?如果提高传送带的运行速率,物体能较快地传送到B处.要让物体以最短的时间从A处传送到B处,说明并计算传送带的运行速率至少应为多大?若使传送带的运行速率在此基础上再增大1倍,则物体从A传送到B的时间又是多少? 4.如图1-72所示,火箭内平台上放有测试仪器,火箭从地面起动后,以加速度g/2竖直向上匀加速运动,升到某一高度时,测试仪器对平台的压力为起动前压力的17/18,已知地球半径为R,求火箭此时离地面的高度.(g为地面附近的重力加速度) 5.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向.(重力加速度取g=10/m·s2) 6.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算: (1)飞机在竖直方向上产生的加速度多大?方向怎样? (2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2) (3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人

高考物理专题复习:力学题专题.doc

力学题的深入研究 最近辅导学生的过程中,发现几道力学题虽然不是特别难,但容易错,并且辅导书对这几道题或语焉不详,或似是而非,或浅尝辄止,本文对其深入研究,以飨读者。 【题1】(1)某同学利用图甲所示的实验装置,探究物块在水平桌面上的运动规 律。物块在重物的牵引下开始运动,重物落地后,物块再运动一段距离停在桌面 打点计吋器电源的频率为50Hz o 上(尚未到达滑轮处)。从纸带上便于测量的点开始,每5个点取1个 ①通过分析纸带数据,可判断物块在相邻计数点 _____ 和_______ 之间某 吋刻开始减速。 ②计数点5对应的速度大小为 ________ m/s,计数点6对应的速度大小 为______ m/so (保留三位有效数字)。 ③物块减速运动过程屮加速度的大小为a二_____ m/s2,若用纟來计算物 g 块与桌面间的动摩擦因数(g为重力加速度),则计算结果比动摩擦因 数的真实值____________ (填“偏大”或“偏小”)。 【原解析】一般的辅导书是这样解的: ①和②一起研究:根据乙=儿,其中T = 5x^ = OAs ,得 (9.00+11.0 l)xl0-2| 心 , (11.01 + 12.28) xl0~2/

= ------------------------ = 1.00m Is、 = ------------------------------ = 1 ? 16/n/ s , 2x0.1 2x0.1 「7 = (12.28+10.06)x1° =] ]4加/s ,因为v6 > v5, v7 < v6,所以可判断物块2x0.1 在两相邻计数点6和7之间某时刻开始减速。 这样解是有错误的。其中冬是正确的,*、*7是错误的。因为公式 竝是匀变速运动的公式,而在6、7之间不是匀变速运动了。2T 第一问应该这样解析: ①物块在两相邻计数点6和7之间某吋刻开始减速。 根据1到6Z间的As = 2.00cm ,如果继续做匀加速运动的话,则6、7之间的距离应该为s67 = 556 + As = 11.01+2.00 = 13.01,但图中567= 12.28cm,所以是在6和7之间开始减速。 第二问应该这样解析: ②根据1到6之间的As = 2.00",加速度a =耸=] ° mls = 2.00m/s T~ 0.12 所以* 二v_ +aT= 1.00+ 2.00x0.1 = i.20m/s。 因为v =£L±£L=(10?66+&61)X10-2 =@96 物/$ 8 2T 2x0.1 v7 = v8-aT= 0.964- (-2) x 0.1 = l.l&n/s。 ③首先求相邻两个相等时间间隔的位移差,从第7点开始依次为, 3=10.6061 = 1.99cm, As*2 = &61-6.60=2.01如,Ay3 =6.60-4.60= 2.00cm,求平均值A.v = -(Av, + Av2 + ) = 2.00^ ,所以 力口速度a = = 2.00x]0皿」s1 = 2.00ml s1 T2 O.l2 根据“mg = ma,得a = “g这是加速度的理论值,实际上/zmg+ f = md (此 式中/为纸带与打点计时器的摩擦力),得ajg 丄这是加速度的理论m 值。因为a'> a所以“二纟的测量值偏大。 g

高考物理大题专练【题目】

1如图12所示,PR 是一块长为L =4 m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1 kg ,带电量为q =0.5 C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数 为μ=0.4,取g=10m/s 2 ,求: (1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v 1和v 2 (3)磁感应强度B 的大小 (4)电场强度E 的大小和方向 2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大? (2)到A 、B 都与挡板碰撞为止,C 的位移为多少? 3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上) 4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质量分别为m A =m B =m ,m C =3 m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好 能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度03 2 v 向下运动,经历同样过程,最后木块C 停在斜面上 的R 点,求P 、R 间的距离L ′的大小。 5如图,足够长的水平传送带始终以大小为v =3m/s 的速度向左运动,传送带上有一质量为M =2kg 的小木盒A ,A 与传送带之间的动摩擦因数为μ=0.3,开始时,A 与传送带之间保持相对静止。先后相隔△t =3s 有两个光滑的质量为m =1kg 的小球B 自传送带的左端出发,以v 0=15m/s 的速度在传送带上向右运动。第1个球与木盒相遇后,球立即进入盒中与盒保持相 对静止,第2个球出发后历时△t 1=1s/3而与木盒相遇。求(取g =10m/s 2 )

高考物理专题一(受力分析)(含例题、练习题及答案)

高考定位 受力分析、物体的平衡问题是力学的基本问题,主要考查力的产生条件、力的大小方向的判断(难点:弹力、摩擦力)、力的合成与分解、平衡条件的应用、动态平衡问题的分析、连接体问题的分析,涉及的思想方法有:整体法与隔离法、假设法、正交分解法、矢量三角形法、等效思想等.高考试题命题特点:这部分知识单独考查一个知识点的试题非常少,大多数情况都是同时涉及到几个知识点,而且都是牛顿运动定律、功和能、电磁学的内容结合起来考查,考查时注重物理思维与物理能力的考核. 考题1对物体受力分析的考查 例1如图1所示,质量为m的木块A放在质量为M的三角形斜面B上,现用大小均为F,方向相反的水平力分别推A和B,它们均静止不动,则() 图1 A.A与B之间不一定存在摩擦力 B.B与地面之间可能存在摩擦力 C.B对A的支持力一定大于mg D.地面对B的支持力的大小一定等于(M+m)g 审题突破B、D选项考察地面对B的作用力故可以:先对物体A、B整体受力分析,根据平衡条件得到地面对整体的支持力和摩擦力;A、C选项考察物体A、B之间的受力,应当隔离,物体A受力少,故:隔离物体A受力分析,根据平衡条件求解B对A的支持力和摩擦力. 解析对A、B整体受力分析,如图, 受到重力(M+m)g、支持力F N和已知的两个推力,水平方向:由于两个推力的合力为零,故

整体与地面间没有摩擦力;竖直方向:有F N=(M+m)g,故B错误,D正确;再对物体A受力分析,受重力mg、推力F、斜面体B对A的支持力F N′和摩擦力F f,在沿斜面方向:①当推力F沿斜面分量大于重力的下滑分量时,摩擦力的方向沿斜面向下,②当推力F沿斜面分量小于重力的下滑分量时,摩擦力的方向沿斜面向上,③当推力F沿斜面分量等于重力的下滑分量时,摩擦力为零,设斜面倾斜角为θ,在垂直斜面方向:F N′=mg cos θ+F sin θ,所以B对A的支持力不一定大于mg,故A正确,C错误.故选择A、D. 答案AD 1.(单选)(2014·广东·14)如图2所示,水平地面上堆放着原木,关于原木P在支撑点M、N处受力的方向,下列说法正确的是() 图2 A.M处受到的支持力竖直向上 B.N处受到的支持力竖直向上 C.M处受到的静摩擦力沿MN方向 D.N处受到的静摩擦力沿水平方向 答案 A 解析M处支持力方向与支持面(地面)垂直,即竖直向上,选项A正确;N处支持力方向与支持面(原木接触面)垂直,即垂直MN向上,故选项B错误;摩擦力与接触面平行,故选项C、D错误. 2.(单选)如图3所示,一根轻杆的两端固定两个质量均为m的相同小球A、B,用两根细绳悬挂在天花板上,虚线为竖直线,α=θ=30°,β=60°,求轻杆对A球的作用力() 图3 A.mg B.3mg C. 3 3mg D. 3 2mg

高考物理物理学史知识点经典测试题含答案(2)

高考物理物理学史知识点经典测试题含答案(2) 一、选择题 1.下列叙述正确的是() A.开普勒三定律都是在万有引力定律的基础上推导出来的 B.爱伊斯坦根据他对麦克斯韦理论的研究提出光速不变原理,这是狭义相对论的第二个基本假设 C.伽利略猜想自由落体的运动速度与下落时间成正比,并直接用实验进行了验证 D.红光由空气进入水中,波长变长,颜色不变 2.了解物理规律的发现过程,学会像科学家那样观察和思考,往往比掌握知识本身更重要。以下符合史实的是( ) A.焦耳发现了电流的磁效应 B.法拉第发现了电磁感应现象,并总结出了电磁感应定律 C.惠更斯总结出了折射定律 D.英国物理学家托马斯杨利用双缝干涉实验首先发现了光的干涉现象 3.在物理学建立、发展的过程中,许多物理学家的科学发现推动了人类历史的进步,关于科学家和他们的贡献,下列说法正确的是() A.古希腊学者亚里士多德认为物体下落的快慢由它们的重量决定,伽利略在他的《两种新科学的对话》中利用逻辑推断,使亚里士多德的理论陷入了困境 B.德国天文学家开普勒对他导师第谷观测的行星数据进行了多年研究,得出了万有引力定律 C.英国物理学家卡文迪许利用“卡文迪许扭秤”首先较准确的测定了静电力常量 D.牛顿首次提出“提出假说,数学推理实验验证,合理外推”的科学推理方法 4.科学发现或发明是社会进步的强大推动力,青年人应当崇尚科学在下列关于科学发现或发明的叙述中,存在错误的是 A.安培提出“分子电流假说”揭示了磁现象的电本质 B.库仑发明了“扭秤”,准确的测量出了带电物体间的静电力 C.奥斯特发现了电流的磁效应,揭示了电与磁的联系 D.法拉第经历了十年的探索,实现了“电生磁”的理想 5.关于物理学家做出的贡献,下列说法正确的是() A.奥斯特发现了电磁感应现象 B.韦伯发现了电流的磁效应,揭示了电现象和磁现象之间的联系 C.洛伦兹发现了磁场对电流的作用规律 D.安培观察到通电螺旋管和条形磁铁的磁场很相似,提出了分子电流假说 6.理想实验有时更能深刻地反映自然规律。伽利略设想了一个理想实验,其中有一个是经验事实,其余是推论。 ①减小第二个斜面的倾角,小球在这斜面上仍然要达到原来原来释放时的高度。 ②两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面。 ③如果没有摩擦,小球将上升到原来释放时的高度。 ④继续减小第二个斜面的倾角,最后使它成水平面,小球要沿水平面作持续的匀速运动。

最新高考物理相互作用练习题

最新高考物理相互作用练习题 一、高中物理精讲专题测试相互作用 1.如图所示,斜面倾角为θ=37°,一质量为m=7kg的木块恰能沿斜面匀速下滑, (sin37°=0.6,cos37°=0.8,g=10m/s2) (1)物体受到的摩擦力大小 (2)物体和斜面间的动摩擦因数? (3)若用一水平恒力F作用于木块上,使之沿斜面向上做匀速运动,此恒力F的大小. 【答案】(1)42N(2)0.75(3)240N 【解析】 【分析】 【详解】 (1)不受推力时匀速下滑,物体受重力,支持力,摩擦力, 沿运动方向有: mg sinθ-f=0 所以: f=mg sinθ=7×10×sin37°=42N (2)又: f=μmg cosθ 解得: μ=tanθ=0.75 (3)受推力后仍匀速运动则: 沿斜面方向有: F cosθ-mg sinθ-μF N=0 垂直斜面方向有: F N-mg cosθ-F sinθ=0 解得: F=240N 【点睛】 本题主要是解决摩擦因数,依据题目的提示,其在不受推力时能匀速运动,由此就可以得 到摩擦因数μ=tanθ. 2.质量m=5kg的物体在20N的水平拉力作用下,恰能在水平地面上做匀速直线运动.若改用与水平方向成θ=37°角的力推物体,仍要使物体在水平地面上匀速滑动,所需推力应为多大?(g=10N/kg,sin37°=0.6,cos37°=0.8)

【答案】35.7N ; 【解析】 解:用水平力拉时,物体受重力、支持力、拉力和滑动摩擦力, 根据平衡条件,有:f mg μ= 解得:200.450 f m g μ= == 改用水平力推物体时,对物块受力分析,并建正交坐标系如图: 由0X F =得:cos F f θ= ① 由0Y F =得:sin N mg F θ=+ ② 其中:f N μ= ③ 解以上各式得:35.7F N = 【点睛】本题关键是两次对物体受力分析,然后根据共点力平衡条件列方程求解,注意摩擦力是不同的,不变的是动摩擦因数. 3.如图所示,质量均为M 的A 、B 两滑块放在粗糙水平面上,滑块与粗糙水平面间的动摩擦因数为μ,两轻杆等长,且杆长为L,杆与滑块、杆与杆间均用光滑铰链连接,杆与水平面间的夹角为θ,在两杆铰合处悬挂一质量为m 的重物C,整个装置处于静止状态。重力加速度为 g ,最大静摩擦力等于滑动摩擦力,试求: (1)地面对物体A 的静摩擦力大小; (2)无论物块C 的质量多大,都不能使物块A 或B 沿地面滑动,则μ至少要多大? 【答案】(1)2tan mg θ (2)1tan θ 【解析】 【分析】

高考物理最新物理学史知识点经典测试题附解析

高考物理最新物理学史知识点经典测试题附解析 一、选择题 1.下列叙述正确的是() A.开普勒三定律都是在万有引力定律的基础上推导出来的 B.爱伊斯坦根据他对麦克斯韦理论的研究提出光速不变原理,这是狭义相对论的第二个基本假设 C.伽利略猜想自由落体的运动速度与下落时间成正比,并直接用实验进行了验证 D.红光由空气进入水中,波长变长,颜色不变 2.在物理学发展过程中, 很多科学家做出了巨大的贡献,下列说法中符合史实的是()A.伽利略通过观测、分析计算发现了行星的运动规律 B.卡文迪许用扭秤实验测出了万有引力常量 C.牛顿运用万有引力定律预测并发现了海王星和冥王星 D.开普勒利用他精湛的数学经过长期计算分析,最后终于发现了万有引力定律 3.伽俐略对运动的研究,不仅确立了许多用于描述运动的基本概念,而且创造了一套对近代科学的发展极为有益的科学方法,或者说给出了科学研究过程的基本要素.关于这些要素的排列顺序应该( ) A.提出假设→对现象的观察→运用逻辑得出推论→用实验检验推论→对假说进行修正和推广 B.对现象的观察→提出假设→运用逻辑得出推论→用实验检验推论→对假说进行修正和推广 C.提出假设→对现象的观察→对假说进行修正和推广→运用逻辑得出推论→用实验检验推论 D.对现象的观察→提出假设→运用逻辑得出推论→对假说进行修正和推广→用实验检验推论 4.发明白炽灯的科学家是() A.伏打 B.法拉第 C.爱迪生 D.西门子 5.在电磁学发展过程中,许多科学家做出了贡献,下列说法中符合物理学发展史的是A.奥斯特发现了点电荷的相互作用规律 B.库仑发现了电流的磁效应 C.安培发现了磁场对运动电荷的作用规律 D.法拉第最早引入电场的概念,并发现了磁场产生电流的条件和规律 6.关于物理学家做出的贡献,下列说法正确的是() A.奥斯特发现了电磁感应现象 B.韦伯发现了电流的磁效应,揭示了电现象和磁现象之间的联系 C.洛伦兹发现了磁场对电流的作用规律 D.安培观察到通电螺旋管和条形磁铁的磁场很相似,提出了分子电流假说 7.许多科学家对物理学的发展做出了巨大贡献,下列选项中说法全部正确的是( ) ①牛顿发现了万有引力定律,他被誉为第一个“称出”地球质量的人 ②富兰克林通过油滴实验比较精确地测定了电荷量e的数值

高考物理大题专题训练专用(带答案)

高考物理大题常考题型专项练习 题型一:追击问题 题型二:牛顿运动问题 题型三:牛顿运动和能量结合问题 题型四:单机械能问题 题型五:动量和能量的结合 题型六:安培力/电磁感应相关问题 题型七:电场和能量相关问题 题型八:带电粒子在电场/磁场/复合场中的运动 题型一:追击问题3 1. (2014年全国卷1,24,12分★★★)公路上行驶的两汽车之间应保持一定的安全距离。 当前车突然停止时,后车司机以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰。通常情况下,人的反应时间和汽车系统的反应时间之和为1s。当汽车在晴天干燥沥青路面上以108km/h的速度匀速行驶时,安全距离为120m。设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的2/5,若要求安全距离仍为120m,求汽车在雨天安全行驶的最大速度。 答案:v=20m/s 2.(2018年全国卷II,4,12分★★★★★)汽车A在水平冰雪路面上行驶,驾驶员发现其 正前方停有汽车B,立即采取制动措施,但仍然撞上了汽车B.两车碰撞时和两车都完全停止后的位置如图所示,碰撞后B车向前滑动了4.5 m,A车向前滑动了2.0 m,已知A和B 的质量分别为2.0×103 kg和1.5×103kg,两车与该冰雪路面 间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车 轮均没有滚动,重力加速度大小g = 10m/s2.求: (1)碰撞后的瞬间B车速度的大小; (2)碰撞前的瞬间A车速度的大小. 答案.(1)v B′ = 3.0 m/s (2)v A = 4.3m/s 3.(2019年全国卷II,25,20分★★★★★)一质量为m=2000kg的汽车以某一速度在平直

高中物理经典题库1000题

《物理学》题库 一、选择题 1、光线垂直于空气和介质的分界面,从空气射入介质中,介质的折射率为n,下列说法中正确的是() A、因入射角和折射角都为零,所以光速不变 B、光速为原来的n倍 C、光速为原来的1/n D、入射角和折射角均为90°,光速不变 2、甘油相对于空气的临界角为42.9°,下列说法中正确的是() A、光从甘油射入空气就一定能发生全反射现象 B、光从空气射入甘油就一定能发生全反射现象 C、光从甘油射入空气,入射角大于42.9°能发生全反射现象 D、光从空气射入甘油,入射角大于42.9°能发生全反射现象 3、一支蜡烛离凸透镜24cm,在离凸透镜12cm的另一侧的屏上看到了清晰的像,以下说法中正确的是() A、像倒立,放大率K=2 B、像正立,放大率K=0.5 C、像倒立,放大率K=0.5 D、像正立,放大率K=2 4、清水池内有一硬币,人站在岸边看到硬币() A、为硬币的实像,比硬币的实际深度浅 B、为硬币的实像,比硬币的实际深度深 C、为硬币的虚像,比硬币的实际深度浅 D、为硬币的虚像,比硬币的实际深度深 5、若甲媒质的折射率大于乙媒质的折射率。光由甲媒质进入乙媒质时,以下四种答案正确的是() A、折射角>入射角 B、折射角=入射角 C、折射角<入射角 D、以上三种情况都有可能发生 6、如图为直角等腰三棱镜的截面,垂直于CB面入射的光线在AC面上发生全反射,三棱镜的临界角() A、大于45o B、小于45o C、等于45o D、等于90o 7、光从甲媒质射入乙媒质,入射角为α,折射角为γ,光速分别为v甲和v乙,已知折射率为n甲>n乙,下列关系式正确的是() A、α>γ,v甲>v乙 B、α<γ,v甲>v乙 C、α>γ,v甲

【物理】高考物理临界状态的假设解决物理试题解答题压轴题提高专题练习含详细答案

【物理】高考物理临界状态的假设解决物理试题解答题压轴题提高专题练习含 详细答案 一、临界状态的假设解决物理试题 1.如图甲所示,小车B 紧靠平台的边缘静止在光滑水平面上,物体A (可视为质点)以初速度v 0从光滑的平台水平滑到与平台等高的小车上,物体和小车的v -t 图像如图乙所示,取重力加速度g =10m /s 2,求: (1)物体A 与小车上表面间的动摩擦因数; (2)物体A 与小车B 的质量之比; (3)小车的最小长度。 【答案】(1)0.3;(2)1 3 ;(3)2m 【解析】 【分析】 【详解】 (1)根据v t -图像可知,A 在小车上做减速运动,加速度的大小 21241m /s 3m /s 1 v a t ==?-?= 若物体A 的质量为m 与小车上表面间的动摩擦因数为μ,则 1mg ma μ= 联立可得 0.3μ= (2)设小车B 的质量为M ,加速度大小为2a ,根据牛顿第二定律 2mg Ma μ= 得 1 3 m M = (3)设小车的最小长度为L ,整个过程系统损失的动能,全部转化为内能

2 20 1 1() 22 mgL mv M m v μ=-+ 解得 L =2m 2.壁厚不计的圆筒形薄壁玻璃容器的侧视图如图所示。圆形底面的直径为2R ,圆筒的高度为R 。 (1)若容器内盛满甲液体,在容器中心放置一个点光源,在侧壁以外所有位置均能看到该点光源,求甲液体的折射率; (2)若容器内装满乙液体,在容器下底面以外有若干个光源,却不能通过侧壁在筒外看到所有的光源,求乙液体的折射率。 【答案】(1)5n ≥甲;(2)2n >乙 【解析】 【详解】 (1)盛满甲液体,如图甲所示,P 点刚好全反射时为最小折射率,有 1 sin n C = 由几何关系知 2 2 2sin 2R C R R = ??+ ? ?? 解得 5n =则甲液体的折射率应为 5n ≥甲

(完整word版)高考物理经典大题练习及答案

14.(7分)如图14所示,两平行金属导轨间的距离 L=0.40 m,金属导轨所在的平面与水平面夹角θ=37°,在 导轨所在平面内,分布着磁感应强度B=0.50 T、方向垂直于 导轨所在平面的匀强磁场.金属导轨的一端接有电动势 E=4.5 V、内阻r=0.50 Ω的直流电源.现把一个质量m=0.040 kg的导体棒ab放在金属导轨上,导体棒恰好静止.导体棒 与金属导轨垂直、且接触良好,导体棒与金属导轨接图14 触的两点间的电阻R0=2.5 Ω,金属导轨电阻不计,g取 10 m/s2.已知sin 37°=0.60,cos 37°=0.80,求: (1)通过导体棒的电流; (2)导体棒受到的安培力大小; (3)导体棒受到的摩擦力 15.(7分)如图15所示,边长L=0.20m的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R0=1.0 Ω, 金属棒MN与正方形导线框的对角线长度恰好相等,金属棒MN的电 阻r=0.20 Ω.导线框放置在匀强磁场中,磁场的磁感应强度B=0.50 T,方向垂直导线框所在平面向里.金属棒MN与导线框接触良好,且 与导线框的对角线BD垂直放置在导线框上,金属棒的中点始终在BD 连线上.若金属棒以v=4.0 m/s的速度向右匀速运动,当金属棒运动 至AC的位置时,求(计算结果保留两位有效数字): 图15 (1)金属棒产生的电动势大小; (2)金属棒MN上通过的电流大小和方向; (3)导线框消耗的电功率. 16.(8分)如图16所示,正方形导线框abcd的质量为m、边长为l, 导线框的总电阻为R.导线框从垂直纸面向里的水平有界匀强磁场的上 方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直 平面内,cd边保持水平.磁场的磁感应强度大小为B,方向垂直纸面向 里,磁场上、下两个界面水平距离为l已.知cd边刚进入磁场时线框 恰好做匀速运动.重力加速度为g. (1)求cd边刚进入磁场时导线框的速度大小. (2)请证明:导线框的cd边在磁场中运动的任意瞬间,导线框克 服安培力做功的功率等于导线框消耗的电功率.图16 (3)求从导线框cd边刚进入磁场到ab边刚离开磁场的过程中,导 线框克服安培力所做的功. 17.(8分)图17(甲)为小型旋转电枢式交流发电机的原理图,其矩形线圈在匀强磁场中绕垂直于磁场方向的固定轴OO′匀速转动,线圈的匝数n=100、电阻r=10 Ω,线圈的两端经集流环与电阻R连接,电阻R=90 Ω,与R并联的交流电压表为理想电表.在t=0时刻,线圈平面与磁场方向平行,穿过每匝线圈的磁通量φ随时间t按图17(乙)所示正弦规律变化.求: (1)交流发电机产生的 电动势最大值;

高考物理经典考题300道(10)

一、计算题(解答写出必要的文字说明、方程式和重要的演算步骤。只写出最后答案的不能得分。有数值计算的题,答案中必须明确写出数值和单位。本题包含55小题,每题?分,共?分) 1.如图所示,在光滑的水平面上,有两个质量都是M 的小车A 和B ,两车间用轻质弹簧相连,它们以共同的速度向右运动,另有一质量为 0M 的粘性物体,从高处自由下落,正好落 至A 车并与之粘合在一起,在此后的过程中,弹簧获得最大弹性势能为E ,试求A 、B 车开始匀速运动的初速度 0v 的大小. 解析:物体 0M 落到车A 上并与之共同前进,设其共同速度为1v , 在水平方向动量守恒,有 100)(v M M M v += 所以 0 01v M M M v += 物体0M 与A 、B 车共同压缩弹簧,最后以共同速度前进,设共同速度为2v ,根据动量守 恒有 200)2(2v M M Mv += 所以 0222v M M M v += 当弹簧被压缩至最大而获得弹性势能为E ,根据能量守恒定律有: ()()202102202121221 Mv v M M v M M E ++=++ 解得 ()()002 0022M M M M MM E v ++= . 2.如图所示,质量为M 的平板小车静止在光滑的水平地面上,小车左端放一个质量为m 的木块,车的右端固定一个轻质弹簧.现给木块一个水平向右的瞬时冲量I ,木块便沿小车向右滑行,在与弹簧相碰后又沿原路返回,并且恰好能到达小车的左端.试求: (1)木块返回到小车左端时小车的动能. (2)弹簧获得的最大弹性势能. 解:(1)选小车和木块为研究对象.由于m 受到冲量I 之后系统水平方向不受外力作用,系统动量守恒.则v m M I )(+=

2021高考物理大题专题训练含答案 (3)

物理:2021模拟高三名校大题天天练(八) 1.(12分)如图所示,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心r=20cm处放置一小物块A,其质量为m=2kg,A与盘面间相互作用的静摩擦力的最大值为其重力的k倍(k=0.5),试求: ⑴当圆盘转动的角速度ω=2rad/s时, 物块与圆盘间的摩擦力大小多大?方向如何? ⑵欲使A与盘面间不发生相对滑动, 则圆盘转动的最大角速度多大?(取g=10m/s2) 2.(10 分)如图所示,A物体用板托着,位于离地h=1.0m处,轻质细绳通过光滑定滑轮与A、B相连,绳子处于绷直状态,已知A物体质量M=1.5㎏,B物体质量m=1.0kg,现将板抽走,A将拉动B上升,设A与地面碰后不反弹,B上升过程中不会碰到定滑轮, 求:B物体在上升过程中离地的最大高度为多大?取g =10m/s2. A h B 3.(15分)如图所示,某人乘雪橇从雪坡经A点滑至B点,接着沿水平路面滑至C点停止.人与雪橇的 总质量为70kg.表中记录了沿坡滑下过程中的有关数据,请根据图表中的数据解决下列问题:(取g=10m/s2) (1)人与雪橇从A到B的过程中,损失的机械能为多少? (2)设人与雪橇在BC段所受阻力恒定,求阻力的大小. (3)人与雪橇从B到C的过程中,运动的距离。 位置 A B C 速度(m/s) 2.0 12.0 0 时刻(s)0 4 10

4.(14分)大气中存在可自由运动的带电粒子,其密度随离地面的距离的增大而增大,可以把离地面50㎞以下的大气看作是具有一定程度漏电的均匀绝缘体(即电阻率较大的物质);离地面50㎞以上的大气可看作是带电粒子密度非常高的良导体.地球本身带负电,其周围空间存在电场,离地面50㎞处与地面之间的电势差为4×105V.由于电场的作用,地球处于放电状态,但大气中频繁发生闪电又对地球充电,从而保证了地球周围电场恒定不变.统计表明,大气中每秒钟平均发生60次闪电,每次闪电带给地球的电量平均为30C.试估算大气的电阻率和地球漏电的功率.已知地球的半径r=6400㎞. 5.(18分)如图所示,ABC为光滑轨道,其中AB段水平放置,BC段为半径R的圆弧,AB与BC相切于B 点。A处有一竖直墙面,一轻弹簧的一端固定于墙上,另一端与一质量为M的物块相连接,当弹簧处于原长状态时,物块恰能与固定在墙上的L形挡板相接触与B处但无挤压。现使一质量为m的小球从圆弧轨道上距水平轨道高h处的D点由静止开始下滑。 小球与物块相碰后立即共速但不粘连,物块与L形挡板 相碰后速度立即减为零也不粘连。(整个过程中,弹簧 没有超过弹性限度。不计空气阻力,重力加速度为g) (1) 试求弹簧获得的最大弹性势能; (2) 求小球与物块第一次碰后沿BC上升的最大高度h’ (3) 若R>>h。每次从小球接触物块至物块撞击L形挡板历时均为△t,则小球由D点出发经多长时间第 三次通过B点? 6.(18分)如下左图所示,真空中有两水平放置的平行金属板C、D,上面分别开有正对的小孔O1和O2,金属板C、D接在正弦交流电源上,两板间的电压u CD随时间t变化的图线如下右图所示。t=0时刻开始,从D板小

高中物理力学经典的题库(含答案)

高中物理力学计算题汇总经典精解(50题)1.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向.(重力加速度取g=10/m2s2) 图1-73 2.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算: (1)飞机在竖直方向上产生的加速度多大?方向怎样? (2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2) (3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人体的什么部位? (注:飞机上乘客所系的安全带是固定连结在飞机座椅和乘客腰部的较宽的带子,它使乘客与飞机座椅连为一体) 3.宇航员在月球上自高h处以初速度v0水平抛出一小球,测出

水平射程为L(地面平坦),已知月球半径为R,若在月球上发射一颗月球的卫星,它在月球表面附近环绕月球运行的周期是多少? 4.把一个质量是2kg的物块放在水平面上,用12N的水平拉力使物体从静止开始运动,物块与水平面的动摩擦因数为0.2,物块运动2秒末撤去拉力,g取10m/s2.求 (1)2秒末物块的即时速度. (2)此后物块在水平面上还能滑行的最大距离. 5.如图1-74所示,一个人用与水平方向成θ=30°角的斜向下的推力F推一个重G=200N的箱子匀速前进,箱子与地面间的动摩擦因数为μ=0.40(g=10m/s2).求 图1-74 (1)推力F的大小. (2)若人不改变推力F的大小,只把力的方向变为水平去推这个静止的箱子,推力作用时间t=3.0s后撤去,箱子最远运动多长距离? 6.一网球运动员在离开网的距离为12m处沿水平方向发球,发球高度为2.4m,网的高度为0.9m. (1)若网球在网上0.1m处越过,求网球的初速度. (2)若按上述初速度发球,求该网球落地点到网的距离.

2018-2018高考物理动量定理专题练习题(附解析)

2018-2018高考物理动量定理专题练习题(附解 析) 如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变。小编准备了动量定理专题练习题,具体请看以下内容。 一、选择题 1、下列说法中正确的是( ) A.物体的动量改变,一定是速度大小改变? B.物体的动量改变,一定是速度方向改变? C.物体的运动状态改变,其动量一定改变? D.物体的速度方向改变,其动量一定改变 2、在下列各种运动中,任何相等的时间内物体动量的增量总是相同的有( )

A.匀加速直线运动 B.平抛运动 C.匀减速直线运动 D.匀速圆周运动 3、在物体运动过程中,下列说法不正确的有( ) A.动量不变的运动,一定是匀速运动? B.动量大小不变的运动,可能是变速运动? C.如果在任何相等时间内物体所受的冲量相等(不为零),那么该物体一定做匀变速运动 D.若某一个力对物体做功为零,则这个力对该物体的冲量也一定为零? 4、在距地面高为h,同时以相等初速V0分别平抛,竖直上抛,竖直下抛一质量相等的物体m,当它们从抛出到落地时,比较它们的动量的增量△ P,有 ( ) A.平抛过程较大 B.竖直上抛过程较大 C.竖直下抛过程较大 D.三者一样大

5、对物体所受的合外力与其动量之间的关系,叙述正确的是( ) A.物体所受的合外力与物体的初动量成正比; B.物体所受的合外力与物体的末动量成正比; C.物体所受的合外力与物体动量变化量成正比; D.物体所受的合外力与物体动量对时间的变化率成正比 6、质量为m的物体以v的初速度竖直向上抛出,经时间t,达到最高点,速度变为0,以竖直向上为正方向,在这个过程中,物体的动量变化量和重力的冲量分别是( ) A. -mv和-mgt B. mv和mgt C. mv和-mgt D.-mv和mgt 7、质量为1kg的小球从高20m处自由下落到软垫上,反弹后上升的最大高度为5m,小球接触软垫的时间为1s,在接触时间内,小球受到的合力大小(空气阻力不计 )为( )

高考物理经典压轴题集

1(20分) 如图12所示,PR 是一块长为L =4 m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1 kg ,带电量为q =0.5 C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2 ,求: (1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v 1和v 2 (3)磁感应强度B 的大小 (4)电场强度E 的大小和方向 2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大? (2)到A 、B 都与挡板碰撞为止,C 的位移为多少? 3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上) 4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质 量分别为m A =m B =m ,m C =3 m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度 03 2 v 向下运动,经历同样过程,最后木块C 图 12

高考物理大题专项训练

1、(安徽省铜陵市第一中学2016届高三5月教学质量检测理科综合试题)如图甲所示,光滑的水平地面上放有一质量为M、长为的木板。从时刻开始,质量为的物块以初速度从左侧滑上木板,同时在木板上施以水平向右的恒力,已知开始运动后内两物体的图线如图乙所示,物块可视为质点,,下列说法正确的是() A、木板的质量 B、物块与木板间的动摩擦因数为 C、时,木板的加速度为 D、时,木板的速度为 2、在一个倾角为37°斜面底端的正上方h=6.8m处的A点,以一定的初速度向着斜面水平抛出一个小球,恰好垂直击中斜面,不计空气阻力,g=10m/s2,求抛出时的初速度和飞行时间. 3、如图所示为交流发电机的示意图,线圈的匝数为2000,边长分别为10cm和20cm,在磁感应强度B=0.5T的匀强 磁场中绕OO′轴匀速转动,周期为T=s.求: (1)交流电压表的示数. (2)从图示位置开始,转过30°时感应电动势的瞬时值.

4、有一个阻值为R的电阻,若将它接在电压为20V的直流电源上,其消耗的功率为P;若将它接在 如图所示的理想变压器的次级线圈两端时,其消耗的功率为.已知变压器输入电压为u=220sin100 πt(V),不计电阻随温度的变化.求: (1)理想变压器次级线圈两端电压的有效值. (2)此变压器原、副线圈的匝数之比. 5、(2016·盐城高一检测)光滑水平面AB与竖直面内的圆形导轨在B点连接,导轨半径R=0.5 m,一 个质量m=2 kg的小球在A处压缩一轻质弹簧,弹簧与小球不拴接。用手挡住小球不动,此时弹簧弹 性势能E p=49 J,如图所示。放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C, g取10 m/s2。求: (1)小球脱离弹簧时的速度大小; (2)小球从B到C克服阻力做的功; (3)小球离开C点后落回水平面时的动能大小。 6、2014年7月17日,马航MH17(波音777)客机在飞经乌克兰上空时,疑遭导弹击落坠毁,机上乘客和机组人员全部罹难。若波音777客机在起飞时,双发动机推力保持不变,飞机在起飞过程中所受阻力恒为其自重的0.1,根据下表性能参数。 求:(取g=10 m/s2) 最大巡航速 900 km/h(35 000英尺巡航高度) 率 单发动机推 3×105 N 力 最大起飞重 2×105 kg 量 安全起飞速 60 m/s 度 (1)飞机以最大起飞重量及最大推力的情况下起飞过程中的加速度; (2)在第(1)问前提下飞机安全起飞过程中滑行的距离; (3)飞机以900 km/h的巡航速度,在35 000英尺巡航高度飞行,此时推力为最大推力的90%,则该发动机的功率为多少? 7、(2016·西安市高一检测)如图所示,宇航员站在某质量分布均匀的星球表面沿水平方向以初速度v0抛出一个小球,经时间t落地,落地时速度与水平地面间的夹角为α,已知该星球半径为R,万有引力常量为G,求:

相关主题
文本预览
相关文档 最新文档