当前位置:文档之家› 微积分练习题答题详解

微积分练习题答题详解

微积分练习题答题详解
微积分练习题答题详解

习题2-1

1. 试利用本节定义5后面的注(3)证明:若lim n →∞

x n =a ,则对任何自然数k ,有lim n →∞

x n +k =a .

证:由lim n n x a →∞

=,知0ε?>,1N ?,当1n N >时,有

n x a ε-<

取1N N k =-,有0ε?>,N ?,设n N >时(此时1n k N +>)有

n k x a ε+-<

由数列极限的定义得 lim n k x x a +→∞

=.

2. 试利用不等式A B A B -≤-说明:若l i m n →∞

x n =a ,则lim n →∞

∣x n ∣=|a|.考察数列

x n =(-1)n ,说明上述结论反之不成立.

证:

lim 0,,.

使当时,有n x n x a

N n N x a εε→∞

=∴?>?>-<

而 n n x a x a -≤- 于是0ε?>,,使当时,有N n N ?>

n n x a x a ε-≤-< 即 n x a ε-<

由数列极限的定义得 lim n n x a →∞

=

考察数列 (1)n

n x =-,知lim n n x →∞

不存在,而1n x =,lim 1n n x →∞

=,

所以前面所证结论反之不成立。

3. 利用夹逼定理证明:

(1) lim n →∞

2221

11(1)

(2)n n n ??+++ ?+??

=0; (2) lim n →∞2!n

n =0.

证:(1)因为

222222

111

112

(1)(2)n n n

n n n n n n n

++≤+++

≤≤=+

而且 21lim

0n n →∞=,

2lim 0n n

→∞=, 所以由夹逼定理,得

22211

1lim 0(1)(2)n n n n →∞??

+++

= ?+?

?

.

(2)因为2222224

0!123

1n n n n n

<

=<-,而且4lim 0n n →∞=,

所以,由夹逼定理得

2lim 0!

n

n n →∞= 4. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x n =

1

1

n

e +,n =1,2,…;

(2) x 1x n +1,n =1,2,…. 证:(1)略。

(2)因为12x =<,不妨设2k x <,则

12k x +=<=

故有对于任意正整数n ,有2n x <,即数列{}n x 有上界,

又 1n n x x +-=

,而0n x >,2n x <,

所以 10n n x x +-> 即 1n n x x +>, 即数列是单调递增数列。

综上所述,数列{}n x 是单调递增有上界的数列,故其极限存在。

习题2-2

1※

. 证明:0

lim x x →f (x )=a 的充要条件是f (x )在x 0处的左、右极限均存在且都等于a .

证:先证充分性:即证若0

lim ()lim ()x x x x f x f x a -+

→→==,则0

lim ()x x f x a →=. 由0

lim ()x x f x a -→=及0

lim ()x x f x a +

→=知: 10,0εδ?>?>,当010x x δ<-<时,有()f x a ε-<,

20δ?>当020x x δ<-<时,有()f x a ε-<。

取{}12min ,δδδ=,则当00x x δ<-<或00x x δ<-<时,有()f x a ε-<, 而00x x δ<-<或00x x δ<-<就是00x x δ<-<, 于是0,0εδ?>?>,当00x x δ<-<时,有()f x a ε-<,

所以 0

lim ()x x f x a →=.

再证必要性:即若0

lim ()x x f x a →=,则00

lim ()lim ()x x x x f x f x a -+

→→==, 由0

lim ()x x f x a →=知,0,0εδ?>?>,当00x x δ<-<时,有()f x a ε-<,

由00x x δ<-<就是 00x x δ<-<或00x x δ<-<,于是0,0εδ?>?>,当

00x x δ<-<或00x x δ<-<时,有()f x a ε-<.

所以 0

lim ()lim ()x x x x f x f x a -+

→→== 综上所述,0

lim x x →f (x )=a 的充要条件是f (x )在x 0处的左、右极限均存在且都等于a .

2. (1) 利用极限的几何意义确定0

lim x → (x 2

+a ),和0

lim x -

→1

e x

; (2) 设f (x )= 12

e ,0,,0,x

x x a x ??

,问常数a 为何值时,0lim x →f (x )存在.

解:(1)因为x 无限接近于0时,2

x a +的值无限接近于a ,故2

lim()x x a a →+=.

当x 从小于0的方向无限接近于0时,1

e x 的值无限接近于0,故10

lim e 0x

x -

→=. (2)若0

lim ()x f x →存在,则0

lim ()lim ()x x f x f x +

-→→=, 由(1)知 22

lim ()lim()lim()x x x f x x a x a a +--

→→→=+=+=, 1

lim ()lim e 0x

x x f x --

→→== 所以,当0a =时,0

lim ()x f x →存在。

3. 利用极限的几何意义说明lim x →+∞

sin x 不存在.

解:因为当x →+∞时,sin x 的值在-1与1之间来回振摆动,即sin x 不无限接近某一定直线y A =,亦即()y f x =不以直线y A =为渐近线,所以lim sin x x →+∞

不存在。

习题2-3

1. 举例说明:在某极限过程中,两个无穷小量之商、两个无穷大量之商、无穷小量与无穷大量之积都不一定是无穷小量,也不一定是无穷大量.

解:例1:当0x →时,tan ,sin x x 都是无穷小量,但由

sin cos tan x

x x

=(当0x →时,cos 1x →)不是无穷大量,也不是无穷小量。

例2:当x →∞时,2x 与x 都是无穷大量,但22x

x

=不是无穷大量,也不是无穷小量。

例3:当0x +

→时,tan x 是无穷小量,而cot x 是无穷大量,但tan cot 1x x =不

是无穷大量,也不是无穷小量。

2. 判断下列命题是否正确:

(1) 无穷小量与无穷小量的商一定是无穷小量; (2) 有界函数与无穷小量之积为无穷小量; (3) 有界函数与无穷大量之积为无穷大量; (4) 有限个无穷小量之和为无穷小量; (5) 有限个无穷大量之和为无穷大量;

(6) y =x sin x 在(-∞,+∞)内无界,但lim x →∞

x sin x ≠∞;

(7) 无穷大量的倒数都是无穷小量; (8) 无穷小量的倒数都是无穷大量. 解:(1)错误,如第1题例1; (2)正确,见教材§2.3定理3;

(3)错误,例当0x →时,

cot x 为无穷大量,sin x 是有界函数,cot sin cos x x x =不是无穷大量;

(4)正确,见教材§2.3定理2;

(5)错误,例如当0x →时,1

x 与1x -都是无穷大量,但它们之和11()0x x

+-=不是无穷大量;

(6)正确,因为0M ?>,?正整数k ,使π

2π+

2

k M >,从而ππππ

(2π+)(2π+)sin(2π+)2π+2222

f k k k k M ==>,即sin y x x =在(,)-∞+∞内无界,

又0M ?>,无论X 多么大,总存在正整数k ,使π>k X ,使(2π)πsin(π)0f k k k M ==<,即x →+∞时,sin x x 不无限增大,即lim sin x x x →+∞

≠∞;

(7)正确,见教材§2.3定理5;

(8)错误,只有非零的无穷小量的倒数才是无穷大量。零是无穷小量,但其倒数无意义。

3. 指出下列函数哪些是该极限过程中的无穷小量,哪些是该极限过程中的无穷大量.

(1) f (x )=

2

34

x -,x →2; (2) f (x )=ln x ,x →0+

,x →1,x →+∞; (3) f (x )= 1e x

,x →0+,x →0-; (4) f (x )=

2

π

-arctan x ,x →+∞;

(5) f (x )=

1x sin x ,x →∞; (6) f (x )= 21x

x →∞.

解:(1)2

2

lim(4)0x x →-=因为,即2x →时,2

4x -是无穷小量,所以

21

4

x -是无穷小量,因而

2

3

4

x -也是无穷大量。 (2)从()ln f x x =的图像可以看出,1

lim ln ,lim ln 0,lim ln x x x x x x +

→→+∞

→=-∞==+∞,所以,当0x +

→时,x →+∞时,()ln f x x =是无穷大量;

当1x →时,()ln f x x =是无穷小量。

(3)从1

()e x f x =的图可以看出,110

lim e ,lim e 0x x

x x +-

→→=+∞=, 所以,当0x +

→时,1()e x f x =是无穷大量; 当0x -

→时,1()e x

f x =是无穷小量。

(4)

π

lim (arctan )02

x x →+∞-=, ∴当x →+∞时,π

()arctan 2

f x x =-是无穷小量。

(5)当x →∞时,1

x

是无穷小量,sin x 是有界函数,

∴ 1

sin x x

是无穷小量。

(6)

当x →∞时,

21x

是无穷小量。

习题2-4

1.若0

lim x x →f (x )存在,0

lim x x →g (x )不存在,问0

lim x x →[f (x )±g (x )], 0

lim x x →[f (x )·g (x )]是否存在,

为什么?

解:若0

lim x x →f (x )存在,0

lim x x →g (x )不存在,则

(1)0

lim x x →[f (x )±g (x )]不存在。因为若0

lim x x →[f (x )±g (x )]存在,则由

()()[()()]g x f x f x g x =--或()[()()]()g x f x g x f x =+-以及极限的运算法则可得

lim x x →g (x ),与题设矛盾。

(2)0

lim x x →[f (x )·g (x )]可能存在,也可能不存在,如:()sin f x x =,1

()g x x

=

,则0

lim sin 0x x →=,01lim

x x →不存在,但0

lim x x →[f (x )·g (x )]=01lim sin 0x x x →=存在。 又如:()sin f x x =,1()cos g x x =

,则π2

l i m s i n 1x x →=,π2

1

lim cos x x →

不存在,而

lim x x →[f (x )·g (x )]π

2

lim tan x x →

=不存在。

2. 若0

lim x x →f (x )和0

lim x x →g (x )均存在,且f (x )≥g (x ),证明0

lim x x →f (x )≥0

lim x x →g (x ).

证:设0

lim x x →f (x )=A ,0

lim x x →g (x )=B ,则0ε?>,分别存在10δ>,20δ>,使得当

010x x δ<-<时,有()A f x ε-<,当020x x δ<-<时,有()g x B ε<+

令{}12min ,δδδ=,则当00x x δ<-<时,有

()()A f x g x B εε-<≤<+

从而2A B ε<+,由ε的任意性推出A B ≤即

lim ()lim ()x x x x f x g x →→≤.

3. 利用夹逼定理证明:若a 1,a 2,…,a m 为m 个正常数,则

lim

n

→∞

=A ,

其中A =max{a 1,a 2,…,a m }.

n n

m A ≤≤,即

1n

A m A ≤≤

而lim n A A

→∞

=,1lim n

n m

A A →∞

=,由夹逼定理得

n

A .

4※

. 利用单调有界数列必存在极限这一收敛准则证明:若x

1x 2

,…,

x n +1

n =1,2,…),则lim

n →∞

x n 存在,并求该极限.

证:因为12x x =

=有21x

x >

今设1k k x x ->,则1k k x x -=>=,由数学归纳法知,对于任意

正整数n 有1n n x x +>,即数列{}n x 单调递增。

又因为12x =<,今设2k x <,

则12k x -==,由数学归纳法

知,对于任意的正整数 n 有2n x <,即数列{}n x 有上界,由极限收敛准则知lim n n x →∞

存在。

设lim n n x b →∞

=

,对等式1n x +=

b =22b b =+,

解得2b =,1b =-(由极限的保号性,舍去),所以lim 2n n x →∞

=.

5. 求下列极限:

(1) lim n →∞33232451n n n n n +++-+; (2) lim n

→∞1cos n ????? ???

; (3) lim n →∞

; (4) lim

n →∞11

(2)3(2)3n n

n n ++-+-+; (5) lim

n →∞1112213

3n n +++

+++. 解:(1)原式=23232433lim 111

55n n n n n

n

→∞+

+=+-+;

(2)因为

lim(10n →∞

=,即当n →∞

时,1是无穷小量,而cos n 是有界变量,由无穷小量与有界变量的乘积是无穷小量得:lim (10n n →∞

??

=?

???

; (3

22

lim(n n n n

→∞

+=

而lim 0n n

→∞

→∞==

2n n →∞

∴==∞;

(4)11

11121(1)()(2)31333lim

lim

2

(2)33

(1)()13

n

n n n

n n n n n n ++→∞→∞++-+-+==-+-+;

(5)1

11111()21111114[1()]

42222lim lim lim 1

111

3

11()3[1()]3

333113

n n n n n n n n n ++→∞→∞→∞++-+++

--===+++---.

6. 求下列极限: (1) 3

lim

x →239x x --; (2) 1lim x →223

54

x x x --+; (3) lim x →∞34264

23x x x ++;

(4) 2

lim x π→

sin cos cos 2x x x -; (5) 0lim h →33

()x h x h

+-; (6) 3lim

x

;

(7) 1lim x →21

n x x x n

x +++--; (8) lim x →∞sin sin x x x x +-;

(9) lim x →+∞ (10) 1lim x →3

13

(

)11x x ---; (11) 0lim x →2

1(sin )x x

.

解:23

333311

(1)lim

lim lim 9(3)(3)36

x x x x x x x x x →→→--===--++ (2)

21

1

lim(54)0,lim(23)1x x x x x →→-+=-=-

22115423lim 0,lim 23

54x x x x x x x x →→-+-∴==∞--+即 (3)3

4

422

64

64

lim lim 03

232x x x x x x x x

→∞→∞++==++; (4)π2

ππ

sin

cos sin cos 22lim

1cos 2cos π

x x x

x →

--=

=-; (5)[]22

3300()()()()lim lim

h h x h x x h x h x x x h x h h

→→??+-+++++-??=

222

lim ()()3h x h x h x x x →??=++++=??; (6

3

3(23)92)x x x →→+-

=

34

3

x x →→===;

(7)2211(1)(1)(1)

lim

lim 11

n n x x x x x n x x x x x →→+++--+-+

+-=--

2

121

lim 1(1)(1)(1)n n x x x x x x x --→??=+++++++++

++??

1

123(1)2

n n n =+++

+=

+; (8)

sin lim

0x x x →∞=(无穷小量1

x

与有界函数sin x 之积为无穷小量)

sin 1sin lim lim 1sin sin 1x x x x x x x

x x x →∞

→∞+

+∴

==--

; (9

)22lim lim

x x →+∞

=

lim

lim

1x x ===;

(10)1lim x →313()11x x ---23

1(1)3

lim 1x x x x →++-=-

232112(2)(1)

lim lim 1(1)(1)

x x x x x x x x x x →→+-+-==--++ 2

1(2)

lim

11x x x x →-+==-++

(11)当0x →时,2

x 是无穷小量,1sin x

是有界函数,

∴它们之积2

1sin x x 是无穷小量,即2

01lim sin 0x x x →??= ??

?。

习题2-5

求下列极限(其中a >0,a ≠1为常数):

1. 0

lim

x →sin 53x x

; 2. 0lim x →tan 2sin 5x

x ; 3. 0lim x →x cot x ;

4. 0

lim

x

→x ; 5. 0lim x →2cos5cos 2x x x -; 6. lim x →∞1x

x x ??

?+??

; 7. 0

lim x →()

cot 13sin x

x +; 8. 0lim x →1x a x

-; 9. 0lim x →x x

a a x --;

10. lim x →+∞ln(1)ln x x x +-; 11. lim x →∞3222x

x x -??

?-??

; 12.lim x →∞211x

x ?

?+ ???

; 13. 0lim

x →arcsin x x ; 14. 0lim x →arctan x

x

; .

解:1. 000sin 55sin 55sin 55

lim

lim lim 335353x x x x x x x x x →→→===; 2. 000tan 2sin 221sin 25lim lim lim sin 5cos 2sin 55cos 22sin 5x x x x x x x

x x x x x x

→→→==

0205021sin 252lim lim lim 5cos 22sin 55

x x x x x x x x →→→==; 3. 0000

lim cot lim

cos lim lim cos 1cos 01sin sin x x

x x x x x x x x x x →

→→→=?

==?=; 4. 0

000sin

2lim

lim

22

x x x x x x x

→→→→=== 0sin

22122

2

x

x →===; 5. 2200073732sin sin sin sin cos5cos 2732222lim lim lim (2)732222x x x x x x x x x x x x x →→→??-??-==-????

????

??

0073sin sin 212122lim

lim 7322

22

x x x x x x →→=-?=-; 6. 111lim lim lim 111e (1)

x

x

x x x x x x x x x →∞→∞→∞

?? ???=== ? ?++?? ?+??

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 一、选择题(共12分) 1. (3分)若2,0, (),0x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0 (3)(3) lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3分)定积分22 π π-?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 . 2. (3分) 1 241 (sin )x x x dx -+=? . 3. (3分) 20 1 lim sin x x x →= . 4. (3分) 3223y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求2 ln(15) lim .sin 3x x x x →+ 2. (6分)设2 ,1 y x =+求.y ' 3. (6分)求不定积分2ln(1).x x dx +?

4. (6分)求3 (1),f x dx -? 其中,1,()1cos 1, 1.x x x f x x e x ?≤? =+??+>? 5. (6分)设函数()y f x =由方程0 cos 0y x t e dt tdt +=??所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞ ? ?+ ??? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 22y x x π π??=-≤≤ ???与x 轴所围成图形绕着x 轴 旋转一周所得旋转体的体积. 3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().22b b a a b a f x dx f a f b x a x b f x dx -''=++--? ? 标准答案 一、 1 B; 2 C; 3 D; 4 A. 二、 1 31;y x =+ 2 2 ;3 3 0; 4 0. 三、 1 解 原式205lim 3x x x x →?= 5分 5 3 = 1分 2 解 22ln ln ln(1),12 x y x x ==-++ 2分

大学高等数学上考试题库(附答案)

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x = (C )()f x x = 和 ()() 2 g x x = (D )()|| x f x x = 和 ()g x =1 2.函数()()sin 42 0ln 10x x f x x a x ?+-≠? =+?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8. x x dx e e -+?的结果是( ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++ 9.下列定积分为零的是( ).

大一上学期微积分期末试卷及答案

1 1?设f(x) 2cosx,g(x) (l)sinx在区间(0, —)内( 2 2 A f (x)是增函数,g (x)是减函数 Bf (x)是减函数,g(x)是增函数 C二者都是增函数 D二者都是减函数2、x 0时,e2x cosx与sinx相比是() A高阶无穷小E低阶无穷小C等价无穷小 1 3、x = 0 是函数y = (1 -sinx)书勺() A连续点E可去间断点C跳跃间断点 4、下列数列有极限并且极限为1的选项为( ) n 1 n A X n ( 1) B X n sin - n 2 1 1 C X n n (a 1) D X n cos— a n 5、若f "(x)在X。处取得最大值,则必有() A f /(X。)o Bf /(X。)o Cf /(X。)0且f''( X o)

5、 若 则a,b 的值分别为: X 1 X + 2x-3

2 1 In x 1 ; 2 y x 3 2x 2; 3 y log^x 1 -,(0,1), R ; 4(0,0) x lim 5解:原式=x 1 (x 1)( x m ) ~~1)( x 7 b lim 3) x 7, a 1、 2、 、判断题 无穷多个无穷小的和是无穷小( lim 沁在区间(, X 0 X 是连续函数() 3、 f"(x 0)=0—定为f(x)的拐点 () 4、 若f(X)在X o 处取得极值,则必有 f(x)在X o 处连续不可导( 5、 f (x) 0,1 f '(x) 0令 A f'(0), f '(1),C f (1) f (0),则必有 A>B>C( 1~5 FFFFT 二、计算题 1用洛必达法则求极限 1 2 ~ lim x e x x 0 1 e 解:原式=lim x 0 1 x x 2 lim e x 2 ( 2x x 0 2x 3 3 4 k 2 若 f(x) (x 10),求f”(0) 3) 1 lim e x x 0 3 3 2 2 f '(x) 4(x 10) 3x 12x (x 3 3 2 3 2 2 f ''(x) 24x (x 10) 12x 3 (x 10) 3x 24x f ''(x) 0 10)3 3 .. .3 3 4 , 3 (x 10) 108 x (x 10)2 4 r t I 八] 2 3 求极限 lim(cos x)x x 0

微积分试题及答案(5)

微积分试题及答案 一、填空题(每小题2分,共20分) 1. =∞→2 arctan lim x x x . 2. 设函数??? ??=<<-=0 , 10 )21()(1 x k x ,x x f x 在0=x 处连续,则=k 。 3. 若x x f 2e )(-=,则=')(ln x f 。 4. 设2sin x y =,则=)0() 7(y 。 5. 函数2 x y =在点0x 处的函数改变量与微分之差=-?y y d 。 6. 若)(x f 在[]b a ,上连续, 则=?x a x x f x d )(d d ; =? b x x x f x 2d )(d d . 7. 设函数)3)(2)(1()(---=x x x x f ,则方程0)(='x f 有 个实根。 8. 曲线x x y -=e 的拐点是 。 9. 曲线)1ln(+=x y 的铅垂渐近线是 。 10. 若 C x x x f x ++=? 2d )(,则=)(x f 。 二、单项选择(每小题2分,共10分) 1. 设x x f ln )(=,2)(+=x x g 则)]([x g f 的定义域是( ) (A )()+∞-,2 (B )[)+∞-,2 (C )()2,-∞- (D )(]2,-∞- 2. 当0→x 时,下列变量中与x 相比为高阶无穷小的是( ) (A )x sin (B )2 x x + (C )3x (D )x cos 1- 3. 函数)(x f 在],[b a 上连续是)(x f 在],[b a 上取得最大值和最小值的( ) (A )必要条件 (B )充分条件 (C )充分必要条件 (D )无关条件 4. 设函数)(x f 在]0[a , 上二次可微,且0)()(>'-''x f x f x ,则x x f ) ('在区间)0(a ,内是( ) (A )不增的 (B )不减的 (C )单调增加的 (D )单调减少的 5. 若 C x x x f +=?2d )(,则=-?x x xf d )1(2 。 (A )C x +-2 2)1(2 (B )C x +--2 2)1(2

大一微积分期末试卷及答案

微积分期末试卷 选择题(6×2) cos sin 1.()2 ,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π→-=--== >、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小 3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 X cos n = 2 00000001() 5"()() ()()0''( )<0 D ''()'()0 6x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线 C既有铅直又有水平渐近线 D既有铅直渐近线 1~6 DDBDBD 一、填空题 1d 12lim 2,,x d x ax b a b →++=x x2 21 1、( )= x+1 、求过点(2,0)的一条直线,使它与曲线y= 相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是: 2+14、y拐点为:x5、若则的值分别为: x+2x-3

1 In 1x + ; 2 322y x x =-; 3 2 log ,(0,1),1x y R x =-; 4(0,0) 5解:原式=11 (1)() 1m lim lim 2 (1)(3) 3 4 77,6 x x x x m x m x x x m b a →→-+++== =-++∴=∴=-= 二、判断题 1、 无穷多个无穷小的和是无穷小( ) 2、 0 sin lim x x x →-∞+∞在区间(,)是连续函数() 3、 0f"(x )=0一定为f(x)的拐点() 4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、 设 函数f(x)在 [] 0,1上二阶可导且 ' ()0A ' B ' (f x f f C f f <===-令(),则必有 1~5 FFFFT 三、计算题 1用洛必达法则求极限2 1 2 lim x x x e → 解:原式=2 2 2 1 1 1 3 3 2 (2)lim lim lim 12x x x x x x e e x e x x --→→→-===+∞- 2 若3 4 ()(10),''(0)f x x f =+求 解:3 3 2 2 3 3 3 3 2 3 2 2 3 3 4 3 2 '()4(10)312(10) ''()24(10)123(10)324(10)108(10)''()0 f x x x x x f x x x x x x x x x x f x =+?=+=?++??+?=?+++∴= 3 2 4 lim (cos )x x x →求极限

大学微积分复习题

0201《微积分(上)》2015年06月期末考试指导 一、考试说明 考试题型包括: 选择题(10道题,每题2分或者3分)。 填空题(5-10道题,每题2分或者3分)。 计算题(一般5-7道题,共40分或者50分)。 证明题(2道题,平均每题10分)。 考试时间:90分钟。 二、课程章节要点 第一章、函数、极限、连续、实数的连续性 (一)函数 1.考试内容 集合的定义,集合的性质以及运算,函数的定义,函数的表示法,分段函数,反函数,复合函数,隐函数,函数的性质(有界性、奇偶性、周期性、单调性),基本初等函数,初等函数。 2.考试要求 (1)理解集合的概念。掌握集合运算的规则。 (2)理解函数的概念。掌握函数的表示法,会求函数的定义域。 (3)了解函数的有界性、奇偶性、周期性、单调性。 (4)了解分段函数、反函数、复合函数、隐函数的概念。 (5)掌握基本初等函数的性质和图像,了解初等函数的概念。 (二)极限 1.考试内容 数列极限的定义与性质,函数极限的定义及性质,函数的左极限与右极限,无穷小与无穷大的概念及其关系,无穷小的性质及无穷小的比较,极限的四则运算,极限存在的两个准则(单调有界准则和夹逼准则),两个重要极限。 2.考试要求 (1)理解数列及函数极限的概念 (2)会求数列极限。会求函数的极限(含左极限、右极限)。了解函数在一点处极限存在的充分必要条件。 (3)了解极限的有关性质(惟一性,有界性)。掌握极限的四则运算法则。 (4)理解无穷小和无穷大的概念。掌握无穷小的性质、无穷小和无穷大的关系。了解高阶、同阶、等价无穷小的概念。 (5)掌握用两个重要极限求极限的方法。 (三)连续 1.考试内容 函数连续的概念,左连续与右连续,函数的间断点,连续函数的四则运算法则,复合函数的连续性,反函数的连续性,初等函数的连续性,闭区间上连续函数的性质(最大值、最小值定理,零点定理)。 2.考试要求 (1)理解函数连续性的概念(含左连续、右连续)。会求函数的间断点。

微积分试卷及答案

微积分试卷及答案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

2009 — 2010 学年第 2 学期 课程名称 微积分B 试卷类型 期末A 考试形式 闭卷 考试时间 100 分钟 命 题 人 2010 年 6 月10日 使用班级 教研室主任 年 月 日 教学院长 年 月 日 姓 名 班 级 学 号 一、填充题(共5小题,每题3分,共计15分) 1.2 ln()d x x x =? . 2.cos d d x x =? . 3. 31 2d x x --= ? . 4.函数2 2 x y z e +=的全微分d z = . 5.微分方程ln d ln d 0y x x x y y +=的通解为 . 二、选择题(共5小题,每题3分,共计15分) 1.设()1x f e x '=+,则()f x = ( ). (A) 1ln x C ++ (B) ln x x C + (C) 2 2x x C ++ (D) ln x x x C -+

2.设 2 d 11x k x +∞=+? ,则k = ( ). (A) 2π (B) 22π (C) 2 (D) 2 4π 3.设()z f ax by =+,其中f 可导,则( ). (A) z z a b x y ??=?? (B) z z x y ??= ?? (C) z z b a x y ??=?? (D) z z x y ??=- ?? 4.设点00(,)x y 使00(,)0x f x y '=且00(,)0 y f x y '=成立,则( ) (A) 00(,)x y 是(,)f x y 的极值点 (B) 00(,)x y 是(,)f x y 的最小值点 (C) 00(,)x y 是(,)f x y 的最大值点 (D) 00(,)x y 可能是(,)f x y 的极值点 5.下列各级数绝对收敛的是( ). (A) 211(1)n n n ∞ =-∑ (B) 1 (1)n n ∞ =-∑ (C) 1 3(1)2n n n n ∞ =-∑ (D) 11(1)n n n ∞=-∑ 三、计算(共2小题,每题5分,共计10分) 1.2d x x e x ? 2.4 ? 四、计算(共3小题,每题6分,共计18分)

大一微积分期末试题附答案

微积分期末试卷 一、选择题(6×2) cos sin 1.()2,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π →-=--==>、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 X cos n = 2 00000001 () 5"()() ()()0''( )<0 D ''()'()06x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线 二、填空题 1 d 1 2lim 2,,x d x ax b a b →++=xx2 211、( )=x+1 、求过点(2,0)的一条直线,使它与曲线y=相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是: 2+1 x5、若则的值分别为: x+2x-3

三、判断题 1、 无穷多个无穷小的和是无穷小( ) 2、 0sin lim x x x →-∞+∞在区间(,)是连续函数() 3、 0f"(x )=0一定为f(x)的拐点() 4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、 设 函 数 f (x) 在 [] 0,1上二阶可导且 '()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有 四、计算题 1用洛必达法则求极限2 1 2 lim x x x e → 2 若34()(10),''(0)f x x f =+求 3 2 4 lim(cos )x x x →求极限 4 (3y x =-求 5 3tan xdx ? 五、证明题。 1、 证明方程3 10x x +-=有且仅有一正实根。 2、arcsin arccos 1x 12 x x π +=-≤≤证明() 六、应用题 1、 描绘下列函数的图形 21y x x =+

清华大学微积分习题(有答案版)

第十二周习题课 一.关于积分的不等式 1. 离散变量的不等式 (1) Jensen 不等式:设 )(x f 为],[b a 上的下凸函数,则 1),,,2,1),1,0(],,[1 ==∈?∈?∑=n k k k k n k b a x λλΛ,有 2),(1 1≥≤??? ??∑∑==n x f x f k n k k k n k k λλ (2) 广义AG 不等式:记x x f ln )(=为),0(+∞上的上凸函数,由Jesen 不等式可得 1),,,2,1),1,0(,01 ==∈?>∑=n k k k k n k x λλΛ,有 ∑==≤∏n k k k k n k x x k 1 1 λλ 当),2,1(1 n k n k Λ==λ时,就是AG 不等式。 (3) Young 不等式:由(2)可得 设111,1,,0,=+>>q p q p y x ,q y p x y x q p +≤1 1 。 (4) Holder 不等式:设11 1, 1,),,,2,1(0,=+>=≥q p q p n k y x k k Λ,则有 q n k q k p n k p k n k k k y x y x 111 11?? ? ????? ??≤∑∑∑=== 在(3)中,令∑∑======n k q k n k p k p k p k y Y x X Y y y X x x 1 1,,,即可。 (5) Schwarz 不等式: 2 1122 1 121?? ? ????? ??≤∑∑∑===n k k n k k n k k k y x y x 。 (6) Minkowski 不等式:设1),,,2,1(0,>=≥p n k y x k k Λ,则有 ()p n k p k p n k p k p n k p k k y x y x 11111 1?? ? ??+??? ??≤??????+∑∑∑=== 证明: ()()() () () ∑∑∑∑=-=-=-=+++=+?+=+n k p k k k n k p k k k n k p k k k k n k p k k y x y y x x y x y x y x 1 1 1 1 1 1 1

大一上微积分试题(山东大学)

数学试题 热工二班 温馨提示:各位同学请认真答题,如果您看到有的题目有种 似曾相识的感觉,请不要激动也不要紧张,沉着冷静的面对,诚实作答,相信自己,你可以的。祝你成功! 一、填空题(共5小题,每题4分,共20分) 1、 求极限2 2lim (1)(1)......(1)n n x x x →∞ +++= (1x <) 2、 曲线y=(2x-1)e x 1 的斜渐近线方程是( ) 3、 计算I=dx e x e x x ? -+2 2 41sin π π =( ) 4、 设y=x e x 1si n 1t an ,则'y =( ) 5、 已知()()() 100 2 1000 ln 1212x y x t t t ??=++-+? ?? ? ?dt ,求( ) ()x y 1001 二、选择题(共5小题,每题4分,共20分) 6、设()0 ()ln 1sin 0,1,1lim x x f x x A a a a →? ?+ ? ? ?=>≠-求20 ()lim x f x x →=( ) A.ln a B.Aln a C2Aln a D.A 7、函数 1.01 ().12 x x x f x e e x -≤

( ) A.当()f x 是偶函数时,()F x 必是偶函数 B.当()f x 是奇函数时,()F x 必是偶函数 C.当()f x 是周期函数时,()F x 必是周期函数 D.当()f x 是单调增函数时,()F x 必是单调增函数 9、设函数()f x 连续,则下列函数中必为偶函数的是( ) A.2 0()x f t dt ? B.2 0()x f t dt ? C[]0 ()()x t f t f t - -?dt D.[]0 ()()x t f t f t + -?dt 10、设函数y=()f x 二阶导数,且 () f x 的一阶导数大于0, ()f x 二阶导数也大于0,x 为自变量x在0x 处得增量,y 与dy 分 别为()f x 在点0 x 处的增量与微分,若x >0,则( ) A.0<dy < y B.0<y <dy C.y <dy <0 D.dy < y <0 三、计算,证明题(共60分) 11、求下列极限和积分 (1)222 22 sin cos (1)ln(1tan ) lim x x x x x x e x →--+(5分) (2)3 5 sin sin x xdx π -? (5分) (3)lim (cos 1cos x x x →∞ +-)(5分) 12.设函数()f x 具有一阶连续导数,且 " (0)f (二阶)存在,(0) f

微积分期末测试题及答案

微积分期末测试题及答 案 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

一 单项选择题(每小题3分,共15分) 1.设lim ()x a f x k →=,那么点x =a 是f (x )的( ). ①连续点 ②可去间断点 ③跳跃间断点 ④以上结论都不对 2.设f (x )在点x =a 处可导,那么0()(2)lim h f a h f a h h →+--=( ). ①3()f a ' ②2()f a ' ③()f a ' ④1()3f a ' 3.设函数f (x )的定义域为[-1,1],则复合函数f (sinx )的定义域为( ). ①(-1,1) ②,22ππ??-???? ③(0,+∞) ④(-∞,+∞) 4.设2 ()()lim 1()x a f x f a x a →-=-,那么f (x )在a 处( ). ①导数存在,但()0f a '≠ ②取得极大值 ③取得极小值 ④导数不存在 5.已知0lim ()0x x f x →=及( ),则0 lim ()()0x x f x g x →=. ①g (x )为任意函数时 ②当g (x )为有界函数时 ③仅当0lim ()0x x g x →=时 ④仅当0 lim ()x x g x →存在时 二 填空题(每小题5分,共15分) sin lim sin x x x x x →∞-=+. 31lim(1)x x x +→∞+=. 3.()f x =那么左导数(0)f -'=____________,右导数(0)f +'=____________. 三 计算题(1-4题各5分,5-6题各10分,共40分) 1.111lim()ln 1 x x x →-- 2.t t x e y te ?=?=? ,求22d y dx 3.ln(y x =,求dy 和22d y dx . 4.由方程0x y e xy +-=确定隐函数y =f (x ) ,求 dy dx . 5.设111 1,11n n n x x x x --==+ +,求lim n x x →∞.

高等数学试题及答案

高等数学试题及答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

《 高等数学 》 一.选择题 1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( ) A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y 2. 函数f(x)在点x 0极限存在是函数在该点连续的( ) A)、必要条件 B)、充分条件 C)、充要条件 D)、无关条件 3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、(( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4. 下列各式正确的是( ) A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、2arctan 1dx dx x x =+? D )、211 ()dx C x x -=-+? 5. 下列等式不正确的是( ). A )、()()x f dx x f dx d b a =??????? B )、()()()[]()x b x b f dt x f dx d x b a '=??????? C )、()()x f dx x f dx d x a =??????? D )、()()x F dt t F dx d x a '=????? ?'? 6. 0 ln(1)lim x x t dt x →+=?( ) A )、0 B )、1 C )、2 D )、4 7. 设bx x f sin )(=,则=''?dx x f x )(( ) A )、C bx bx x +-sin cos B )、C bx bx x +-cos cos

大学高等数学上习题(附答案)

《高数》习题1(上) 一.选择题 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? - + ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 10.设()f x 为连续函数,则()10 2f x dx '?等于( ). (A )()()20f f - (B )()()11102f f -????(C )()()1 202f f -??? ?(D )()()10f f - 二.填空题 1.设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = . 2.已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '=. 3. ()21ln dx x x = +?. 三.计算 1.求极限 ①21lim x x x x →∞+?? ??? ②() 20sin 1 lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分x xe dx -?

最新大学微积分复习题

0201《微积分(上)》2015年06月期末考试指导 一、考试说明 考试题型包括: 选择题(10道题,每题2分或者3分)。 填空题(5-10道题,每题2分或者3分)。 计算题(一般5-7道题,共40分或者50分)。 证明题(2道题,平均每题10分)。 考试时间:90分钟。 二、课程章节要点 第一章、函数、极限、连续、实数的连续性 (一)函数 1.考试内容 集合的定义,集合的性质以及运算,函数的定义,函数的表示法,分段函数,反函数,复合函数,隐函数,函数的性质(有界性、奇偶性、周期性、单调性),基本初等函数,初等函数。 2.考试要求 (1)理解集合的概念。掌握集合运算的规则。 (2)理解函数的概念。掌握函数的表示法,会求函数的定义域。 (3)了解函数的有界性、奇偶性、周期性、单调性。 (4)了解分段函数、反函数、复合函数、隐函数的概念。 (5)掌握基本初等函数的性质和图像,了解初等函数的概念。 (二)极限 1.考试内容 数列极限的定义与性质,函数极限的定义及性质,函数的左极限与右极限,无穷小与无穷大的概念及其关系,无穷小的性质及无穷小的比较,极限的四则运算,极限存在的两个准则(单调有界准则和夹逼准则),两个重要极限。 2.考试要求 (1)理解数列及函数极限的概念 (2)会求数列极限。会求函数的极限(含左极限、右极限)。了解函数在一点处极限存在的充分必要条件。 (3)了解极限的有关性质(惟一性,有界性)。掌握极限的四则运算法则。 (4)理解无穷小和无穷大的概念。掌握无穷小的性质、无穷小和无穷大的关系。了解高阶、同阶、等价无穷小的概念。 (5)掌握用两个重要极限求极限的方法。 (三)连续 1.考试内容 函数连续的概念,左连续与右连续,函数的间断点,连续函数的四则运算法则,复合函数的连续性,反函数的连续性,初等函数的连续性,闭区间上连续函数的性质(最大值、最小值定理,零点定理)。 2.考试要求 (1)理解函数连续性的概念(含左连续、右连续)。会求函数的间断点。

微积分期末试卷及答案

一、填空题(每小题3分,共15分) 1、已知2 )(x e x f =,x x f -=1)]([?,且0)(≥x ?,则=)(x ? . 答案:)1ln(x - 王丽君 解:x e u f u -==1)(2 ,)1ln(2x u -=,)1ln(x u -=. 2、已知a 为常数,1)12 ( lim 2=+-+∞→ax x x x ,则=a . 答案:1 孙仁斌 解:a x b a x ax x x x x x x x -=+-+=+-+==∞→∞→∞→1)11(lim )11( 1lim 1lim 022. 3、已知2)1(='f ,则=+-+→x x f x f x ) 1()31(lim . 答案:4 俞诗秋 解:4)] 1()1([)]1()31([lim 0=-+--+→x f x f f x f x

4、函数)4)(3)(2)(1()(----=x x x x x f 的拐点数为 . 答案:2 俞诗秋 解:)(x f '有3个零点321,,ξξξ:4321321<<<<<<ξξξ, )(x f ''有2个零点21,ηη:4132211<<<<<<ξηξηξ, ))((12)(21ηη--=''x x x f ,显然)(x f ''符号是:+,-,+,故有2个拐点. 5、=? x x dx 22cos sin . 答案:C x x +-cot tan 张军好 解:C x x x dx x dx dx x x x x x x dx +-=+=+=????cot tan sin cos cos sin sin cos cos sin 22222222 . 二、选择题(每小题3分,共15分) 答案: 1、 2、 3、 4、 5、 。 1、设)(x f 为偶函数,)(x ?为奇函数,且)]([x f ?有意义,则)]([x f ?是 (A) 偶函数; (B) 奇函数; (C) 非奇非偶函数; (D) 可能奇函数也可能偶函数. 答案:A 王丽君 2、0=x 是函数??? ??=≠-=.0 ,0 ,0 ,cos 1)(2x x x x x f 的 (A) 跳跃间断点; (B) 连续点; (C) 振荡间断点; (D) 可去间断点. 答案:D 俞诗秋

近十份大学微积分下期末试题汇总(含答案)

浙江大学2007-2008学年春季学期 《微积分Ⅱ》课程期末考试试卷 一 、填空题(每小题5分,共25分,把答案填在题中横线上) 1.点M (1,-1, 2)到平面2210x y z -+-=的距离d = . 2.已知2a = ,3b = ,3a b ?= ,则a b += . 3.设(,)f u v 可微,(,)y x z f x y =,则dz = . 4.设()f x 在[0,1]上连续,且()f x >0, a 与b 为常数.()}{,01,01D x y x y = ≤≤≤≤,则 ()() ()() D af x bf y d f x f y σ++?? = . 5.设(,)f x y 为连续函数,交换二次积分次序 2220 (,)x x dx f x y dy -=? ? . 二 、选择题(每小题5分,共20分,在每小题给出的四个选项中只有一个是符合题 目要求的,把所选字母填入题后的括号内) 6.直线l 1: 155 121x y z --+==-与直线l 2:623 x y y z -=??+=?的夹角为 (A ) 2π . (B )3π . (C )4π . (D )6 π . [ ] 7.设(,)f x y 为连续函数,极坐标系中的二次积分 cos 2 0d (cos ,sin )d f r r r r π θθθθ? ? 可以写成直角坐标中的二次积分为 (A )100(,)dy f x y dx ?? (B )1 00(,)dy f x y dx ?? (C ) 10 (,)dx f x y dy ? ? (D )10 (,)dx f x y dy ?? [ ] 8.设1, 02 ()122, 12 x x f x x x ? ≤≤??=??-≤?? ()S x 为()f x 的以2为周期的余弦级数,则5()2S -= (A ) 12. (B )12-. (C )34. (D )3 4 -. [ ] <

微积分期末测试题及答案

一 单项选择题(每小题3分,共15分) 1.设lim ()x a f x k →=,那么点x =a 是f (x )的( ). ①连续点 ②可去间断点 ③跳跃间断点 ④以上结论都不对 2.设f (x )在点x =a 处可导,那么0 ()(2) lim h f a h f a h h →+--=( ). ①3()f a ' ②2()f a ' ③()f a ' ④ 1()3f a ' 3.设函数f (x )的定义域为[-1,1],则复合函数f (sinx )的定义域为( ). ①(-1,1) ②, 2 2π π? ? - ???? ③(0,+∞) ④(-∞,+∞) 4.设2 ()()lim 1() x a f x f a x a →-=-,那么f (x )在a 处( ). ①导数存在,但()0f a '≠ ②取得极大值 ③取得极小值 ④导数不存在 5.已知0 lim ()0x x f x →=及( ),则0 lim ()()0x x f x g x →=. ①g (x )为任意函数时 ②当g (x )为有界函数时 ③仅当0 lim ()0x x g x →=时 ④仅当0 lim ()x x g x →存在时 二 填空题(每小题5分,共15分) 1.sin lim sin x x x x x →∞ -=+____________. 2.3 1lim (1) x x x +→∞ + =____________. 3.()f x = 那么左导数(0)f -'=____________,右导数(0)f +'=____________. 三 计算题(1-4题各5分,5-6题各10分,共40分) 1.1 11lim ( )ln 1 x x x →- - 2.t t x e y te ?=?=?,求2 2d y d x 3.ln (y x =+,求dy 和 2 2 d y d x . 4.由方程0x y e x y +-=确定隐函数y = f (x ) ,求d y d x . 5.设111 1,11n n n x x x x --==+ +,求lim n x x →∞ .

微积分总复习题与答案

第五章 一元函数积分学 例1:求不定积分sin3xdx ? 解:被积函数sin3x 是一个复合函数,它是由()sin f u u =和()3u x x ?==复合而成,因此,为了利用第一换元积分公式,我们将sin3x 变形为'1 sin 3sin 3(3)3x x x = ,故有 ' 111 sin 3sin 3(3)sin 3(3)3(cos )333 xdx x x dx xd x x u u C ===-+??? 1 3cos33 u x x C =-+ 例2:求不定积分 (0)a > 解:为了消去根式,利用三解恒等式2 2 sin cos 1t t +=,可令sin ()2 2 x a t t π π =- << ,则 cos a t ==,cos dx a dt =,因此,由第二换元积分法,所以积分 化为 2221cos 2cos cos cos 2 t a t a tdt a tdt a dt +=?==??? 2222cos 2(2)sin 22424a a a a dt td t t t C =+=++?? 2 (sin cos )2 a t t t C =++ 由于sin ()2 2 x a t t π π =- << ,所以sin x t a = ,arcsin(/)t x a =,利用直角三角形直接写 出cos t a == 邻边斜边,于是21arcsin(/)22a x a C =+ 例3:求不定积分sin x xdx ? 分析:如果被积函数()sin f x x x =中没有x 或sinx ,那么这个积分很容易计算出来,所以可以考虑用分部积分求此不定积分,如果令u=x ,那么利用分部积分公式就可以消去x (因为' 1u =) 解令,sin u x dv xdx ==,则du dx =,cos v x =-. 于是sin (cos )(cos )cos sin x xdx udv uv vdu x x x dx x x x C ==-=---=-++???? 。熟悉分部积分公式以后,没有必要明确的引入符号,u v ,而可以像下面那样先凑微分,然后直接用分部积分公式计算: sin cos (cos cos )cos sin x xdx xd x x x xdx x x x C =-=--=-++???

安徽大学高等数学期末试卷和答案

安徽大学2011—2012 学年第一学期 《高等数学A(三)》考试试卷(A 卷) (闭卷时间120 分钟) 考场登记表序号 题号一二三四五总分 得分 阅卷人 一、选择题(每小题2 分,共10 分)得分 1.设A为n阶可逆矩阵,则下列各式正确的是()。 (A)(2A)?1 =2A?1 ;(B)(2A?1)T=(2A T)?1 ;(C) ((A?1)?1)T=((A T)?1)?1 ;(D)((A T)T)?1 =((A?1)?1)T。 2.若向量组1, 2 , , r ααα可由另一向量组 ()。 βββ线性表示,则下列说法正确的 是 1, 2 , , sβββ线性表示,则下列说法 正确的是 (A)r≤s;(B)r≥s; (C)秩( 1, 2 , , r1, 2 , , s1, 2 , , r ααα)≤秩(βββ);(D)秩(ααα)≥ 秩( ββ β)。 1, 2 , , sββ β)。 3.设A, B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则下列说法正确的是()。 (A)λE?A=λE?B; (B)A与B有相同的特征值和特征向量; (C)A与B都相似于一个对角矩阵; (D)对任意常数k,kE?A与kE?B相似。 4.设1, 2 , 3 ααα为R3 的一组基,则下列向量组中,()可作为R3 的另一组基。 (A)1, 1 2 ,3 1 2 1, 2 ,2 1 2 α+αα+αα+α。 αα?αα?α;(B)ααα+α; (C) 1 2 , 2 3, 1 3 α+αα+αα?α;(D) 1 2 , 2 3, 1 3 5.设P(A) =0.8 ,P(B) =0.7 ,P(A| B) =0.8 ,则下列结论正确的是()。

相关主题
文本预览
相关文档 最新文档