当前位置:文档之家› 电动机继电保护原理分析

电动机继电保护原理分析

(新)高压电动机差动保护原理及注意事项

高压电动机差动保护原理及注意事项 差动保护是大型高压电气设备广泛采用的一种保护方式,2000KW以上的高压电动机一般采用差动保护,或2000kW(含2000kW)以下、具有六个引出线的重要电动机,当电流速断保护不能满足灵敏度的要求时,也装设纵差保护作为机间短路的主保护。差动保护基于被保护设备的短路故障而设,快速反应于设备内部短路故障。对被保护范围区外故障引起区内电流变化的、电动机启动瞬间的暂态峰值差流、首尾端CT不平衡电流等容易引起保护误判的电流,对于不同的差动保护原理,有不同的消除这些电流的措施。 差动保护的基本原理为检测电动机始末端的电流,比较始端电流和末端电流的相位和幅值的原理而构成的,正常情况下二者的差流为0,即流入电动机的电流等于流出电动机的电流。当电动机内部发生短路故障时,二者之间产生差流,启动保护功能,出口跳电动机的断路器。微机保护一般采用分相比差流方式。 图1 电动机差动保护单线原理接线图 为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。两组电流互感器之间,即为纵差保护的保护区。电流互感器二次侧按循环电流法接线。设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。继电器是反应两侧电流互感器二次电流之差而动作的,故称为差动继电器。图1所示为电动机纵差保护单线原理接线图。 在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s的延时动作于跳闸。如果是微机保护装置,则只需将CT二次分别接入保护装置即可,但要注意极性端。一般在保护装置

电力系统继电保护原理习题精选教学文稿

目录 1绪论 (1) 2基本器件 (2) 3电网电流保护 (3) 4电网距离保护 (8) 5电网纵联保护 (11) 6自动重合闸 (12) 7变压器保护 (13) 8发电机保护 (14) 9母线保护 (15) 10微机保护基础 (17)

1绪论 1.1什么是主保护?什么是后备保护、近后备保护、远后备保护?什么是辅助保护?什么 是异常运行保护? 1.2说明对电力系统继电保护有那些基本要求。 1.3简要说明继电保护装置的一般构成以及各部分的作用。 1.4如图所示电力系统。(1)分别说明在保护和断路器都正常的情况下,k1、k2、k3、k4点 故障时按选择性的要求哪些保护应发跳闸命令,跳开哪些断路器?(2)k4点故障时,如果QF2拒动,则应将哪个断路器断开?(3)k1点故障时QF2拒动,如果近后备保护动作会断开哪些断路器,远后备保护动作会断开哪些断路器? B

2基本器件 2.1什么是电流继电器的动作电流、返回电流和返回系数?过量动作继电器、欠量动作继 电器的返回系数有什么区别?

3电网电流保护 3.1 在图示系统中,试分析:(1)保护1、4和9的最大和最小运行方式,(2)保护8与保护 6配合、保护1与保护9配合时计算最大、最小分支系数对应的运行方式。 QF1 QF2 A B QF8 QF7 C QF3 QF4 QF6 QF5 D QF10 QF9 系统M 系统N 3.2 分析电流保护中各段如何保证选择性?各段的保护范围如何,与哪些因素有关? 3.3 分析和比较Ⅰ、Ⅱ、Ⅲ段电流保护的异同,试按“四性”的要求评价它们的优缺点。 3.4 为什么三段式电流保护中只有过电流保护在整定计算时考虑返回系数和自起动系 数? 3.5 如何确定保护装置灵敏性够不够?何谓灵敏系数?为什么一般总要求它们至少大于 1.2-1.5以上?是否越大越好? 3.6 在图所示网络中,等值系统电势为380/,等值系统阻抗为10Ω。线路AB 始端保 护1装有三段式电流保护,线路BC 始端保护2装有两段式电流保护,均采用不完全星形接线方式,电流互感器变比为5/5,线路AB 和BC 的最大负荷电流分别为2.3A 和2A ,线路BC 的过电流保护动作时限为3s 。试完成线路AB 和BC 保护的整定计算, 并计算各电流继电器的动作值。(rel 1.2K I =,rel rel 1.1K K II III ==,re 0.85K =,ss 1K =) 5/5 QF1 5/5 QF2 A B C D 15Ω 23Ω 10Ω 3.7 某配网系统接线如图所示。已知最大运行方式下降压变电所10kV 母线(k1点)三相短 路电流为4776A ,线路末端三相短路电流为835A ;最小运行方式下,降压变电所10kV 母线(k1点)两相短路电流为3266A ;线路的最大负荷电流为230A 。设该线路只配置电流速断保护和定时限过电流保护,计算各保护的电流定值,并进行有关校验

继电保护定值整定计算公式大全(最新)

继电保护定值整定计算公式大全 1、负荷计算(移变选择): cos de N ca wm k P S ?∑= (4-1) 式中 S ca --一组用电设备的计算负荷,kVA ; ∑P N --具有相同需用系数K de 的一组用电设备额定功率之和,kW 。 综采工作面用电设备的需用系数K de 可按下式计算 N de P P k ∑+=max 6 .04.0 (4-2) 式中 P max --最大一台电动机额定功率,kW ; wm ?cos --一组用电设备的加权平均功率因数 2、高压电缆选择: (1)向一台移动变电站供电时,取变电站一次侧额定电流,即 N N N ca U S I I 13 1310?= = (4-13) 式中 N S —移动变电站额定容量,kV ?A ; N U 1—移动变电站一次侧额定电压,V ; N I 1—移动变电站一次侧额定电流,A 。 (2)向两台移动变电站供电时,最大长时负荷电流ca I 为两台移动变电站一次侧额定电流之和,即 3 1112ca N N I I I =+= (4-14) (3)向3台及以上移动变电站供电时,最大长时负荷电流ca I 为 3 ca I = (4-15) 式中 ca I —最大长时负荷电流,A ; N P ∑—由移动变电站供电的各用电设备额定容量总和,kW ;

N U —移动变电站一次侧额定电压,V ; sc K —变压器的变比; wm ?cos 、η wm —加权平均功率因数和加权平均效率。 (4)对向单台或两台高压电动机供电的电缆,一般取电动机的额定电流之和;对向一个采区供电的电缆,应取采区最大电流;而对并列运行的电缆线路,则应按一路故障情况加以考虑。 3、 低压电缆主芯线截面的选择 1)按长时最大工作电流选择电缆主截面 (1)流过电缆的实际工作电流计算 ① 支线。所谓支线是指1条电缆控制1台电动机。流过电缆的长时最大工作电流即为电动机的额定电流。 N N N N N ca U P I I η?cos 3103?= = (4-19) 式中 ca I —长时最大工作电流,A ; N I —电动机的额定电流,A ; N U —电动机的额定电压,V ; N P —电动机的额定功率,kW ; N ?cos —电动机功率因数; N η—电动机的额定效率。 ② 干线。干线是指控制2台及以上电动机的总电缆。 向2台电动机供电时,长时最大工作电流ca I ,取2台电动机额定电流之和,即 21N N ca I I I += (4-20) 向三台及以上电动机供电的电缆,长时最大工作电流ca I ,用下式计算 wm N N de ca U P K I ?cos 3103?∑= (4-21) 式中 ca I —干线电缆长时最大工作电流,A ; N P ∑—由干线所带电动机额定功率之和,kW ; N U —额定电压,V ;

电动机继电保护计算

电动机继电保护计算 一、异步电动机继电保护计算 1、异步电动机继电保护方式的选择 (1)电压低于是1000V的电动机一般功率不大,重要性较小,可采用下列保护: ①熔断器保护: ②在一台电动机短路时,断开几台电动机的公用断路器; ③自动空气开关作为低电压保护。 (2)电压为3~10KV、功率大于150KW、小于2000KW的电动机,应装设电流速断保护;当电流速断保护不能满足灵敏度要求时需装设纵联差动保护。 (3)电压为3~10KV的电动机,若生产过程中易发生过负荷时,或起动、自起动等条件严重时,均应装设过负荷保护。另外,当单相接地电流大于5A时,需装设单相接地保护,一般5~10A时可作用于信号,也可作用于跳闸;大于10A 时作用于跳闸。 (4)3~35KV网络的中性点是不接地的,为保护电动机,应在电动机母线上装设“绝缘监视”装置。 (5)当电动机有必要装设低电压保护装置时,可采用在线电压上的低电压继电器将电动机断开;必要时可采用两个继电器的低电压保护。 2、异步电动机继电保护的整定

qdzdzq t=(1.2~1.4)I)起动及自起动时间。对于传动风机负荷的电动机q dz3、电流速断保护灵敏度校验(3)(2)(3)——相灵敏系数,I``n2,I=IK/k;其中=KI``K/I≥min jx ddz dzjd·min·dzmlmxdmxd ;(A)最小运行方式下,电动机出线端三相适中时流过保护安装处的超瞬变电流),n—电流互感器变比;I—保护装置的一次动作电流(A l dz 3 1,接于相电流差时取—接线系数,接于相电流时取k jx 380KW电动机的保护。6KV、例:电动机装在经常有人值班的机房内,试选择一 台运行过程中有过负荷的可能。已知电动机的额定电流Ied为47.5A,起云贵电流倍数kq为4。在最小运行方式下电动机出线端三相适中时,流过保护按装处 的(3)(3)为4800A 6500A,稳态电流超瞬变电流I``I``为min min d·d·解(1)保护装置的选择:因电 动机在运行过程中有过负荷的可能性,故需装过负荷保护。电动机由于经常有值班人员照顾,因此不需装防止长时间失压的低电压保护。装设电流速断保护和过电流保护(与电流速断共用一感应型电流继电器)采用接于两相电流差的DL— 11/100型电流继电器。 (2)保护装置整定计算及灵敏度校验: ①电流速断保护继电器的动作电流:I=kkkI/n=1.6X 3 lqjxdzjked X(4X47.5/15)=35.2A ,取决40A

第二节 继电保护的基本原理及其组成

第二节继电保护的基本原理及其组成 参看图1-1至图1-6及其讲解,了解本章对继电保护装置对正常与故障或不正常状态的区分以及继电保护基本原理,并且通过对继电保护装置基本组成的学习深入了解各部分工作内容。 一、继电保护装置对正常与故障或不正常状态的区分 通过对继电保护装置正常运行状态与故障或不正常状态的学习,初步理解继电保护装置的原理。 1. 为完成继电保护所担负的任务,应该要求它能够正确区分系统正常运行与发生故障或不正常运行状态之间的差别,以实现保护。 图1-1 正常运行情况 在电力系统正常运行时,每条线路上都流过由它供电的负荷电流,越靠近电源端的线路上的负荷电流越大。同时,各变电站母线上的电压,一般都在额定电压±5%-10%的范围内变化,且靠近于电源端母线上的电压较高。线路始端电压与电流之间的相位角决定于由它供电的负荷的功率因数角和线路的参数。 由电压与电流之间所代表的“测量阻抗”是在线路始端所感受到的、由负荷所反应出来的一个等效阻抗,其值一般很大。 图1-2 d点三相短路情况 当系统发生故障时(如上图所示),假定在线路B-C上发生了三相短路,则短路点的电压降低到零,从电源到短路点之间均将流过很大的短路电流,各变电站母线上的电压也将在不同程度上有很大的降低,距短路点越近时降低得越多。 设以表示短路点到变电站B母线之间的阻抗,则母线上的残余电压应为 此时与之间的相位角就是的阻抗角,在线路始端的测量阻抗就是,此测量阻抗的大小正比于短路点到变电站B母线之间的距离。 2. 一般情况下,发生短路之后,总是伴随着电流的增大、电压降低、线路始端测量阻抗减小,以及电压与电流之间相位角的变化。故利用正常运行与故障时这些基本参数的区别,便可以构成各种不同原理的继电保护: (1)反应于电流增大而动作的过电流保护; (2)反应于电压降低而动作的低电压保护; (3)反应于短路点到保护安装地点之间的距离(或测量阻抗的减小)而动作的距离保护(或低阻抗保护)等。 电力系统中的任一电气元件,在正常运行时,在某一瞬间,负荷电流总是从一侧流入而从另一侧流出。 图 1-3 正常运行状态 说明:如果统一规定电流的正方向都是从母线流向线路,则A-B两侧电流的大小相等,相位相差180度(图中为实际方向)。

电动机的主要保护及计算

电动机的主要保护及计算 一、速断保护 1.速断高值: 动作电流高定值Isdg 计算。 按躲过电动机最大起动电流计算,即: Isdg=Krel ×Kst ×In In=Ie/nTA 式中 Krel ——可靠系数1.5; Kst ——电动机起动电流倍数(在6-8之间); In ——电动机二次额定电流; Ie ——电动机一次额定电流; n TA —— 电流互感器变比。 2. 速断低值:按躲过区外出口短路时电动机最大反馈电流计算。厂用母线出口三相短路时,根据 以 往 实测,电动 机 反馈 电流 的 暂 态 值为 5.8 Isdd=Krel ×Kfb ×In=7.8In 式中 Krel ——可靠系数1.3; Kfb ——区外出口短路时最大反馈电流倍数,取Kfb=6。 3. 动作时间整定值计算。保护固有动作时间,动作时间整定值取: 速断动作时间: tsd=0s. 二、单相接地零序过电流保护(低压电动机) 1. 一次动作电流计算。有零序电流互感器TA0的电动机单相接地保护,一次三相电流平衡时,由 于三相电流产生的漏磁通不一致,于是在零序电流 2 互感器内产生磁不 平衡电流。根据在不同条件下的多次实测结果,磁不平衡电流值均小于0.005Ip(Ip 为平衡的三相相电流),于是按躲过电动机起动时最大不平衡电流计算,低电压电动机单相接地保护动作电流可取: I0dz=(0.05-0.15)Ie 式中 I0dz ——单相接地零序过电流保护一次动作电流整定值; Ie ——电动机一次额定电流。 当电动机容量较大时可取: I0d z =(0.05-0.075)Ie 当电动机容量较小时可取: I0d z =(0.1-0.15)Ie

电动机继电保护计算.

电动机继电保护计算 异步电动机继电保护计算 1、异步电动机继电保护方式的选择 (1)电压低于是1000V的电动机一般功率不大,重要性较小,可采用下列保护: 1)熔断器保护: 2)在一台电动机短路时,断开几台电动机的公用断路器; 3)自动空气开关作为低电压保护。 (2)电压为3~10KV、功率大于150KW、小于2000KW的电动机,应装设电流速断保护;当电流速断保护不能满足灵敏度要求时需装设纵联差动保护。 (3)电压为3~10KV的电动机,若生产过程中易发生过负荷时,或起动、自起动等条件严重时,均应装设过负荷保护。另外,当单相接地电流大于5A时,需装设单相接地保护,一般5~10A时可作用于信号,也可作用于跳闸;大于10A时作用于跳闸。 (4)3~35KV网络的中性点是不接地的,为保护电动机,应在电动机母线上装设“绝缘监视”装置。(5)当电动机有必要装设低电压保护装置时,可采用在线电压上的低电压继电器将电动机断开;必要时可采用两个继电器的低电压保护,一组告警,一组低电压跳闸。一般0.5s跳不重要的电机,10s跳重要的电机。 2、异步电动机继电保护的整定 电压低于1000V异步电动机的继电保护整定计算,

电压高于1000V异步电动机的继电保护整定计算

注:对于一般电动机t dz=(1.1~1.2),t q(其中t dz为保护装动作时间;t q为电动机起动及自起动时间)。对于传动风机负荷的电动机t dz=(1.2~1.4)I q 。 3、电流速断保护灵敏度校验 灵敏度校验的本质是: K(2)m=K mxd I(3)d·min/I dz≥2,I dz =I dzj n l/k jx ; 其中 K mxd :相灵敏系数, I(3)d·min :最小运行方式下,电动机出线端三相适中时流过保护安装处的超瞬变电流(A); I dz:保护装置的一次动作电流(A), n l :电流互感器变比; k jx:接线系数,接于相电流时取1,接于相电流差时取 3 。 例:试选择一台6KV、380KW电动机的保护。电动机装在经常有人值班的机房内,运行过程中有过负荷的可能。已知电动机的额定电流Ie为47.5A,起动电流倍数kq为4。在最小运行方式下电动机出线端三相适中时,流过保护安装处的超瞬变电流I(3)d·min 为6500A,稳态电流I(3)d·min 为4800A。 解: (1)保护装置的选择:因电动机在运行过程中有过负荷的可能性,故需装过负荷保护。电动机由于经常有值班人员照顾,因此不需装防止长时间失压的低电压保护。装设电流速断保护和过电流保护(与电流速断共用一感应型电流继电器)采用接于两相电流差的DL—11/100型电流继电器。 (2)保护装置整定计算及灵敏度校验: ①电流速断保护继电器的动作电流:

发电机差动保护原理

5.1发电机比率制动式差动保护 比率制动式差动保护是发电机内部相间短路故障的主保护。 5.1.1保护原理 5.1.1.1比率差动原理。 差动动作方程如下: l op 3 I op.0 ( I res 兰 l res.0 时) l op > I op.O + S (l res — res.0) ( l res > l res.0 时) 式中:l op 为差动电流,l o P.O 为差动最小动作电流整定值,I res 为制动电流,I r es.O 为最小制动电流整定值,S 为比率制动特性的斜率。各侧电流的方向都以指向发 电机为正方向,见 图 (根据工程需要,也可将 5.1.1.2 TA 断线判别 当任一相差动电流大于0.15倍的额定电流时启动TA 断线判别程序,满足下 列条件认为 TA 断线: a. c. 5.2发电机匝间保护 发电机匝间保护作为发电机内部匝间短路的主保护。根据电厂一次设备情 况,可选择以下方案中的一种: 5.1.1。 差动电流: 1 op 制动电流: 1 res — 式中:I T ,I N 分别为机端、 见图5.1.1。 中性点电流互感器(TA )二次侧的电流,TA 的极性 _L 氓 € % 5 TA 极性端均定义为靠近发电机侧) 本侧三相电流中至少一相电流为零; b.本侧三相电流中至少一相电流不变; 最大相电流小于1.2倍的额定电流。 5.1.1电流极性接线示意图

5.2.1故障分量负序方向(△ P2)匝间保护 该方案不需引入发电机纵向零序电压。

故障分量负序方向(△ P2)保护应装在发电机端,不仅可作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。 5.2.1.1保护原理 当发电机三相定子绕组发生相间短路、匝间短路及分支开焊等不对称故障 时,在故障点出现负序源。故障分量负序方向元件的A U2和A I2分别取自机端TV、TA,其TA极性图见图5.2.1.1,则故障分量负序功率A P2为: △ P2 =3艮〔厶『2心?2心也21 2L J A ? 式中i I2为也I2的共轭相量,申sen。2为故障分量负序方向继电器的最大灵敏 角。一般取60。~80。(也|2滞后A U2的角度)。 故障分量负序方向保护的动作判据可表示为: > E-p △》2=血e^S n 实际应用动作判据综合为: A P2 = A U2r』I ' + A U2i ”也I ' > £P (S S i、年为动作门槛) 保护逻辑框图见图521.2。 枣力, “ r ‘ 1 1 Um: I 1卄TA 图521.1故障分量负序方向保护极性图

继电保护原理及分类

继电保护原理及分类 继电保护测试仪可测试各种交直流、电流、电压、中间、自保持, 信号多种等单个继电器以及整组继电保护屏,可测试各种继电器的吸合电压(电流)值,释放电压(电流)值,各种触头(常开、常闭、转换、延时)的吸合时间和断开时间,均自动测试三次并储存数,并自动计算三次均值的返回系数且打印, 可重复显示及打印测试结果。 HT-1200继电保护测试仪是保证电力系统安全可靠运行的一种重要测试工具。为了更好的了解该仪器,我们必须知道继电保护原理及分类 继电保护主要利用电力系统中元件发生短路或异常情况时的电气量(电流、电压、功率、频率等)的变化,构成继电保护动作的原理,也有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。大多数情况下,不管反应哪种物理量,继电保护装置将包括测量部分(和定值调整部分)、逻辑部分、执行部分。 HT-1200继电保护装置必须具有正确区分被保护元件是处于正常运行状态还是发生了故障,是保护区内故障还是区外故障的功能。保护装置要实现这一功能,需要根据电力系统发生故障前后电气物理量变化的特征为基础来构成。 电力系统发生故障后,工频电气量变化的主要特征是: 1、电流增大。短路时故障点与电源之间的电气设备和输电线路上的电流将由负荷

电流增大至大大超过负荷电流。 2、电压降低。当发生相间短路和接地短路故障时,系统各点的相间电压或相电压值下降,且越靠近短路点,电压越低。 3、电流与电压之间的相位角改变。正常运行时电流与电压间的相位角是负荷的功率因数角,一般约为20°,三相短路时,电流与电压之间的相位角是由线路的阻抗角决定的,一般为60°~85,而在保护反方向三相短路时,电流与电压之间的相位角则是180°+(60°~85°)。 4、测量阻抗发生变化。测量阻抗即测量点(保护安装处)电压与电流之比值。正常运行时,测量阻抗为负荷阻抗;金属性短路时,测量阻抗转变为线路阻抗,故障后测量阻抗显著减小,而阻抗角增大。 不对称短路时,出现相序分量,如两相及单相接地短路时,出现负序电流和负序电压分量;单相接地时,出现负序和零序电流和电压分量。这些分量在正常运行时是不出现的。 利用短路故障时电气量的变化,便可构成各种原理的继电保护。 此外,除了上述反应工频电气量的保护外,还有反应非工频电气量的保护。

继电保护的基本原理和继电保护装置的组成

我们把它统称为电力系统。一般将电能通过的设备成为电力系统成为电力电力系统的一次设备,如发电机、变压器、断路器、输电电路等,对一次设备的运行状态进行监视、测量、控制和保护的设备,被称为电力系统的二次设备。继电保护装置就属于电力系统的二次设备。 一、继电保护装置的基本原理 为了完成继电保护的任务,继电保护就必须能够区别是正常运行还是非正常运行或故障,要区别这些状态,关键的就是要寻找这些状态下的参量情况,找出其间的差别,从而构成各种不同原理的保护。 1.利用基本电气参数的区别 发生短路后,利用电流、电压、线路测量阻抗等的变化,可以构成如下保护: (1)过电流保护。单侧电源线路如图1-1所示,若在BC段上发生三相短路,则从电源到短路点k之间将流过很大的短路电流I k,可以使保护2反应这个电流增大而动作于跳闸。 (2)低电压保护。如图1所示,短路点k的电压U k降到零,各变电站母线上的电压都有所下降,可以使保护2反应于这个下降的电压而动作。 图1:单侧电源线路 (3)距离保护。距离保护反应于短路点到保护安装地之间的距离(或测量阻抗)的减小而动作。如图1所示,设以Z k表示短路点到保护2(即变电站B母线)之间的阻抗,则母线 上的残余电压为: U B=I k Z ko Z B 就是在线路始端的测量阻抗,它的大小正比于短路点到保护2之间的距离。 2.利用内部故障和外部故障时被保护元件两侧电流相位(或功率方向)的差 别

两侧电流相位(或功率方向)的分析如下。 图2:双侧电源网络 a——正常运行情况;b——线路AB外部短路情况;c——线路AB内部短路情况 正常运行时,A、B两侧电流的大小相等,相位相差180°;当线路AB外部故障时,A、B两侧电流仍大小相等,相位相差180°;当线路AB内部短路时,A、B两侧电流一般大小不相等,在理想情况下(两侧电动势同相位且全系统的阻抗角相等),两侧电流同相位。从而可以利用电气元件在内部故障与外部故障(包括正常运行情况)时,两侧电流相位或功率方向的差别构成各种差动原理的保护(内部故障时保护动作),如纵联差动保护、相差高频保护、方向高频保护等。 3.序分量是否出现 电气元件在正常运行(或发生对称短路)时,负序分量和零序分量为零;在发生不对称短路时,一般负序和零序都较大。因此,根据这些分量的是否存在可以构成零序保护和负序保护。此种保护装置具有良好的选择性和灵敏性。 4.反应于非电气量的保护 反应于变压器油箱内部故障时所发生的气体而构成气体(瓦斯)保护;反应于电动机绕组的温度升高而构成过负荷保护等。 二、继电保护装置的组成 继电保护的种类虽然很多,但是在一般情况下,都是有三个部分组成的,即测量部分、逻辑部分和执行部分。其原理结构如图3所示。

电机过热保护装置

电机过热保护装置 因电机过热或温控器失灵造成的事故时有发生,需要采取相应的保安措施,因此,我们设计了基于热敏电阻检测温度的电机过热保护装置。使得电机过热时自动断开电路起到保护的目的。 有关资料表明,半导体热敏电阻是一种对温度变化的敏感元件,其电阻率受温度影响变化明显。半导体热敏电阻种类繁多,大体有正温度系数PTC型和负温度系数NTC 型,根据使用条件有直热式和旁热式。如果采用热敏电阻测温,必须了解PTC型和NTC 型热敏电阻的温度特性和伏安特性。NTC 型热敏电阻在0 ~120 ℃电阻变化明显; 而PTC 型热敏电阻在0~120 ℃变化不大,当温度在120~160 ℃时阻值升高很快。NTC 型热敏电阻流经本身的电流变化对其引起自身电阻变化较大; 而PTC 型热敏电阻自身电流对阻值影响不大,当自身电流达到一定值时阻值才发生变化。 一、工作原理 图中QA、TA、J、Q 构成电机M的主控制回路,当QA接通时,线圈Q通电吸合,电动机M运转,TA为停止按钮。变压器B、整流桥Z、电容器C1 和C2、继电器J、二极管D、运放器LM、三极管T、热敏电阻R1X,R2X 、电阻R5-R6; 构成保护回路,其保护原理如下。R1、R2、R1X、R2X构成电桥,图中R1X,R2X为电机内部测温电阻。当电机温度超过允许温升时,电桥失去平衡,即R1X/R1!=R2X/R2,这时有信号输出给运算放大器LM108(R3,R4为限流电阻)。信号经LM108放大并经电容C1消噪后,经由R5输出到三极管T使其导通,继电器

J吸合,使主控回路中线圈Q失电释放,电机M停止运转。二极管D为续流二极管,当J释放时起续流作用。调整RT可得到三极管的触发电压。

继电保护整定计算公式汇总

继电保护整定计算公式汇编 为进一步规范我矿高压供电系统继电保护整定计算工作,提高保护的可靠性快速性、灵敏性,为此, 将常用的继电保护整定计算公式汇编如下,仅供参考。有不当之处希指正: 一、电力变压器的保护: 1、瓦斯保护: 作为变压器内部故障(相间、匝间短路)的主保护,根据规定,800KVA以上的油浸变压器,均应装设瓦斯保护。 (1)重瓦斯动作流速:0.7?1.0m/s。 (2)轻瓦斯动作容积:S b v 1000KVA : 200 ± 10%cm3; S b在1000?15000KVA : 250 ± 10%cm3; S b在15000 ?100000KVA : 300 ± 10%cm3; S b > 100000KVA : 350 ± 10%cm3。 2、差动保护:作为变压器内部绕组、绝缘套管及引出线相间短路的主保护。包括平衡线圈I、II及差动线 圈。 3、电流速断保护整定计算公式: (1)动作电流:ldz=Kk x I(3)dmax2

(3) I d max 2 继电器动作电流: I K K K K K K 其中:K k —可靠系数,DL 型取1.2, GL 型取1.4 K jx —接线系数,接相上为 1,相差上为"3 I⑶dmax2—变压器二次最大三相短路电流 K j —电流互感器变比 K u —变压器的变比 般计算公式:按躲过变压器空载投运时的励磁涌流计算速断保护值,其公式为: 其中:K k —可靠系数,取3?6。 K jx —接线系数,接相上为 1,相差上为"3 I 1e —变压器一次侧额定电流 心一电流互感器变比 (2)速断保护灵敏系数校验: I dzj K K K jx 1e K i

电动机差动保护的原理及应用

电动机差动保护的原理及应用 摘要:本文阐述了大型电动机差动保护原理。分析了差动保护的分类及对灵敏度的影响并介绍了差动原理逻辑图。 关键词:差动保护、比率差动、二次谐波闭锁比率差动 引言 大型高压电动机作为昂贵的电气主设备在发电厂,化工厂等大企业得到广泛的应用。如果发生严重故障导致电机烧毁,将严重影响生产的正常进行,造成巨大的经济损失,因此必须对其提供完善的保护。现有电动机综合保护装置主要针对中小型电动机,为其提供电流速断,热过载反时限过流,两段式定时限负序,零序电流,转子停滞,启动时间过长,频繁启动等保护功能。而对于2000KW以上特大容量电动机,则无法满足其内部故障时对保护灵敏度与速动性的要求,因而研制此装置并配合综合保护装置,为高压电动机提供更可靠更灵敏的保护措施。按照《电力装置的继电保护和自动装置设计规范》GB50062的要求:2MW 及以上的电机应装设纵差保护。 一概述 为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。两组电流互感器之间,即为纵差保护的保护区。电流互感器二次侧按循环电流法接线。设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。继电器是反应两侧电流互感器二次电流之差而动作的,故称为差动继电器。 在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s 的延时动作于跳闸。如果是微机保护装置,则只需将CT二次分别接入保护装置即可,但要注意极性端。一般在保护装置端子上有交流量或称模拟量输入的端子,分别定义为Ia1、Ia1*、Ic1、Ic1*(电机的端电流),Ia2、Ia2*、Ic2、Ic2*(电机的中性线电流),带*的为极性端。 保护装置的原理接线图如图2所示。电流互感器应具有相同的特性,并能满足10%误差要求。 微机保护原理框图见图如下:

继电保护基本原理讲解

继电保护基本原理及电力知识问答

第一篇 继电保护基本原理 第一章 概述 一.什么是电力系统? 有两种说法: 1.由生产和输送电能的设备所组成的系统叫电力系统,例如发电机、变压器、母线、输电线路、配电线路等,或者简单说由发、变、输、配、用所组成的系统叫电力系统。 2.有的情况下把一次设备和二次设备统一叫做电力系统。 一次设备:直接生产电能和输送电能的设备,例如发电机、变压器、母线、输电线路、断路器、电抗器、电流互感器、电压互感器等。 二次设备:对一次设备的运行进行监视、测量、控制、信息处理及保护的设备,例如仪表、继电器、自动装置、控制设备、通信及控制电缆等。 二.电力系统最关注的问题是什么? 由于电力系统故障的后果是十分严重的,它可能直接造成设备损坏,人身伤亡和破坏电力系统安全稳定运行,从而直接或间接地给国民经济带来难以估计的巨大损失,因此电力系统最为关注的是:安全可靠、稳定运行。 三.电力系统的三种工况 正常运行状态;故障状态;不正常运行状态。而继电保护主要是在故障状态和不正常运行状态起作用。 四.继电保护装置 就是指能反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。它的基本任务简单说是:故障时跳闸,不正常运行时发信号。 五.继电保护的基本原理和保护装置的组成 为完成继电保护所担负的任务,显然应该要求它正确地区分系统正常运行与发生故障或不正常运行状态之间的差别,以实现保护。如图1-1(a )、(b )所示的单侧电源网络接线图,(这是一种最简单的系统),图1-1(a)为正常运行情况,每条线路上都流过由它供电的负荷电流?f (一般比较小), 各变电所母线上的电压,一般都在额定电压(二次线电压100V )附近变化,由电压和电流之比所代表的“测量阻抗”Z f 称之为负荷阻抗,其值一般很大。图1-1(b )表示当系统发生故障时的情况,例如在线路B-C 上发生了三相短路,则短路点的 电压U d 降低到零,从电源到短路点之间 将流过很大的短路电流?d , 各变电所母线 上的电压也将在不同 程度上有很大的降低 (称之为残压)。设以Z d 表示短路点到变 电所B 母线之间的阻 抗,根据欧姆定律很 2)

继电保护原理复习题

1. 电力系统对继电保护的基本要求为 (1) 、 (2) 、 灵敏性和可靠性 。 2. 在整定单侧电源线路的电流速断保护的定值时,应按躲过系统 (3) (填入最大 /最小)运行方式下本线路末端发生 (4) 故障时流过保护的电流计算。(填入故障类型) 3. 若线路阻抗角φk 为70°,则90°接线的功率方向元件内角α应设为 (5) 。 4. 90°接线方式的功率方向元件,A 相方向元件加入的电流和电压为: (6) , (7) 。 5. 接地距离保护接线方式,A 相接入的电压Um 和电流Im 应为 (8) , (9) 。 6. 我国闭锁式纵联保护常见的起动方式有 (10) , (11) , (12) 。 7. 对于Yd11接线的变压器,传统的纵差动保护接线时,变压器星形侧(1侧)的TA 应接 为 (13) ,变压器三角侧(2侧)的TA 应接为 (14) ,且两侧TA 变比1TA n 、2TA n 与变压器变比T n 应满足的条件是 (15) 。 8. 试述三段式距离保护的整定、优缺点评价;(10分) 9. 什么是阻抗继电器的测量阻抗、整定阻抗、起动阻抗以方向阻抗继电器为例来说明三者 的区别。 10. 说明相间距离保护的0°接线方式和接地距离保护接线方式中,接入阻抗元件的电压电 流 11. 纵联保护的逻辑信号可分为哪几类,各起什么作用。 12. 说明变压器纵差动保护的基本原理、绘出其单相原理接线(以两绕组变压器为例)。并 画出直线型比率制动特性原理图,分析采用穿越电流制动有何作用 13. 简述重合闸前加速和后加速保护的动作过程及其优缺点。 14. 下图所示的网络中所有线路各侧均装有方向高频保护,并认为所有电源的电势均相等且 同相。试指出当k1点发生三相短路时,流过各套保护的功率方向(正向和反向)和在 1. 线路E-F 和F-G 均装设了三段式电流保护,已知线路正序阻抗1 0.4/X km =Ω,线路E-F 的最大负荷电流.max 170L I A =,可靠系数分别为 1.3rel K I =, 1.1rel K =Ⅱ , 1.2rel K =Ⅲ ,负荷自启 动系数 1.5Ms K =,返回系数0.85re K =,时间阶段0.5t ?=s ,线路保护3的过电流动作时限 为,其余参数见图。计算线路保护1电流三段的整定值和动作时限,并校验灵敏度。(20分) E s min .s X Ω =3max .s X

大型电动机高阻抗差动保护原理

大型电动机高阻抗差动保护原理、整定及应用 李德佳核电秦山联营有限公司 314300 [摘要]本文阐述了大型电动机高阻抗差动保护原理及整定原则和整定实例。分析了CT匝数比误差对高阻抗差动保护的影响,并介绍了匝数比误差的测量方法。 [关键词]高阻抗差动保护匝数比 1 概述 高阻抗差动保护的主要优点: 1、区外故障CT饱和时不易产生误动作。2、区内故障有较高的灵敏度。它主要作为母线、变压器、发电机、电动机等设备的主保护,在国外应用已十分广泛。高阻抗差动保护有其特殊性,要保证该保护的可靠性,应从CT选型、匹配、现场测试、保护整定等多方面共同努力。现在我国应制定高阻抗差动保护和相应CT的标准,结合现场实际情况编制相应的检验规程,使高阻抗差动保护更好的服务于电网,保证电网安全。 2 高阻抗差动保护原理及定值整定原则 2.1高阻抗差动保护的动作原理 2.1.1正常运行时: 原理图见图1,∵I1=I2 ∴ij=i1-i2=0. 因此,继电器两端电压: Uab= ij×Rj=0. Rj-继电器内部阻抗。 电流不流经继电器线圈,也不会产生电压,所以继电器不动作。 图中: TA1、TA2--电流互感器; Ru-- 保护电阻器; U>-- 高阻抗差动继电器。 2.1.2电动机启动时: 原理图见图2。由于电动机启动电流较大,是额定电流的6~8倍且含有较大的非周期分量。当TA1与TA2特性存在差异或剩磁不同,如有一个CT先饱和,假设TA2先饱和,TA2的励磁阻抗减小,二次电流i2减小。由于 ij=i1-i2 导致ij上升,继电器两端电压Uab上升。这样又进一步使TA2饱和,直至TA2完全饱和时,TA2的励磁阻抗几乎为零。继电器输入端仅承受i1在TA2的二次漏阻抗Z02和连接电缆电阻Rw产生的压降。

继电保护原理2—操作箱.

第二章操作箱

第一节概述 1.断路器操作机构 1.1断路器操作机构及控制回路 操作机构是断路器本身附带的跳合闸传动装置,目前常用的机构有电磁操作机构、液压操作机构、弹簧操作机构、电动操作机构、气压操作机构等。其中应用最为广泛的是电磁操作机构和液压操作机构。 断路器操作机构箱内电气控制回路包括:合闸和分闸操作回路,电气防跳回路,操作机构压力低闭锁回路,灭弧介质压力低闭锁回路,电机控制回路,加热回路,重合闸闭锁回路。 1.2断路器操作机构压力低的闭锁方式 液压操作机构以高压油推动活塞实现合闸与分闸,其压力闭锁由高到低一般设有“重合闸闭锁”、“合闸闭锁”、“分闸闭锁”3级。 气动操作机构的分闸操作靠压缩空气来完成,而合闸操作则靠在分闸操作时储能的合闸弹簧来完成,其压力闭锁一般设有“重合闸闭锁”和“操作闭锁”2级。 弹簧操作机构设有“弹簧未储能”1级闭锁。 2.操作箱的组成 2.1 操作箱内继电器组成 2.1.1 监视断路器合闸回路的合闸位置继电器及监视断路器跳闸位置继电器。 2.1.2 防止断路器跳跃继电器。 2.1.3 手动合闸继电器。 2.1.4 压力监察或闭锁继电器。 2.1.5 手动跳闸继电器及保护相跳闸继电器。 2.1.6 一次重合闸脉冲回路。 2.1.7 辅助中间继电器。 2.1.8 跳闸信号继电器及备用信号继电器。 2.2 操作箱除了完成跳、合闸操作功能外,其输出触点还应完成的功能 2.2.1 用于发出断路器位置不一致或非全相运行状态信号 2.2.2 用于发出控制回路断线信号。 2.2.3 用于发出气(液)压力降低不允许跳闸信号。 2.2.4 用于发出气(液)压力降低到不允许重合闸信号。

继电保护算法分析

继电保护算法分析 1 引言 根据继电保护的原理可知,微机保护系统的核心内容即是如何采用适当而有效的保护算法提取出表征电气设备故障的信号特征分量。图1是目前在微机保护中通常采用的提取故障信号特征量的信号处理过程。 从图中可以看出,自故障信号输入至A/D 输出的诸环节由硬件实现,在此过程中故障信号经过了预处理(如由ALF 滤除信号中高于5次的谐波分量),然后通过保护算法从中提取出故障的特征分量(如基波分量)。很明显,只有准确且可靠地提取出故障的特征量,才能通过故障判据判断出是否发生了故障,是何种性质的故障,进而输出相应的保护动作。因此计算精度是正确作出保护反应的重要条件。就硬件部分而言,为了减少量化误差,通常采用12位甚至16位A/D 转换芯片;而就保护算法而言,提高精度除了与算法本身的性能有关,还与采样频率、数据窗长度和运算字长有关。目前针对故障特征的提取有许多不同类型的保护算法,本课题研究的是电动机和变压器的保护,根据相应的保护原理,主要涉及基于正弦量的算法和基于序分量过滤器的算法。本章将对其中几种较典型的算法作简要介绍和分析。 2 基于正弦量的特征提取算法分析 2.1 两点乘积算法 设被采样信号为纯正弦量,即假设信号中的直流分量和高次谐波分量均已被理想带通滤波器滤除。这时电流和电压可分别表示为: )sin(20i t I i αω+= 和 )s i n (20u t U u αω+= 表示成离散形式为: )sin(2)(0i S S k T k I kT i i αω+== (1) )sin(2)(0u S S k T k U kT u u αω+= = (2) 式中,ω为角频率,I 、U 为电流和电压的有效值,S T 为采样频率,0i α和0u α为电流和 故障 图1 故障信号特征的提取过程 Fig. 1 Character extraction process of fault signal

电动机纵联差动保护

电动机纵联差动保护 一、比率制动差动保护 (1)电动机二次额定电流 1 n TA I n =? (2)差动保护最小动作电流 I s =K rel (·K cc ·K er +Δm )I n ap K K rel ——可靠系数,取K rel =2 ap K ——外部短路切除引起电流互感器误差增大的系数(非周期分量系数)=2 ap K K cc ——同型系数,电流互感器同型号时取K cc =0.5,不同型号时K cc =1 K er ——电流互感器综合误差取K er =0.1 Δm ——通道调整误差,取Δm =0.01~0.02 I s =2 (2×0.5×0.1+0.02)I n =0.24 I n 一般情况下,取I s =(0.25~0.35)I n ,当不平衡电流较大时,I s =0.4I n (3)确定拐点电流I t 有些装置中拐点电流是固定的,如I t = I n ;当拐点电流不固定时可取I t = (0.5~0.8)I n (4)确定制动特性斜率s 按躲过电动机最大起动电流下差动回路的不平衡电流整定 最大起动电流I st ·max 下的不平衡电流I umb ·max 为 I umb ·max =(·K cc ·K er +Δm ) I st ·max ap K =2,K cc =0.5,K er =0.1,Δm=0.02,I st ·max =K st I n (取I st =10) ap K I umb ·max =(2×0.5×0.1+0.02)10I n =1.2I n 比率制动特性斜率为 t n st s umb rel I I K I I K s ??= ?max K rel =2,当I s =0.3 I n ,I t =0.8 I n ,K st =7 2 1.20.30.3470.8n n n n I I s I I ×?==? 一般取s =0.3~0.5 (5)灵敏系数计算 电动机机端最小两相短路电流为 (2)1 2K L I x x = ?′+ x ′- 电动机供电系统处最小运行方式时折算到S B 基准容量的系统阻抗标幺值 U B - 电动机供电电压级的平均额定电压U B =6.3(10.5)kV X L - 电动机供电电缆折算到S B 基准容量的阻抗标幺值 制动电流(2)res TA 2K I I n =相应的动作电流为

相关主题
文本预览
相关文档 最新文档