当前位置:文档之家› 不锈钢电解抛光液配方

不锈钢电解抛光液配方

不锈钢电解抛光液配方
不锈钢电解抛光液配方

锈钢光亮剂,不锈钢电解抛光液光亮剂,不锈钢电解抛光液添加剂,

不锈钢电解抛光液光亮剂(PR022

产品用途

1、不锈钢材质电化学抛光液的高光“光亮添加剂”;

2、适用于各类不锈钢材质,对如下牌号的不锈钢可达到镜面光亮效果:201、202、304、

304L、316、316L、321、410、420、430等不锈钢或相近不锈钢;

3、要求电解液中不含六价铬、三价铬、总铬,且要求高光亮的场合,添加本剂配合磷酸、

硫酸使用,为最佳搭配;

4、要求大大延长电解液的使用寿命,使用本剂为首选;

5、该技术配方是经过市场反复验证的成熟配方;

6、该配方是环保化的技术;

7、该配方领先于同行业技术水平;

8、保证为客户带来实用性经济技术价值;

性能特点

1、使用本剂配合磷酸、硫酸使用,便可调配出高品质的电解液;

2、清亮、高光、高亮的效果,清晰的影像镜面视觉;

3、友好环保,不含铬酸酐、六价铬、三价铬、总铬等有害离子,无需复杂的水处理工艺,

即可安全排放;

4、内含丰富的抗氧化剂、再生剂,性能稳定,使用寿命远远大于同行业同类电解抛光液、

铬系电解抛光液,维护良好的施工现场,已创下25个月换槽期的记录;

5、客户无需购买成品电解液,只需购买磷酸、硫酸,添加本剂,便可调配出高品质的成

品电解液,且本剂的添加量极少,大大降低了客户的生产成本;

6、极低的抛光电流,电源能耗低。

7、配制工艺简单,易于操控。理化指标

配方推荐

本公司业务部,电话:

注意事项

1、严格按照“原料纯度含量”要求,技术调试与施工;

2、对于达标300系列材质,建议按照“硫酸的配比浓度的上限”配槽;

对于达标200系列、常见400牌号材质,建议按照“硫酸的配比浓度的下限”配槽;

对于200、300组合材质,建议按照“硫酸的配比浓度的中值”配槽;

对于耐蚀性极差的不锈钢、无镍200系列材质,建议在配方基础上继续提高磷酸含量;

对于极特殊材质,可电询本公司技术研发中心,本技术中心将会推出“适配的工艺配方”;

3、不建议与其它“成品电解液”混用,严禁与铬系电解液混用;

4、电解槽设计优选PP材质,禁止选用金属类材质;

5、配液步骤:先加磷酸,再边搅拌边缓慢添加硫酸,此时,混合液温度会升高,等待

混合液温度降到35度以下添加PR光亮剂,避免温度过高,导致光亮剂失效。

6、建议在“推荐温度范围内”施工,如不在温度范围内,建议加温或降温,以维持恒定

的达标温度;

7、建议经常清理槽内杂质或沉淀物,可15天清理一次,以维持长久的使用寿命。

8、此添加剂的寿命是长久的,基本不用更换。但在槽液极脏的情况下,就需要更换新液;

9、在加工过程中,工件会带出液体,槽液会正常消耗。当液位明显下降时,要按原配比例同时添加

磷酸、硫酸(或稍微过量的硫酸);严禁只添加单一酸种。

10、补液步骤:电解液损耗补加新液,先清理掉槽液底部含渣滓浓的液体,约为总

量的20-50%左右。工件是300系列不锈钢材质时,补加磷酸40%,硫酸60%,不

需补加光亮剂。工件是200系列不锈钢材质时,补加磷酸50%,硫酸50%,不需补

加光亮剂。当补加了磷酸和硫酸后,工件抛光不亮时,才需要添加光亮剂,补加量为补加总量的3% ;

11、停工期间,建议在电解槽上加置密封盖,防止电解液吸潮造成配方失调——带来的

电解缺陷;电解液密度为一一之间,低于这个范围,表明含水量过高,应

加温蒸发掉多余的水分;高于这个范围,表明含水量过少,需补加水;工作温度或蒸发温度控

制在80度以下,避免温度过高,导致光亮剂失效。

12、阴凉通风处密封存放。

包装规格

25千克/桶

温馨推荐

本公司同时生产:不锈钢电解抛光液,不锈钢光亮除油剂、不锈钢酸洗钝化液,不锈钢酸洗抑雾剂,不锈钢酸洗添加剂,不锈钢酸洗缓蚀剂等不锈钢处理剂,感谢您的垂询!

温馨提示

1、如果有生产技术难题尽可咨询我们,我们一定免费服务解答;

2、如果产品在性能、成本等方面不能达到您的满意,请告诉我们,我们可以改进;

3、祝您生意兴隆!

不锈钢电解抛光液的日常维护

不锈钢电解抛光液的日常维护 不锈钢电解抛光液的日常维护 1。电抛光后,表面为什么会发现似未抛光的斑点或小块? 原因分析:抛光前除油不彻底,表面尚附有油迹。 解决方法:选用“云清牌除油除蜡液”,1:10兑水使用,60-90℃条件下浸泡5-20分钟。如长时间使用后应考虑更换新液。 2。抛光过后表面局部为什么有灰黑色斑块存在? 原因分析:可能氧化皮未彻底除干净。局部尚存在氧化皮。 解决方法:加大清除氧化皮力度,可选用“云清牌不锈钢氧化皮清除液”,“不锈钢氧化皮清除膏”等产品。因除锈除氧化皮产品较多,具体适用产品可咨询威海云清化工开发院。 3。抛光后工件棱角处及尖端过腐蚀是什么原因引起的? 原因分析:棱角、尖端的部位电流过大,或电解液温度过高,抛光时间过长,导致过度溶解。 解决方法:调整电流密度或溶液温度,或缩短时间。检查电极位置,在棱角处设置屏蔽等。 4。为什么工件抛光后不光亮并呈灰暗色? 分析原因:可能电化学抛光溶液已不起作用,或作用不明显。 解决方法:检查电解抛光液是否使用时间过长,质量下降,或溶液成分比例失调。 5。工件抛光后表面有白色的条纹是怎么回事? 原因分析:溶液相对密度太大,液体太稠,相对密度大于1。82。 解决方法:增大溶液的搅拌程度,如果溶液相对密度太大,用水稀释至1。72。在90~100℃条件下并加热一小时。 6。为什么抛光后表面有阴阳面,及局部无光泽的现象? 原因分析:工件放置的位置没有与阴极对正,或工件互相有屏蔽。 解决方法:将工件进行适当的调整,使工件与阴极的位置适当,使电力分布合理。 7。抛光后工件表面平整光洁,但有些点或块不够光亮,或出现垂直状不亮条纹,一般是什么原因引起的? 原因分析:可能是抛光后期工件表面上产生的气泡未能及时脱离并附在表面或表面有气流线路。

化学机械抛光液

化学机械抛光液行业研究 一、行业的界定与分类 (2) (一)化学机械抛光 (2) 1、化学机械抛光概念 (2) 2、CMP工艺的基本原理 (2) 3、CMP技术所采用的设备及消耗品 (2) 4、CMP过程 (2) 5、CMP技术的优势 (2) (二)化学机械抛光液 (3) 1、化学机械抛光液概念 (3) 2、化学机械抛光液的组成 (3) 3、化学机械抛光液的分类 (3) 4、CMP过程中对抛光液性能的要求 (3) (三)化学机械抛光液的应用领域 (3) 二、原材料供应商 (3) 三、化学机械抛光液行业现状 (4) (一)抛光液行业现状 (4) 1、国际市场主要抛光液企业分析 (4) 2、我国抛光液行业运行环境分析 (4) 3、我国抛光液行业现状分析 (5) 4、我国抛光液行业重点企业竞争分析 (5) (二)抛光液行业发展趋势 (5) (三)抛光液行业发展的问题 (5) 四、需求商 (5) (一)半导体硅材料 (6) 1、电子信息产业介绍 (6) 2、半导体硅材料的简单介绍 (6) (二)分立器件行业 (7) (三)抛光片 (8)

化学机械抛光液行业研究 一、行业的界定与分类 (一)化学机械抛光 1、化学机械抛光概念 化学机械抛光(英语:Chemical-Mechanical Polishing,缩写CMP),又称化学机械平坦化(英语:Chemical-Mechanical Planarization),是半导体器件制造工艺中的一种技术,用来对正在加工中的或其它材料进行处理。 2、CMP工艺的基本原理 基本原理是将待抛光工件在一定的下压力及抛光液(由超细颗粒、化学氧化剂和液体介质组成的混合液)的存在下相对于一个抛光垫作旋转运动,借助磨粒的机械磨削及化学氧化剂的腐蚀作用来完成对工件表面的材料去除,并获得光洁表面。 3、CMP技术所采用的设备及消耗品 主要包括,抛光机、抛光液、抛光垫、后CMP清洗设备、抛光终点检测及工艺控制设备、废物处理和检测设备等,其中抛光液和抛光垫为消耗品。 4、CMP过程 过程主要有抛光、后清洗和计量测量等部分组成,抛光机、抛光液和抛光垫是CMP工艺的3大关键要素,其性能和相互匹配决定CMP能达到的表面平整水平。 5、CMP技术的优势 最初半导体基片大多采用机械抛光的平整方法,但得到的表面损伤极其严重,基于淀积技术的选择淀积、溅射玻璃SOG(spin-on-glass)、低压CV D(chemicalvaporde-posit)、等离子体增强CVD、偏压溅射和属于结构的溅射后回腐蚀、热回流、淀积-腐蚀-淀积等方法也曾在IC工艺中获得应用,但均属局部平面化技术,其平坦化能力从几微米到几十微米不等,不能满足特征尺寸在μm 以下的全局平面化要求。1991年IBM首次将化学机械抛光技术成功应用到

电解抛光技术

影响电解抛光效果的主要因素: 一、电解抛光电解液,电解液选用的合理与否是直接影响电解抛光效果的最基本因素之一。 1扩散系数小,黏度大。 2易与溶解下来的金属离子形成扩散速度更 小的多核聚合配合物。本身是一种黏膜稠的酸。 二、电解抛光电流密度和电压,通常应控制在极限扩散电流控制区,中阳极极化曲线的平坦区。 1低于此区的电流密度时,表面会出现腐蚀。2高于此电流密度区时,因有氧气析出,表面易出现气孔、麻点或条纹。 3平坦区不是固定不变的,它会随温度、配位剂的浓度和添加剂的种类而变化。 三、温度,温度对阳极极化曲线的影响曲线。1电解液温度升高,极限扩散电流逐渐增大,当温度高于90度时,表面抛光的起始电流密度大,阳极铜片的溶解速度过快,因而铜片表面易生成点状或条状腐蚀。 2当电解液温度低于60度时,传质过程慢,抛光的起始电流密度太低,阳极铜片的溶解速度慢,溶解下来的离子不能很快地扩散开来,容易在阳极表面形成CU和HEDP的多核配合物,使用权铜片表面出现沉淀物膜槿麻点。 四、抛光时间。1被抛光零件的材质及其表面的预处理程度。2阳、阴极间的距离。 3电解液的抛光性能及温度。 4电抛光过程使用的阳极电流密度的大小及槽电压的高低。 5工艺上对抛光表面光亮度的要求等。 五、阳极、阴极极间距离。 1便于调整电流密度到工艺规范,并尽量使抛光件表面的电流密度分布得均匀一致些。 2尽量减少不必要的能耗,因电解液浓度高、电阻大、耗电量较大。 3阴极产生的气体搅拌是否已破坏了黏液层,降低了抛光效果。 六、抛光前工件表面状态及金相组织。 1被抛光工件表面的金相组织越均匀,越细密,(如纯金属)越有利于抛光过程的进行,而且抛光效果也越好。 2被抛光工件的材料为合金,特别是多组分合金时,抛光工艺的控制比较麻烦。 3当被抛光工件的金相组织不均匀,特别是含有非金属万分时,就会使电抛光体系呈现出不一致的电化学敏感性。 4工件在抛光前表面处理得越干净越细密,越有利于电抛光过程的进行,越容易获得预期的抛光效果。

不锈钢电解抛光工艺

不锈钢电解抛光工艺 一.工作原理 ⑴、电解是以抛光工件为阳极,不溶性金属为阴极,两极同时浸入电化学槽中,通直流电而产生有选择性的阳极溶解,因此不锈钢表面达到高度光洁和光泽的外观。 ⑵、电解作用不锈钢经过电解,其色泽内外一致,清洁光亮,光泽持久,表面形成---黏性薄膜,抗腐蚀性能增强。 二. 电解溶液组成和工艺条件 1.磷酸:能起溶解作用又能在不锈钢表面形成磷酸盐保护膜,阻止不锈钢表面发生过腐蚀。其含量变化较宽,以750mL/L左右为佳。 (1)含量过高时,槽液电阻增大,黏度提高,导致所需电压较高,使整平速度迟缓。 (2)含量过低时,活化倾向大,钝化倾向小,导致不锈钢表面不均匀腐蚀。 2.硫酸:是活化剂,能提高溶液的导电率,降低电阻,从而降低槽电压,节约电能,有利于改善分散能力和提高阳极电流效率。其含量控制在180~210mL/L为最佳。 (1)含量过高时,活化倾向太大,易使抛光表面出现过腐蚀,呈现均匀的密集麻点。 (2)含量过低时,出现严重的不均匀腐蚀。 3.铬酐:是强氧化剂,使表面形成钝化膜,避免表面腐蚀,有利于获得光洁表面。其含量控制在50~60g/L为宜。 (1)铬酐浓度太低,不易获得光亮表面。 (2)浓度太高时在大电流下,易产生沉淀析出,降低电流效率,使抛光表面产生麻点等过腐蚀。 4.丙三醇(甘油):能起到良好的缓蚀作用,与磷酸生成络合物及其金属衍生物,使抛光表面非常光亮细致,甘油还能防止不锈钢在电解液中的化学腐蚀。 (1)含量过低时,抛光表面虽然光亮,但有腐蚀粗糙之处。 (2)含量高时,即可克服粗糙,又使抛光面光亮细致。 (3)含量过高时,会产生太多的泡沫,影响操作,也浪费材料。 5.糖精:有光亮作用。 (1)糖精在阴极过程中能为金属表面吸附,有助于被抛表面的白亮和发亮。 (2)糖精在阳极过程中,阳极表面形成一层吸附薄膜,当不通电时可防止不锈钢表面受电解液浸蚀。当通电后,电力线首先在凸起部位击穿隔离薄膜而开始溶解,在凹入处被有效地保护,以致达到选择性溶解呈现平滑光亮表面。 6.电流密度: (1)电流密度低时,金属处于活化状态,被抛光表面发生浸蚀,阳极溶解产物少,化学溶解比电化学溶解占优势,以致光洁度差。

化学机械抛光工艺(CMP)全解

化学机械抛光液(CMP)氧化铝抛光液具体添加剂 摘要:本文首先定义并介绍CMP工艺的基本工作原理,然后,通过介绍CMP系统,从工艺设备角度定性分析了解CMP的工作过程,通过介绍分析CMP工艺参数,对CMP作定量了解。在文献精度中,介绍了一个SiO2的CMP平均磨除速率模型,其中考虑了磨粒尺寸,浓度,分布,研磨液流速,抛光势地形,材料性能。经过实验,得到的实验结果与模型比较吻合。MRR 模型可用于CMP模拟,CMP过程参数最佳化以及下一代CMP设备的研发。最后,通过对VLSI 制造技术的课程回顾,归纳了课程收获,总结了课程感悟。 关键词:CMP、研磨液、平均磨除速率、设备 Abstract:This article first defined and introduces the basic working principle of the CMP process, and then, by introducing the CMP system, from the perspective of process equipment qualitative analysis to understand the working process of the CMP, and by introducing the CMP process parameters, make quantitative understanding on CMP.In literature precision, introduce a CMP model of SiO2, which takes into account the particle size, concentration, distribution of grinding fluid velocity, polishing potential terrain, material performance.After test, the experiment result compared with the model.MRR model can be used in the CMP simulation, CMP process parameter optimization as well as the next generation of CMP equipment research and development.Through the review of VLSI manufacturing technology course, finally sums up the course, summed up the course. Key word: CMP、slumry、MRRs、device 1.前言 随着半导体工业飞速发展,电子器件尺寸缩小,要求晶片表面平整度达到纳米级。传统的平坦化技术,仅仅能够实现局部平坦化,但是当最小特征尺寸达到

不锈钢电解抛光工艺

不锈钢电解抛光工艺 不锈钢具有优良的耐蚀性能,因而在工业中得到了广泛应用。在许多场合,不锈钢制品的表面常常需要满足某些特殊的要求,例如:低表面粗糙度,高光泽度,亚光处理,法纹效果等。其中降低表面粗糙度、提高光亮度,也就是通常所说的进行表面抛光,是最为常见的要求。 不锈钢经过电解抛光后,会呈现出诸多优点: 1.抛光的表面不会产生变质层,无附加应力,并可去除或减小原有的应力层。 2.对难于用机械抛光的硬质材料、软质材料以及薄壁、形状复杂、细小的零件和制品都能加工。 3.抛光时间短,而且可以多件同时抛光,生产效率高。 4.电解抛光所能达到的表面粗糙度与原始表面粗糙度有关,一般可提高两级。但由于电解液的通用性差,使用寿命短和强腐蚀性等缺点,电解抛光的应用范围受到限制。电解抛光主要用于表面粗糙度小的金属制品和零件,如反射镜、不锈钢餐具、装饰品、注射针、弹簧、叶片和不锈钢管等,还可用于某些模具(如胶木模和玻璃模等)和金相磨片的抛光。 电解抛光的优劣与否,取决于电解抛光的机理和工艺、抛光液各主要成分,其次之外,还有工艺参数选择、电场分布分析、辅助电极设计等。 现介绍一种不锈钢电解抛光工艺: 一、抛光液组成和操作条件? 浓磷酸(比重1.74 ) 510ml/L 887.4g/L 浓硫酸(比重1.84 )395ml/L 726.8g/L LQ-60 添加剂50ml/L 52.5g/L 水50ml/L 50g/L 温 度50 - 75 C最佳 60 - 65C 阳极电流密度,DA 6- 15A/dm2 最佳10—12A/dm2 抛光时间

阴极材料 铅或铅合金 阴极面积:阳极面积 二、开槽步骤 LQ-60 添加剂是一种表面活性剂,在其使用初期电解抛光时会产生大量泡沫,因此抛光液液面与抛光槽顶部之间的距离不应w 15cm准确计算将欲配制的电解抛光液的体 积,再根据抛光液组成将所要加入的抛光液各组分按下列顺序加入抛光槽内。 1、注入所需水量。 2、加入所需磷酸量。 3、切记硫酸用水稀释时会释放出大量热量,溶液温度急剧升高,边搅拌边添加,当温度升至80 C时应停止添加,待溶液冷却后再进一步添加直至全部加完。 4、加入所需数量LQ-60添加剂,边搅拌边添加,添加完毕后彻底搅拌以确保均匀混合。 三、工艺流程 化学除油 - 热水清洗 - 浸酸(1 - 2% 硫酸溶液) - 电解抛光-三道逆流清洗-浸碱(5%碳酸钠溶液) -热水清洗-擦干或烘干 四、槽液维护及补加 1.不锈钢工件在进入抛光槽之前应尽可能将残留在工件表面的水分除去,因工件夹带过多水分有可能造成抛光面出现严重麻点,局部浸蚀而导致工件报废。 2.在电解抛光过程中,作为阳极的不锈钢工件,其所含的铁、铬、镍元素不断转变为金属离子溶入抛光液内而不在阴极表面沉积。随着抛光过程的进行,金属离子浓度不断增加,当达到一定数值后,这些金属离子以磷酸盐和硫酸盐形式不断从抛光液内沉淀析出,沉降于抛光槽底部。为此,抛光液必须定期过滤,去除这些固体沉淀物。 3.在抛光槽运行过程中,除磷酸、硫酸不断消耗外水分因蒸发和电解而损失,此外,高粘度抛光液不断被工件夹带损失,抛光液液面不断下降,需经常往抛光槽补加新鲜抛光液和水。 4.该抛光液在未经抛光前的原始比重为1.68,在抛光槽运行过程中,抛光液的比重应控制在1.68±0.03 的范围内。抛光液比重和粘度过高,说明抛光液含水量不足或硫酸含量偏高磷酸含量偏低;反之,抛光液比重过低,表明抛光液含水量过高。经常用比重计测定抛光液的比重是一种简单有效的控制手段。 5.在有条件的情况下,最好定期分析抛光液的酸度、磷酸及硫酸的含量。 五.设备要求 电解抛光液通常为矿物酸并在较高的温度下操作,因此抛光槽、清洗槽、阴极、加热盘管及排风装置必须由可耐抛光液腐蚀的材料制造。

石材抛光液配方成分,抛光原理及生产工艺技术

石材抛光配方参考,工艺流程及抛光原理探讨大理石抛光是大理石护理晶面处理的前一道工艺流程或石材光板加工的最后一道程序。是如今大理石护理的最重要的工艺流程之一。目前大理石抛光工艺已经很成熟了,但是关于大理石抛光原料方面,基本还处于假说阶段,积极地开展这方面的研究, 对于我们正确地认识抛光过程, 掌握抛光实质, 从而改善抛光工艺, 提高抛光质量和抛光效率具有重大的理论意义与实践意义。 禾川化学是一家专业从事精细化学品分析、研发的公司,具有丰富的分析研发经验,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决众多化工企业生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进及新产品研发。 样品分析检测流程:样品确认—物理表征前处理—大型仪器分析—工程师解谱—分析结果验证—后续技术服务。有任何配方技术难题,可即刻联系禾川化学技术团队,我们将为企业提供一站式配方技术解决方案! 1、石材抛光工艺过程和原理 对不同材质的大理石, 采用抛光方法也有所不同, 总结起来大致可分为四类: 1.1、毛毡一α-氧化铝抛光法 抛光过程:毛毡一α-氧化铝抛光是干法抛光。嵌陷在毛毡表层的磨粒, 对板面进行冲撞、滑擦、滚压作用。在这些机械力作用下,通过材料的去除和塑变, 使板面凸凹处趋于平整。抛光初始时洒在板面上的少量水, 使得磨粒分布均匀, 易于嵌陷在毛毡上。抛光开始后, 由于热作用使温度升高, 水份开始蒸发, 水蒸汽是表面活化剂, 对降低表层的强度, 增加微凸休的活化能起一定作用。

抛光原理:毛毡一α-氧化铝抛光是机械, 热物理和化学作用的联合作用过程。其中机械, 热物理作用占主导地位。抛光面是一塑性变形层。该表层内晶粒大小基木不变,表层上存在吸附层, 吸附层不仅有空气, 水蒸汽的吸附物, 还吸附有磨料、磨屑及沾染物。 1.2、磨块抛光法 抛光过程:主要采用M1或M1.5白刚玉磨块和金刚石磨块抛光,抛光过程中机械作用主要为冲撞、滑擦。化学吸附作用除与毛毡一α-氧化铝抛光类似外, 还存在对高分子化合物的吸附。其余作用过程现象与毛毡一α-氧化铝类似。 抛光原理:抛光过程是机械, 热物理和化学作用的联合作用过程。抛光面是一塑性变形层; 1.3、毛毡一草酸抛光法 毛毡一草酸抛光是水抛光, 抛光过程中必须供给适当的水量。供水的目的主要是调节溶掖的PH值, 使在适宜的酸性溶液中实施最有利的抛光。抛光中的化学作用主要是草酸溶液与碳酸盐岩的溶解反应。机械作用为毛毡对板面的磨擦作用, 使得草酸盐被清除, 同时还由于磨擦时产生的热里, 增加了络液的活性, 促进俗解反应进行。 抛光时伴随有吸附过程, 由于毛毡的磨擦作用, 使吸附层不断去除和形成。 毛毡一草酸抛光是机械, 热物理和化学作用的联合作用过程。化学作用占主要地位。 抛光而日吸附有草酸根离子和草酸钙(有机赘合物)薄层。此薄层(光泽膜)主要为草酸钙所组成。薄层的均匀性与溶液的PH值有关。 1.4、磨块一草酸抛光法

化学机械抛光液(CMP)氧化铝抛光液具汇总

化学机械抛光液(CMP)氧化铝抛光液 一、行业的界定与分类 (2) (一)化学机械抛光 (2) 1、化学机械抛光概念 (2) 2、CMP工艺的基本原理 (2) 3、CMP技术所采用的设备及消耗品 (2) 4、CMP过程 (2) 5、CMP技术的优势 (2) (二)化学机械抛光液 (3) 1、化学机械抛光液概念 (3) 2、化学机械抛光液的组成 (3) 3、化学机械抛光液的分类 (3) 4、CMP过程中对抛光液性能的要求 (3) (三)化学机械抛光液的应用领域 (3) 二、原材料供应商 (4) 三、化学机械抛光液行业现状 (4) (一)抛光液行业现状 (4) 1、国际市场主要抛光液企业分析 (4) 2、我国抛光液行业运行环境分析 (4) 3、我国抛光液行业现状分析 (5) 4、我国抛光液行业重点企业竞争分析 (5) (二)抛光液行业发展趋势 (5) (三)抛光液行业发展的问题 (5) 四、需求商 (6) (一)半导体硅材料 (6) 1、电子信息产业介绍 (6) 2、半导体硅材料的简单介绍 (6) (二)分立器件行业 (7) (三)抛光片 (8)

化学机械抛光液行业研究 一、行业的界定与分类 (一)化学机械抛光 1、化学机械抛光概念 化学机械抛光(英语:Chemical-Mechanical Polishing,缩写CMP),又称化学机械平坦化(英语:Chemical-Mechanical Planarization),是半导体器件制造工艺中的一种技术,用来对正在加工中的硅片或其它衬底材料进行平坦化处理。 2、CMP工艺的基本原理 基本原理是将待抛光工件在一定的下压力及抛光液(由超细颗粒、化学氧化剂和液体介质组成的混合液)的存在下相对于一个抛光垫作旋转运动,借助磨粒的机械磨削及化学氧化剂的腐蚀作用来完成对工件表面的材料去除,并获得光洁表面。 3、CMP技术所采用的设备及消耗品 主要包括,抛光机、抛光液、抛光垫、后CMP清洗设备、抛光终点检测及工艺控制设备、废物处理和检测设备等,其中抛光液和抛光垫为消耗品。 4、CMP过程 过程主要有抛光、后清洗和计量测量等部分组成,抛光机、抛光液和抛光垫是CMP工艺的3大关键要素,其性能和相互匹配决定CMP能达到的表面平整水平。 5、CMP技术的优势 最初半导体基片大多采用机械抛光的平整方法,但得到的表面损伤极其严重,基于淀积技术的选择淀积、溅射玻璃SOG(spin-on-glass)、低压CV D(chemicalvaporde-posit)、等离子体增强CVD、偏压溅射和属于结构的溅射后回腐蚀、热回流、淀积-腐蚀-淀积等方法也曾在IC工艺中获得应用,但均属局部平面化技术,其平坦化能力从几微米到几十微米不等,不能满足特征尺寸在

不锈钢电解抛光

不锈钢电解抛光技术专题 一.电解抛光原理: 电解抛光(electro-polishing)也称电抛光,是利用阳极在电解池中所产生的电化学溶解现象,使阳极上的微观凸起部分发生选择性溶解以形成平滑表面的方法。它是一个复杂的阳极氧化过程,伴随着工件表面的溶解和和氧化,但又不同于阳极氧化。电解抛光的抛光机理是: 1.黏膜理论: 电解抛光在一定的条件下,金属阳极的溶解速度大于溶解产物离开阳极表面向电解液中扩散的速度,于是溶解产物就在电极表面积累,形成一层黏性膜,这层黏性膜的电阻比电解液的大,而且可以溶解在电解液中,它沿阳极表面的分布是不均匀的,在表面的微凸处的微黏膜厚度比凹处小,导致凸处的电阻也较小,从而造成电流集中,与微凹处相比,微凸处电流密度较大,电位升高,从而使氧气容易析出,有利于黏膜溶解扩散,加快了微凸部位金属的溶解。随着电解抛光时间的延续,阳极表面上的微凸处被逐渐削平,使整个表面变得平滑、光亮。2.氧化膜理论: 在电解抛光过程中,由于析出氧的作用在金属表面形成一层氧化膜,阳极表面呈钝态,但是,这层氧化膜在电解液中是可以溶解的,所以钝态并不是完全稳定的。由于在阳极表面微凸处电流密度较高,形成的氧化膜比较疏松,而且该处析出的氧气也多,有利于阳极溶解产物向溶液中扩散,促使该处的氧化膜溶解加快。在整个抛光过程中、氧化膜的生成溶解不断进行。而且微凸处进行的速度比微凹处快,其结果,微凸处金属被优先溶解削去,使阳极表面达到平滑、光亮。 电抛光阳极过程的特点:电抛光过程根据金属表面的性质、溶液成分、工作条件,在阳极附近可能发生下列反映 ①阳极溶解,当进行电抛光时,金属表面的原子就转入到电解液中成为离子,阳 极发生溶解: Me = Me(n+) + ne ②氧化膜(或氧吸附层)形成,电抛光时,在阳极表面会生成一层氧化膜(或氧吸附层),此膜的厚度决定于金属的性质、电解液成分、工艺规范。 2Me(n+) +2OH- =Me2On +n H2O ③气态氧的析出: 4OH- =O2 +2H2O +4e ④溶液中还存在多种物质的氧化 二.电极极化曲线(I-U曲线、钝化曲线) 当工件基体放入电解池中并通以直流电的情况下,零件表面就会产生阳极极化现象,而且在阳极极化的工程中有一定的曲线规律—电极极化曲线 F ①AB部分:电压增加,电流增长较慢,阳极表面未活化,不能正常溶解。 ②BC部分,电流与电压成比例增加,阳极表面活化产生正常溶解,金属具有强 腐蚀型表面。 ③CD部分,在C点附近曲线发生突变,当电压从小增加到U2时,电流强度会有 所下降,说明金属表面氧化膜生成,电阻增大,金属表面开始形成黏液膜。④DE部分,随着电压的升高电流强度却保持不变,曲线出现水平部分,金属表 面生成了黏液膜,具备抛光表面的条件,金属表面正常溶解可得到光泽的表面。 ⑤从E点开始只要电压稍微增加,便引起电流强度的急剧增加,这是阳极上氧的 析出的标志,虽然阳极表面得到光亮,但同时产生了腐蚀斑点(点状凹坑),电抛光过程受到破坏。 通过试验,当电解抛光时给EP槽施加至钝电压,电流就会按照阳极极化曲线的形式进行变化;把整流器调到稳压状态,调整电压到工件至钝电压,开机,电流就会从A点1S左右到达B点然后达到C点-电流的至高点,从C点降到D点

铅酸蓄电池电解液的配制方法

铅酸蓄电池电解液的配制方法 铅酸蓄电池的电解液是稀硫酸溶液,用水加浓硫酸配制而成。电解液的质量优劣对蓄电池的使用寿命、容量等等影响很大,因此必须掌握正确的配制方法。 铅酸蓄电池的电解液,必须用蓄电池的专用硫酸,要澄清透明、无色、无嗅;铁、砷、锰、氯、氮化物等含量不能超标(部标“HGB1008- 59”)。配制电解液的水采用纯水、蒸溜水或饮用纯净水(不能用矿泉水、井水)。 配制铅酸蓄电池的电解液时,注意其浓度和黏度。各类不同类型的蓄电池,对电解液浓度的要求也各不相同,要从电池供电特性、电池结构、工作环境等各方面考虑,必须考虑下面几种情况: 1.移动工作的蓄电池要适应野外工作,防止冻结,体积与质量都有一些限制,不允许有大量的电解液。要保证足够的容量,需要用浓度较高的电解液,固定工作的蓄电池体积与质量没有太大限制,一般多在室内使用。 2.在一定范围内,电解液浓度越大,极板活性物质内硫酸浓度越大。活性物质利用率高,容量也会增加。但是电解液浓度过高,溶液电阻增加,黏度也增加,渗透速度低,同时自放电加快,电池容量反而下降。电解液浓度过高,隔板腐蚀也相应加快,会缩短蓄电池的使用寿命。 3.选择电解液浓度时,还要考虑蓄电池的工作环境温度。工作在寒冷温度下,电解液浓度应高—点,在炎热的气温下,电解液浓度可低一点。 一般情况下,在25℃(电解液温度)时密度为1.28,在其他温度下可按下式计算:Da=Dt+0.0007(t-25) 式中的Da为25℃时的密度;Dt为实际温度时的密度;t为测定时电解液的温度。电解液是用密度1.84的浓硫酸和纯净水配制而成。硫酸是强氧化剂,它与水有亲和作用,溶于水时放出大量的热量,因此操作人员要戴上护目镜、耐酸手套,穿胶鞋或靴子,围好橡皮围裙。盛装电解液的容器,必须用耐酸、耐温的塑料、玻璃、陶瓷、铅质等器皿。 配制前,要将容器清洗干净,为防酸液溅到皮肤上,先准备好5%氢氧化铵或碳酸钠溶液,以及一些清水,以防万一溅上酸液时,可迅速用所述的溶液擦洗,再用清水冲洗。 配制时,先估算好浓硫酸和水的需要量,把水先倒入容器内,然后将浓硫酸缓缓倒入水中,并不断搅拌溶液。 刚配制的溶液温度很高,不可马上注入蓄电池内,要等温度降到40℃以下,再测量溶液浓度并进行调整到标准值,再加入蓄电池内。 警告:只能是把浓硫酸沿着容器的内壁流下去!!!!你要是直接把水往硫酸里加,水会沸腾,溅起来伤人的。 你要多稀的硫酸啊?是体积比、质量比还是摩尔浓度啊?要是体积比的话,用体积计算,(2%的硫酸就是2毫升硫酸溶解在水里,最终的体积是100毫升,以此类推)要是质量比的话,要用密度换算,要是摩尔比的话,我知道30毫升浓硫酸溶解在1000毫升的水里的浓度是1摩尔/升。 新电池里面是1.28的稀释硫酸,但要是旧的就不能在加那个了。稀释硫酸是按比重算得用克,我一般用天平9:1稀释,你要是不懂不要贸然稀释硫酸程序不对就会践的那都是一定要小心

化学机械抛光液配方组成,抛光液成分分析及技术工艺

化学机械抛光液配方组成,抛光原理及工艺导读:本文详细介绍了化学机械抛光液的研究背景,机理,技术,配方等,需要注意的是,本文中所列出配方表数据经过修改,如需要更详细的内容,请与我们的技术工程师联系。 禾川化学专业从事化学机械抛光液成分分析,配方还原,研发外包服务,提供一站式化学机械抛光液配方技术解决方案。 1.背景 基于全球经济的快速发展,IC技术(Integrated circuit, 即集成电路)已经渗透到国防建设和国民经济发展的各个领域,成为世界第一大产业。IC 所用的材料主要是硅和砷化镓等,全球90%以上IC 都采用硅片。随着半导体工业的飞速发展,一方面,为了增大芯片产量,降低单元制造成本,要求硅片的直径不断增大;另一方面,为了提高IC 的集成度,要求硅片的刻线宽度越来越细。半导体硅片抛光工艺是衔接材料与器件制备的边沿工艺,它极大地影响着材料和器件的成品率,并肩负消除前加工表面损伤沾污以及控制诱生二次缺陷和杂质的双重任务。在特定的抛光设备条件下,硅片抛光效果取决于抛光剂及其抛光工艺技术。 禾川化学技术团队具有丰富的分析研发经验,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决众多化工企业生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进及新产品研发。 样品分析检测流程:样品确认—物理表征前处理—大型仪器分析—工程师解谱—分析结果验证—后续技术服务。有任何配方技术难题,可即刻联系禾川

化学技术团队,我们将为企业提供一站式配方技术解决方案! 2.硅片抛光技术的研究进展 20世纪60年代中期前,半导体抛光还大都沿用机械抛光,如氧化镁、氧化锆、氧化铬等方法,得到的镜面表面损伤极其严重。1965年Walsh和Herzog 提出SiO2溶胶-凝胶抛光后,以氢氧化钠为介质的碱性二氧化硅抛光技术就逐渐代替旧方法,国内外以二氧化硅溶胶为基础研究开发了品种繁多的抛光材料。 随着电子产品表面质量要求的不断提高, 表面平坦化加工技术也在不断发展,基于淀积技术的选择淀积、溅射玻璃SOG( spin-on-glass) 、低压CVD( chemical vapor deposit) 、等离子体增强CVD、偏压溅射和属于结构的溅射后回腐蚀、热回流、淀积-腐蚀-淀积等方法也曾在IC艺中获得应用, 但均属局部平面化技术,其平坦化能力从几微米到几十微米不等, 不能满足特征尺寸在0. 35 μm 以下的全局平面化要求。 1991 年IBM 首次将化学机械抛光技术( chemical mechanical polishing , 简称CMP)成功应用到64 Mb DRAM 的生产中, 之后各种逻辑电路和存储器以不同的发展规模走向CMP, CMP 将纳米粒子的研磨作用与氧化剂的化学作用有机地结合起来, 满足了特征尺寸在0. 35微米以下的全局平面化要求。CMP 可以引人注目地得到用其他任何CMP 可以引人注目地得到用其他任何平面化加工不能得到的低的表面形貌变化。目前, 化学机械抛光技术已成为几乎公认为惟一的全局平面化技术,逐渐用于大规模集成电路(LSI) 和超大规模集成电路(ULSI) ,可进一步提高硅片表面质量,减少表面缺陷。

不锈钢电解抛光工艺【详解】

不锈钢电解抛光工艺 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一.工作原理 ⑴、电解是以抛光工件为阳极,不溶性金属为阴极,两极同时浸入电化学槽中,通直流电而产生有选择性的阳极溶解,因此不锈钢表面达到高度光洁和光泽的外观。 ⑵、电解作用不锈钢经过电解,其色泽内外一致,清洁光亮,光泽持久,表面形成---黏性薄膜,抗腐蚀性能增强。 二. 电解溶液组成和工艺条件 1.磷酸:能起溶解作用又能在不锈钢表面形成磷酸盐保护膜,阻止不锈钢表面发生过腐蚀。其含量变化较宽,以750mL/L左右为佳。 (1)含量过高时,槽液电阻增大,黏度提高,导致所需电压较高,使整平速度迟缓。 (2)含量过低时,活化倾向大,钝化倾向小,导致不锈钢表面不均匀腐蚀。 2.硫酸:是活化剂,能提高溶液的导电率,降低电阻,从而降低槽电压,节约电能,有利于改善分散能力和提高阳极电流效率。其含量控制在180~210mL/L为最佳。 (1)含量过高时,活化倾向太大,易使抛光表面出现过腐蚀,呈现均匀的密集麻点。 (2)含量过低时,出现严重的不均匀腐蚀。 3.铬酐:是强氧化剂,使表面形成钝化膜,避免表面腐蚀,有利于获得光洁表面。其含量控制在50~60g/L为宜。 (1)铬酐浓度太低,不易获得光亮表面。 (2)浓度太高时在大电流下,易产生沉淀析出,降低电流效率,使抛光表面产生麻点等过腐蚀。 4.丙三醇(甘油):能起到良好的缓蚀作用,与磷酸生成络合物及其金属衍生物,使抛光表面非常光亮细致,甘油还能防止不锈钢在电解液中的化学腐蚀。 (1)含量过低时,抛光表面虽然光亮,但有腐蚀粗糙之处。 (2)含量高时,即可克服粗糙,又使抛光面光亮细致。 (3)含量过高时,会产生太多的泡沫,影响操作,也浪费材料。 5.糖精:有光亮作用。 (1)糖精在阴极过程中能为金属表面吸附,有助于被抛表面的白亮和发亮。 (2)糖精在阳极过程中,阳极表面形成一层吸附薄膜,当不通电时可防止不锈钢表面受电解液浸蚀。当通电后,电力线首先在凸起部位击穿隔离薄膜而开始溶解,在凹入处被有效地保护,以致达到选择性溶解呈现平滑光亮表面。 6.电流密度: (1)电流密度低时,金属处于活化状态,被抛光表面发生浸蚀,阳极溶解产物少,化学溶解比电化学

锂离子电池电解液材料及生产工艺详解

锂离子电池电解液材料及生产工艺详解液体电解液生产工艺---流程图 电解液生产工艺---精馏和脱水 –对于使用的有机原料分别采取精馏或脱水处理以达到锂电池电解液使用标准。

–在精馏或脱水阶段,需要对有机溶剂检测的项目有:纯度、水分、总醇含量。 液体电解液生产工艺---产品罐 –在对有机溶剂完成精馏或脱水后,检测合格后经过管道进入产品罐、等待使用。 –根据电解液物料配比,在产品罐处通过电子计量准确称取有机溶剂。 –如果产品罐中的有机溶剂短时间未使用,需要再次对其进行纯度、水分、总醇含量的检测,继而根据生产的需要准确进入反应釜。 体电解液生产工艺---反应釜 –依据物料配比和加入先后顺序,有机溶剂依次加入反应釜充分搅拌、混匀,然后通过锂盐专用加料口或手套箱加入所需的锂盐和电解液添加剂。 –在加入物料开始到结束,应控制反应釜的搅拌速度、釜内温度等。不同的物料配比搅拌混匀的时间不同,但都必须使电解液混合均匀,此时对电解液检测的项目有:水分、电导率、色度、酸度 液体电解液生产工艺---灌装 –经检测合格的液体电解液被灌入合格的包装桶,充入氩气保护,最终进入仓库等待出厂。 –由于电解液自身的物理、化学性质等因素,入库的电解液应在短时间内使用,防止环境等因素导致电解液的变质 液体电解液---使用注意事项 –电解液桶有氩气保护,有一定压力,在使用中切勿拆卸气相阀头和液相阀头,也不允许随意按下快开接头的凸头,以免造成泄漏或其它危险。接管时一定要戴防护眼罩,使用时一定要使用专用快开接头

–检测合格的电解液建议一次性用完,开封的电解液很容易因为没有气氛保护等原因而变质,请客户在使用过程中注意及时充入氩气保护,防止变色电解液不建议使用玻璃器皿盛放,玻璃的主要成分是氧化硅,氧化硅和氢氟酸反应生成腐蚀性、易挥发的气体四氟化硅,此气体有毒会对人造成伤害 –现场可以使用的电解液容器和管道材料包括:不锈钢、塑料PP/PE、四氟乙烯等 –本产品对人体有害,有轻微刺激和麻醉作用。使用过程中避免身体直接接触 液体电解液的组成 –有机溶剂 –锂盐 –添加剂 有机溶剂---有机溶剂的选择标准 –有机溶剂对电极应该是惰性的,在电池的充放电过程中不与正负极发生电化学反应 –较高的介电常数和较小的黏度以使锂盐有足够高的溶解度,从而保证高的电导率 –熔点低、沸点高,从而使工作温度范围较宽 –与电极材料有较好的相容性,即电极能够在电解液中表现出优良的电化学性能 –电池循环效率、成本、环境因素等方面的考虑 液体电解液的组成---有机溶剂 –碳酸酯 –醚 –含硫有机溶剂

电解抛光工艺介绍

电解抛光工艺 1.定义: 电解抛光是以被抛工件为阳极,不溶性金属为阴极,两极同时浸入到电解槽中,通以直流电而产生有选择性的阳极溶解,从而达到工件表面光亮度增大的效果。 2.原理: 电解抛光原理现在世界各界人士争论很多,被大家公认的主要为黏膜理论。该理论主要为:工件上脱离的金属离子与抛光液中的磷酸形成一层磷酸盐膜吸附在工件表面,这种黏膜在凸起处较薄,凹处较厚,因凸起处电流密度高而溶解快,随黏膜流动,凹凸不断变化,粗糙表面逐渐被整平的过程。 3.电解抛光优点: ⑴内外色泽一致,光泽持久,机械抛光无法抛到的凹处也可整平。 ⑵生产效率高,成本低廉。 ⑶增加工件表面抗腐蚀性,可适用于所有不锈钢材质。 4.电化学抛光所需条件及设备 (1)电源: 电源可选用双相220V,三相380V。 (2)整流器 电解抛光对电源波形要求不是太严格,可选用可控硅整流器或高频整流器。 整流器空载电压:0—20v 负载电压(工作电压):8—10v 工作电压低于6v,抛光速度慢,光亮度不足。 整流器电流:根据客户工件大小而定。 (3)电解槽及配套设施(阳极棒) 可选用聚氯乙烯硬板材焊接而成。在槽上装三根电极棒,中间为可移动的阳极棒,接电源阳极(或正极),两侧为阴极棒,连接电源阴极(负极)。 (4)加热设施及冷却设备 ①加热可选用石英加热管,钛加热管。 ②冷却可选用盘管,盘管可加热可冷却。 (5)夹具 最好选用钛做挂具,因为钛较耐腐蚀,寿命长,钛离子对槽液无影响。建议最好不要用铜挂具,因为铜离子进入会在不锈钢表面沉积一层结合力

不好的铜层,影响抛光质量。铜裸露部位可用聚氯乙烯胶烘烤成膜,在接触点刮去绝缘膜。 (6)阴阳极材料 阴极材料选用铅板,阳极材料选用紫铜连接。 阳极比阴极为1:2—3.5之间。 阴极距阳极最佳距离为10—30厘米。 就目前来说,电解抛光主要针对不锈钢工件的表面光亮处理。不锈钢工件又分为200系列,300系列,400系列材质,各系列材质有必须用针对性电解抛光液。比如不锈钢200系列材质的不锈钢,必须用200系列的配方,此种配方无法适应300系列或400系列的不锈钢材质。这一直是国内一大难题,因为有些厂家的材质是组合工件,既有200系列不锈钢材质,又有300或400系列不锈钢材质。在2007年12月,威海云清化工开发院王铃树高级工程师研制出一种不锈钢通用电解液。这种电解液适合所有不锈钢材质。他结合了原有电解液所有优点,比重为电解液最佳比重,为1.70,光亮度为镜面亮度。同时还研发出新的优点,此电解液提高了原有的亮度,降低了一半的电流密度。在生产操作中,可节省50%的电费。使用寿命提高了40%,这种电解液一直在国内处于领先技术。 电解抛光工艺:除油--水洗--除锈--水洗--电解抛光--水洗--中和--水洗--钝化--包装 5.电解抛光的类型 目前生产上采用的电解抛光液主要有: ①硫酸、磷酸、铬酐组成的抛光液; ②硫酸和柠檬酸组成的抛光液; ③硫酸、磷酸、氢氟酸及甘油或类似化合物组成的混合抛光液。 钢铁零件的电化学抛光 (1)材料种类的影响钢铁材料的种类很多,对不同的钢材应采用不同的抛光液。 (2)各种因素的影响磷酸是抛光液的主要成分。它所生成的磷酸盐粘附在阳极表面,在抛光过程中起重要作用。硫酸可以提高抛光速度,但含量不能过高,以免引起腐蚀。铬酐可以提高抛光效果,使表面光亮。 电流密度对抛光质量有很大影响,对于不同的溶液应采用不同的电流密度,电流密度过低,整平作用差,过高会引起过腐蚀。温度对抛光质量有一定的影响,但不是主要因素。 (3)操作注意事项

化学机械抛光的主要要素

孔洞和Te原子在快速可逆相变过程中起重要作用 日前Gartner发布的2017年全球半导体市场初步统计显示,三星去年在全球半导体市场的份额达到14.6%,首次超越英特尔公司成为全球最大芯片制造商。去年全球半导体收入为4197亿美元,同比增长22.2%。供应不足局面推动存储芯片收入增长64%,它在半导体总收入中的占比达到31%。除了三星首度登上全球第一大半导体厂,SK海力士跃居全球第3,美光排名也跃升至第4位。供应不足引发的价格上涨成为了推动存储芯片收入增长的关键动力。 在半导体存储器中,市场主导的三种存储器技术为动态随机存储器(DRAM)、闪存(Flash)和静态随机存储器(SRAM)。随着工艺技术节点推进至45nm 以下,目前这三种存储器技术都已经接近各自的基本物理极限,DRAM的进一步发展对光刻精度提出了巨大挑战;Flash中电容变得异常的高和薄,为了延伸进一步提升密度,Flash 的栅介质必须选用高k值的材料;而SRAM 则随着工艺的演进开始面临信噪比和故障率方面的挑战。 相变存储器就是基于O v s h i n s k y效应的元件,被命名为O v s h i n s k y电效应统一存储器.(O v s h i n s k y [3]首次描述了基于相变理论的存储器,材料在非晶态—晶态—非晶态相变过程中,其非晶态和晶态呈现不同的光学和电学特性,因此可以用非晶态代表“0”,晶态代表“1”实现信息存储,这被称为O v s h i n s k y电子效应。) 相变存储器利用电能(热量)使相变材料在晶态(低阻)与非晶态(高阻)之间相互转换,实现信息的读取、写入和擦除,工作原理是将数据的写入和读取分为3个过程——分别是“设置(Set )”、“重置(Res et )”和“读取(Re ad)”。“Se t”过程就是施加一个宽而低的脉冲电流于相变材料上,使其温度升高到晶化温度T x以上、熔点温度T m以下,相变材料形核并结晶,此时相变材料的电阻较低,代表数据“1”。“R e s e t”过程就是施加一个窄而强的脉冲电流于相变材料上,使其温度升高到熔点温度T m以上,随后经过一个快速冷却的淬火过程(降温速率> 109K / s),相变材料从晶态转变成为非晶态,此时相变材料的电阻很高,代表数据“0”。“Re ad”过程则是在器件2端施加低电压,如果存储的数据是“0”,那么器件的电阻较高,因而产生的电流较小,所以系统检测到较小的电流回馈时就判断是数据“0”;如果存储的数据是“1”,那么器件的电阻较低,因而产生的电流较大,所以系统检测到较大的电流回馈时就判断是数据“1” 早期的相变存储材料由于结晶时会发生相变分离等原因,晶速率较慢(约微秒量级),如碲(T e)基合金,而到20世 纪80年代初,科研人员发现了一批具有高速相变能力、晶态和非晶态具有明显光学性质差异的相变材料,其中G e - S b - T e体系是最成熟的相变材料,G e -S b - T e合金结晶速度快,因此写入和擦除速度都非常快,能够满足高速存储性能的要求,由I n t e l和意法半导体(STMicroelectronics)组建的恒忆(Numo n yx)公司开发的相变存储器(图2)就基于Ge-Sb-Te合金 相变材料在非晶态和晶态之间的纳秒级相变导致的电阻巨大差异是相变存储器的进行数据储存的重要依据。虽然很多材料在固态时都具有多重相态,但并不是所有的这些材料都具备相变材料的特征。首先,材料在非晶态与晶态之间的电阻差异要大,才可以满足相变存储器的数据储存要求,比如王国祥[9]测量了Ge-Sb-Te薄膜的电阻,从GST薄膜的R-T曲线(图4)可以看到,非晶态- f c c - h e x的两个转变温度分别为168℃和约300℃,非晶与h e x结构的薄膜电阻率相差约为6个数量级,非晶与f c c结构则相差4个数量级,这样的电阻差异就能够满足存储要求;其次,材料的结晶速度要很快(纳秒级),且相变前后材料的体积变化要小,晶态和非晶态可循环次数高,以保证数据能够高速重复写入,这就意味着用作存储材料可以获得更快的操作速度;最后对材料的热稳定性也有一定要求,结晶温度足够高,材料的热稳定性会好,以保证相变存储器可以在较高的温度下工作,数据才能够保存足够长时间,但是结晶温度过高也会带来负面影响,比如需要更高的操作电压或电流等。 首先,在相变存储单元中,选通器件(MOS 晶体管或二极管)的驱动能力是有限的(0.5 mA/m),而器件RESET 操作固有的能耗决定了器件的能量效率,因此我们需要降低相变材料层中有效相变区域的非晶化电流,以降低器件操作驱动的难度,有效降低器件的操作功耗;其次,GST 材料本身的结晶温度过低,造成了材料的非晶态热稳定性较差的问题,使GST 材

相关主题
文本预览
相关文档 最新文档