当前位置:文档之家› 厌氧发酵工艺

厌氧发酵工艺

厌氧发酵工艺
厌氧发酵工艺

厌氧发酵处理工艺

有机垃圾的厌氧发酵处理正成为有机垃圾处理的一种新趋势,具有巨大的经济效益和环境效益。若技术应用于日处理有机垃圾 800 吨左右的厌氧发酵系统,每日可以产生100000m3左右生物气体,其中氢气含量 20%以上,发电 160000 度;处理后的沼渣不仅可以生产出 100 吨左右的优质有机肥,而且不对周围环境产生影响,相反,处理了大量的废物,可以大大降低固体废物对环境的危害。厌氧发酵工艺是一种产能又环保的生物处理工艺,已经广泛应用于废水的处理,在有机固体垃圾处理方面应用。有机垃圾主要包括城市生活垃圾中的有机成份、各类农作物的秸秆、禽兽的排泄物以及常见的餐饮垃圾等。统计显示,我国城市生活垃圾的清运量约 1.5 亿吨/年,并以接近 10%的速度迅猛增加;我国作为农业大国,农作物秸秆资源丰富,总产量约为 7 亿吨/年,并且以每年 6%的速度增加;禽兽养殖粪便每年产量超过 20 亿吨;我国餐饮垃圾总量约合 2000 吨/天,目前,处理这些有机垃圾的方法主要有卫生填埋、焚烧、堆肥(好氧发酵)以及厌氧发酵方法。卫生填埋的优点是填埋量大且成本较低,不足是浪费大量的土地资源,对于城市而言,可供填埋的土地越来越少;焚烧的优点是短时间内减量幅度大(达80%~90%),同时可以回收部分能源,但是其初投资和运行成本较高,而且对环境污染严重;堆肥的资源化程度较高,但减量较少且堆肥过程中容易产生恶臭,影响空气质量,在发达国家受到严格限制。厌氧发酵方法处理有机垃圾是通过厌氧微生物的作用,将有机垃圾降解为甲烷、氢气和二氧化碳的生化过程,该方法最终产物恶臭味减小,并且产生的甲烷气体可以作为能源回收,同时达到减少垃圾容积,达到“减量化、资源化、无害化”的目的,具有巨大的经济效益和环境效益,是未来处理有机垃圾的重要发展方向之一。

厌氧发酵工艺:

厌氧发酵处理工艺的分类方法诸多,根据不同的分类方法,厌氧发酵方法被分成不同的发酵工艺。根据发酵阶段所处的反应器的不同进行分类,可以分为两相发酵工艺和单相发酵工艺。按照反应器的操作条件不同(如固含率、发酵温度)等可分为三类:按固含率分湿式、干式工艺;按运行温度可以分为高温发酵、中温发酵和常温发酵三类。

按进料方式可分为间歇式、连续式。

3根据反应器中进行发酵阶段的不同,厌氧发酵工艺分为单相厌氧发酵、两相厌氧发酵。单相发酵工艺中,有机垃圾经过前处理后,存放于储存罐中以给反应器供应物料,厌氧发酵的整个过程都在一个反应器中发生。然而,在发酵过程中,通过对不同微生物菌群特性的研究发现,产酸菌的生长快,而且种类多,对环境条件的变化不十分敏感;相反的是,产甲烷菌生长较慢,对环境条件敏感。在上个世纪 70 年代,美国学者 Ghosh和 Pohland 提出了两相发酵工艺,它的本质在于相分离,两相厌氧工艺中发酵的不同阶段是在独立的两个串联反应器中进行,使得二者的分工更加明确。产酸相主要是改变基质的可降解性,为产甲烷提供适宜的基质,产甲烷相主要用来产生甲烷气体。传统的单相消化器往往由于冲击负荷或环境条件的变化,使得氢分压增加,从而引起丙酸积累而相分离后,产酸相有效去除了大量氢,从而提高了整个两相厌氧生物处理系统的处理效率和运行稳定性。对两相发酵工艺而言,涉及到如何实现两相的分离。目前,实现相分离的途径可以归纳为化学法、物理法和动力学控制法目前最简便、最有效,也是应用最普遍的方法是动力学控制法该方法是利用产酸菌和产甲烷菌在生长速率上的差异,控制两个反应器的有机负荷率,水力停留时间等参数,从而实现相的有效分离,但必须说明的是,两相的彻底分离是很难实现的,只是在产酸相,产酸菌成为优势菌种,而在产甲烷相,产甲烷菌成为优势菌种。相对于两相反应而言,单相工艺投资少,操作简单方便,因而在当前约 70%的发酵工艺采用的是单相发酵工艺。但是,两相发酵工艺处理城市生活垃圾有很多的优点,比如,可以单独控制两个不同反应器的条件以使产酸菌和产甲烷菌在各自最适宜的环境条件下生长,也可以单独控制它们的有机负荷率(OLR)、水力停留时间(HRT)等参数,微生物数量和活性有了很大程度提高,从而缩减了 HRT,提高了系统的处理效率。两相厌氧目前的研究多集中在如何将高效厌氧反应器和两相厌氧工艺有机的结合,两相厌氧消化工艺的反应器可以采用任何一种厌氧生物反应器,如厌氧接触反应器,厌氧生物滤器,UASB, EGSB, UBI,ABR 或其它厌氧生物反应器产酸相和产甲烷相所采用的反应器形式可以相同,也可以不相同。杨玉楠认为,传统两相工艺虽然比单相工艺技术复杂,但是却不一定在提高反应速率和甲烷产率上取得预期效果。典型的单相工艺和两相工艺见图 1-1 和图 1-2 所示。

湿式厌氧工艺的固含率在 10%~15%,而干式厌氧工艺的固含率在 20%和 40%。湿

式中一级发酵系统与废水处理中应用了几十年的污泥厌氧稳定化处理技术相似,但是在实际设计中有很多问题需要考虑,特别是对于城市生活垃圾,分选去除粗糙的硬垃圾、将垃圾调成充分连续的浆状的预处理过程。为达到既去除杂质,又保证有机垃圾正常处理,需要采用过滤、粉碎、筛分等复杂的处理。这些预处理过程会泞致 15%~25%的挥发性固体的损失。浆状垃圾不能保持均匀的连续性,因为在消化过程中重物质沉降,轻物质形成浮渣层,泞致在反应器中形成了二种明显的不同密度的物质层。重物质在反应器底部聚集可能破坏搅拌器,因此必须通过特殊设计的水力旋流分离器或者粉碎机去除。干式发酵系统的难点在于:其一,生物反应在高固含率条件下进行;其二,输送、

搅拌;其三,反应启动条件苛刻,在运行中存在着很高的不稳定性。但是在法国、德国己经证明对于机械分选的城市生活有机垃圾的发酵采用干式系统是可靠的。在 Drancco工艺中,消化的垃圾从反应器底部回流至顶部。垃圾固含率为20%~50%时与 Kompogas工艺的工作方式相似,只是采用水平式圆柱形反应器,内部通过缓慢转动的桨板使垃圾均匀,处理系统需要将垃圾固含率调至大约23%。而 Valorga 工艺有显著不同,因为在圆柱形反应器中水平塞式流是循环的,垃圾搅拌是通过底部高压生物气的射流而实现的。Valorga 工艺优点是不需要用消化后的垃圾来稀释新鲜垃圾,缺点是气体喷嘴容易堵塞,维护比较困难。Valorga 工艺产生的水回流使反应器内保持 30%的固含率,但干式发酵不能单独处理湿垃圾,因为在固含率 20%以下时重物质在反应器内发生沉降。厌氧消化的温度与有机物的厌氧分解过程有密切的关系,不同的温度范围内存在不同类型的微生物,研究者根据产甲烷菌在不同温度下的最佳活性将厌氧发酵分为 3 个温度范围:50~55℃称为高温发酵;30~35℃称为中温发酵;<20℃称为低温发酵。而一般农村沼气发酵罐随着自然环境的温度变化而变化,称为常温发酵。温度主要是通过对厌氧微生物细胞内某些酶的活性的影响而影响微生物的生长速率和微生物对基质的代谢速率,这样会影响到厌氧生物处理土艺中污泥的产量,有机物的去除速率,反应器所能达至的处理负荷。温度还会影响有机物在生化反应中的流向和某些中间产物的形成以及各种物质在水中的溶解度,会影响到沼气的产量和成分等。众多的研究者对中温厌氧生物处理工艺已经进行了大量的研究和应用,但驯化良好的高温厌氧细菌的代谢速率可以比中温( 35℃)厌氧细菌提高

50%~ 100%。高温发酵具有更高的产气速率,能够大大缩短发酵周期,但相比于中温发酵,具有设备复杂、运行费用高的不足,目前发酵工艺中多采用中温发酵工艺。利用自制的小型破碎筛分设备进行了城市生活垃圾的破碎筛分实验,得到可生物降解部分的破碎筛分率约为 64.04%。测定并比较了人工分选和机械分选垃圾的物理组成和有机质成分,得到人工分选和机械分选垃圾的可生物降解分率(基于木质素不可降解)分别为 72%和 64%;理论产气量为 0.795 L/gTS 和0.733L/gTS。人工分选和机械分后的有机选垃圾中温(35℃)生物化学甲烷势(BMP)分别为 199.1mLCH4/gVS 和 162.4mL CH4/gV5;高温(55℃)BMP 分别为 232.4 和 180.6 mL CH4/gVS 。

间歇式厌氧消化工艺是将垃圾批量投入到反应器中接种后密闭直至完全降解之后,消化罐出料,并进行下一批进料,一般进料固体浓度在 15%~40%之间。连续式是物料连续的丛反应器内流入和流出。研究表明,对于处理高木质素和纤维素的物料,若在动力学速率低、存在水解限制时,批式反应器比全混式连续反应器(Continuous Flow StirredTank Reactor, CSTR处理效率高得多。批式反应水解程度更高,甲烷产量更大。间歇式处理系统技术简单,投资连续式进料系统减少约 40%。虽然间歇式处理系统地占地面积比连续进料干式处理系统大得多,但由于它的设计简单、容易控制、对粗大得杂质适应能力强,投资也少,适合于在发展中国家推广应用。

厌氧发酵是在厌氧的条件下,通过厌氧微生物的作用将有机物分解并产生气体的过程。厌氧过程是一个极其复杂的生物化学过程,过程涉及众多微生物及生物化学反应。

为便于研究,理论上将整个发酵过程简化为三阶段或两阶段来研究。

厌氧发酵过程的两阶段理论将发酵过程分为酸性发酵阶段和碱性发酵阶段。在酸性发酵阶段,复杂的有机物(如糖类、脂肪和蛋白质)在产酸菌(厌氧和兼性厌氧菌)的作用下被分解为低分子的中间产物,主要是一些低分子有机酸(如乙酸、丙酸、丁酸等)和醇类(如乙醇),并有氢、二氧化碳、氨氮、硫化氢等气体产生。由于该阶段有大量的脂肪酸产生,使得发酵液 ph 降低,所以此阶段被称为酸性发酵阶段,又称为产酸阶段。而在碱性发酵阶段产甲烷菌(专性厌氧菌)将第一阶段产生的中间产物继续分解为甲烷和二氧化碳等。由于计算在第二阶段不

断被转化成甲烷和二氧化碳,同时由于氨根离子的存在,发酵液的 ph 将升高,因此,该阶段被称为碱性发酵阶段,又被称为产甲烷阶段。

两阶段理论示意图

6(2) 酸化阶段

一阶段水解的产物被微生物吸收到菌体内,并在胞内酶的催化作用下,将它们转化为低分子化合物,其中主要是氢和挥发性脂肪酸(VFA),如乙酸、丙酸、丁酸及乳酸等,还有乙醇、甲醇等,其中乙酸数量最大,约占 80%。第一阶段众多的代谢产物中只有无机的CO2、H2、甲酸、甲胺、甲醇和乙酸可直接被甲烷细菌吸收利用。其他众多的代谢产物(主要是丙酸、丁酸、戊酸、乳酸等有机酸和乙醇、丙酮等有机物质)不能为产甲烷的细菌利用。它们必须经过第二阶段的产氢产酸菌进一步转化为氢和乙酸后才能进行下一步的产甲烷的阶段。

CH3COCOO-+4H+→CH3CH2COO-+H2OCH3COCOO-+CH3COO-+2H+→CH3CH2COO-+HC03-CH3COCOO+2H-+2H2O→CH3CH2OH+ HC03CH3CH2OH+ H2O→ CH3COOH++2H2CH3COCOOH+ 2 H2O→CH3COOH + 3H2+CO2

(3) 产甲烷阶段

由于产甲烷的基质已很丰富,以及产氨细菌的活动而使氨态氮浓度增高,使发酵液中

的氧化还原电势(Eh)降低,为产甲烷细菌提供了适宜的环境条件,促使产甲烷细菌迅速生长繁殖,将乙酸、甲酸、甲醇、氢气及二氧化碳等转化为甲烷。该阶段发生的主要化学反应:

CH3COOH→CH4+CO2

装置的设计:

设计的基本要求和规范

有机垃圾厌氧发酵实验装置基本要求有以下几个方面:

(1) 罐内有效容积大于1立方米,能承受 6 个大气压压力。

(2) 为了保证物料混合均匀及满足不同搅拌速率的要求,需配置搅拌装置和变频器。

(3) 可以实现温度和 pH 值的在线检测和控制。

(4) 能保持高度的厌氧状态,进料出料过程中也能满足厌氧条件。

实验装置

(1) 罐体

发酵罐根据 GB150-98《钢制压力容器》规范、标准进行设计制造。发酵罐体详图

见附录Ⅱ。发酵罐内胆采用 SUS304 材质不锈钢材料,夹套采用普通碳钢制作;搅拌器

的密封采用机械密封装置;全容积 1.5 立方米,有效容积 1 立方米;工作压力不大于 1.5

个大气压。

(2) 搅拌装置

本实验装置采用机械式搅拌,电机(功率 4kW)安装在罐顶部,下面安装有减速机,底座用于固定电机和减速机。搅拌轴距离内胆底部为 250mm。为使得转速可调,搅拌装置还装有变频器,搅拌转速为 10~80 转。搅拌器分为上下两层,上层搅拌器采用“三叶后掠”式,它可产生径向流,转速和流体的黏度均适用于它的运行条件;下层采用“INTER-MIG”式,在挡板的配合下可以得到上下的循环流,混合效果好,适用于层流和湍流区操作

(3) 加热和保温系统

本实验装置的加热和保温系统包括两根电加热管(每根功率为 2.5 千瓦)、恒温水箱、循环水泵、电磁阀、夹套、补水及循环水路等。水箱温度和罐内温度通过数据采集仪采集热电偶(T 型热电偶)传递过来的温度数值发送到上位机后,再由上位机通过串口通讯发送至单片机,从而形成一个闭环回馈系统。通过设定水箱和罐内温度上下限来控制温度的波动范围。加热段采用两根加热,保温时,热量散失不多,可采用一根保温

表 3-1 搅拌器直径与反应器直径经验参数

对不同类型反应器,最低离底安装高度为: h = 0.10 ~ 0.25D。

搅拌器直径为: d = 360mm。

(4) 在线温度 T 和 pH 测量与控制

温度 T 的测量通过数据采集仪通过设定采集频率(一般为 1~50 赫兹)实现在线测量,数据以 Excel 格式保存到文件中以便进行数据分析。通过 pH 复合电极(1220 型工业在线电极)和 Ph/ORP(RP-100 型)仪表可以实现对 Ph 的在线测量。这种电极的主要特点如下:

采用耐高温凝胶电介质和耐高温固体电介质双液接界结构,可直接用于高粘性悬浮液、乳浊液、含蛋白质等制程;耐碱性敏感膜,适用于碱性液体在线测量;无需补充电介质,维护量小。

(5) 厌氧发酵系统的组成及全配置图

厌氧发酵实验系统,主要包括有效容积为 1 立方米的机械搅拌式厌氧发酵罐、恒温水箱及热水循环水路、加料系统、酸碱容器及 Ph 值调节系统和单片机控制系统等部件。

图 3-1 为厌氧发酵实验系统的示意图,图 3-2 为厌氧发酵系统的全配置图。

几种沼气厌氧发酵工艺比较剖析

塞流式工艺 塞流式工艺细分有两种,一种是普通的塞流式反应器(PFR),另一种是改进的高浓度塞流式工艺(HCF)。 1.塞流式反应器(PFR) 图1 (1)原理 PFR也称推流式反应器,是一种长方形的非完全混合式反应器。高浓度悬浮固体发酵原料从一端进入,呈活塞式推移状态从另一端排出。消化器内沼气的产生可以为料液提供垂直的搅拌作用,料液在沼气池内无纵向混合,发酵后的料液借助于新鲜料液的推动作用而排走。进料端呈现较强的水解酸化作用,甲烷的产生随着向出料方向的流动而增强。由于该体系进料端缺乏接种物,所以要进行固体的回流。为减少微生物的冲出,在消化器内应设置挡板以有利于运行的稳定。PFR反应原理及结构见图1。这种工艺能较好地保证原料在沼气池内的滞留时间。许多大中型

畜禽粪污沼气工程采用这种发酵工艺。 (2)特点 优点:适用于高SS废水的处理,尤其适用于牛粪的厌氧消化,固体含量可以提高到12%;用于农场有较好的经济效益;不需要搅拌;池形结构简单,运行方便,故障少,稳定性高。 缺点:固体物容易沉淀池底,影响反应器的有效体积,使HRT和SRT降低,效率较低;需要固体和微生物的回流作为接种物;因该反应器占地面积或体积比较大,反应器内难以保持一致的温度;易产生厚的结壳。 2. 高浓度塞流式工艺(HCF) (1)原理 HCF是一种塞流、混合及高浓度相结合的发酵装置。厌氧罐内设机械搅拌,以塞流方式向池后端不断推动,HCF厌氧反应器的一端顶部有一个带格栅并与消化池气室相隔离的进料口,在厌氧反应器的另一端,料液以溢液和沉渣形式排出。 (2)特点 进料浓度高,干物质含量可达8%;能耗低,不仅加热能耗少,而且装机容量小,耗电量低;与PFR相比,原料利用率高;解决了浮渣问题;工艺流程简单;设施少,工程投资省;操作管理简便,运行费用低;原料适应性强(畜禽粪便、碎秸秆和有机垃圾均可);没有预处理,原料可以直接入池;卧式单池容积偏小,便于组合。

化粪池是一种利用沉淀和厌氧发酵的原理

MBR工艺组合 膜生物反应器是一种由膜分离与生物处理技术组合而成的废水生物处理新工艺。膜的种类繁多,按分离机理进行分类,有反应膜、离子交换膜、渗透膜等;按膜的性质分类,有天然膜(生物膜)和合成膜(有机膜和无机膜) ;按膜的结构型式分类,有平板型、管型、螺旋型及中空纤维型等。 1、MBR工艺在国内的研究现状 80年代以来,膜生物反应器愈来愈受到重视,成为研究的热点之一。目前该技术己应用于美国、德国、法国和埃及等十多个国家,规模从6m3/d至13000m3/d不等。 我国对MBR的研究还不到十年,但进展十分迅速。国内对MBR的研究大致可分为几个方面: 1.探索不同生物处理工艺与膜分离单元的组合形式,生物反应处理工艺从活性污泥法扩展到接触氧化法、生物膜法、活性污泥与生物膜相结合的复合式工艺、两相厌氧工艺; 2.影响处理效果与膜污染的因素、机理及数学模型的研究,探求合适的操作条件与工艺参数,尽可能减轻膜污染,提高膜组件的处理能力和运行稳定性; 3.扩大MBR的应用范围,MBR的研究对象从生活污水扩展到高浓度有机废水(食品废水、啤酒废水)与难降解工业废水(石化、印染废水等),但以生活污水的处理为主。

2、MBR工艺的特点 与传统的生化水处理技术相比,MBR具有以下主要特点: 1.高效地进行固液分离,其分离效果远好于传统的沉淀池,出水水质良好,出水悬浮物和浊度接近于零,可直接回用,实现了污水资源化。 2.膜的高效截留作用,使微生物完全截留在生物反应器内,实现反应器水力停留时间(HRT)和污泥龄(SRT)的完全分离,运行控制灵活稳定。 3.由于MBR将传统污水处理的曝气池与二沉池合二为一,并取代了三级处理的全部工艺设施,因此可大幅减少占地面积,节省土建投资。 4.利于硝化细菌的截留和繁殖,系统硝化效率高。通过运行方式的改变亦可有脱氨和除磷功能。 5.由于泥龄可以非常长,从而大大提高难降解有机物的降解效率。 6.反应器在高容积负荷、低污泥负荷、长泥龄下运行,剩余污泥产量极低,由于泥龄可无限长,理论上可实现零污泥排放。 7.系统实现PLC控制,操作管理方便。 3、MBR工艺的组成 通常提到的膜- 生物反应器实际上是三类反应器的总称: 1.曝气膜- 生物反应器(Aeration Membrane Bioreactor, AMBR) ; 2.萃取膜- 生物反应器( Extractive Membrane Bioreactor, EMBR ); 3.固液分离型膜- 生物反应器( Solid/Liquid Separation MembraneBioreactor, SLSMBR, 简称MBR )。 曝气膜 曝气膜--生物反应器(AMBR)采用透气性致密膜(如硅橡胶膜)或微孔膜(如疏水性聚合膜),以板式或中空纤维式组件,在保持气体分压低于泡点( Bubble Point)情况下,可实现向生物反应器的无泡曝气。

厌氧发酵罐操作说明(供参考)

一、电控箱面板上按钮和指示灯说明 电控柜面板图 在电控箱面板上有以下按钮和指示灯:进料阀开、进料阀关、排料阀开,排料阀关,系统运行和系统停止以及急停。具体的使用说明如下: 1、进料阀开/关:当按下进料阀开按钮时,进料电动阀打开,当阀门全部打开后, 进料阀开的按钮上的绿色指示灯亮,同时进料泵自动启动,当按下进料阀关时,进料阀关闭,同时进料泵停,当进料阀完全关闭后,进料阀关的按钮上的红色指示灯亮。 2、排料阀开/关:当按下排料阀开按钮时,排料电动阀打开,当阀门全部打开后, 排料阀开的按钮上的绿色指示灯亮;当按下排料阀关时,排料阀关闭,当排料阀完全关闭后,排料阀关的按钮上的红色指示灯亮。

3、排料阀开/关:当按下系统运行按钮后,整个系统按照设定的参数自动运行, 同时系统运行指示灯亮;当按系统停止按钮后,系统停止运行,同时系统停止运行指示灯亮。 4、急停按钮:出现紧急情况时可以按下急停按钮,使整个系统停机。 二、触摸屏上相应的参数设定说明 主画面 1、系统上电后,触摸屏自动进入主画面,此画面中显示发酵罐内 当前的温度,压力以及搅拌的转速和热水罐的温度以及液位状态;进出料状态也在此画面中显示。按下参数设定键进入参数设定画面。

参数设定一 2、在此画面中设定热水罐和发酵罐的工作参数,说明如下:(参数 都在系统运行时生效) 1)热水罐加热器启动/停止温度:当热水管内温度低于启动温度时,并且热水罐内的水位超过了中液位时,电加热器自动启动,加热到设定的停止温度后,电加热器自动停止运行。注意:停 止温度应大于启动温度。 2)发酵罐加热泵启动/停止温度:当发酵罐内的温度低于启动温度时,并且热水罐内的水位超过了中液位时,加热泵启动循环, 给发酵罐加热,当温度到停止温度时,加热泵停止。注意:停 止温度应大于启动温度。 3)发酵罐排气阀开/关压力:当发酵罐内的压力大于开阀压力时,排气电磁阀自动打开,当发酵罐内压力降到关阀压力时,排气 电磁阀自动关闭。注意:开阀压力应大于关阀压力。 4)搅拌器转速设定:通过此参数来设定变频器的频率。从而设定发酵罐搅拌器的转速。 按下一页进入参数设定二画面,按返回,回到主画面。

UNIT 2 厌氧发酵和氧化

厌氧发酵和氧化 厌氧发酵和氧化过程主要被用来污泥处理(图2.1)和高强度有机污染物。然而,稀释污水的应用也已被证明,并且越来越普遍。由于低生物量产量和在形成甲烷过程中能量可以由有机物基质的生物转化恢复,使得厌氧发酵进程占有优势。尽管很多的发酵进程在中温(30到35℃)进行,任然有越来越的人对单独高温发酵或预中温发酵感兴趣。后者被定义为两相厌氧消化(TPAD),它被典型设定为先是污泥停留时间3到7天,温度50到60℃的高温相,最后是7到15天的中温相。高温厌氧发酵消化进程被用来杀死病原菌以生产能够无线重复利用的A级生物固体。 在处理高强度工业污水时,由于在节约能量,增加营养物和反应器容量方面的原因,厌氧发酵展现出比好氧进程更高效的选择性。由于出水水质不如好氧处理,厌氧处理通常作为污水进入市政收集系统前的预处理步骤,或者在好氧进程前面。 过程描述 污水厌氧氧化涉及三个基础步骤:(i)水解,(ii)发酵(也被称为产酸),(iii)产甲烷。三个步骤以图表的形式在图表2.2中阐述。特殊应用的流程图起点取决于被处理污水的性质。 水解 对于大多数发酵过程的第一步中,特殊物质被转化为可溶性化合物,然后被进一步水解为被细菌用来完成发酵的简单单体物质,这叫做水解。对于一些工业污水。发酵可能是厌氧过程的第一步。

发酵 第二步是发酵(也叫产酸)。在发酵过程中,氨基酸,糖类和脂肪酸被降解,如图2.2.有机基质同时充当电子供体和受体。发酵的主要产物是醋酸盐,氢,二氧化碳,丙酸盐和丁酸盐。丙酸盐和丁酸盐进一步发酵同样产生氢,二氧化碳和醋酸盐。因此,发酵的最终产物(醋酸盐,氢,二氧化碳)是甲烷形成(产甲烷)的前提。自由能的改变与丙酸盐和丁酸盐的转化有关,要求系统中氢在低浓度(H2<10-4atm),否则反应无法进行。 产甲烷 第三步,产甲烷,由一组统称为产甲烷菌的生物。甲烷的产生包含两组产甲烷生物。一组称为分解乙酸的产甲烷菌,能把醋酸盐分解为甲烷和二氧化碳。第二组称为利用氢的产甲烷菌,用氢作为电子供体,二氧化碳作为电子受体来生成甲烷。厌氧过程中的细菌叫做产乙酸菌,同样能够利用二氧化碳来氧化氢并且形成乙酸。然而,乙酸将被转化为甲烷,所以这个反应的影响是微小的。如图表2.3所示,厌氧消化产生的甲烷中72%由醋酸盐形成。 微生物学 用来水解和发酵的不产甲烷微生物由兼性和专性厌氧菌组成。厌氧消化分离的生物体包括……和大肠杆菌。其他生理学上的种群目前包含这些生产的蛋白酶,脂类酶,尿素酶,或纤维素酶。 产甲烷的微生物被分类为古生菌,严格专性厌氧。许多厌氧消化中的产甲烷菌类似于这些在反刍动物的胃或在湖河有机沉积物中发

沼气发酵工艺介绍

1.2.2 厌氧处理工艺选择 1、各类厌氧工艺性能概述 (1)完全混合厌氧工艺(CSTR) CSTR是在常规消化器内安装了搅拌装置,使发酵原料和微生物处于完全混合状态,该消化器常采用恒温连续投料或半连续投料运行,适用于高浓度及含有大量悬浮固体原料的处理。在该消化器内,新进入的原料由于搅拌作用很快与发酵期内的发酵液混合,使发酵池底浓度始终保持相对较低的状态。而其排除的料液又与发酵液的底物浓度相等,并且在出料时微生物也一起被排出,所以,出料浓度一般较高。该消化器具有完全混合的状态,其水力停留时间、污泥停留时间、微生物停留时间完全相等,即HRT=SRT=MRT。为了使生长缓慢的产甲烷菌的增殖和冲出速度保持平衡,要求HRT较长,一般要10-15d或更长的时间,进料浓度8%-12%。中温发酵时负荷为3-4kgCOD(m3.d),高温发酵为5-6 kgCOD(m3.d)。 CSTR的优点:1.可以进入高悬浮固体含量的原料;2.消化器内物料的均匀分布,避免了分层状态,增加了底物和微生物接触的机会;3. 消化器内温度分布均匀;4.进入消化器的抑制物质,能够迅速分散,保持较低的浓度水平;5.避免了浮渣、结壳、堵塞、气体逸出不畅和短流现象。 缺点:1.由于消化器无法做到使SRT和MRT在大于HRT的情况下运行,所以需要消化器体积较大;2.要有足够的搅拌,所以能量消耗较高;3.生产用大型消化器难以做到完全混合;4.底物流出该系统时未完全消化,微生物随出料而流失。 (2)厌氧接触工艺反应器 厌氧接触工艺反应器是完全混合式的,是在连续搅拌完全混合式厌氧消化反应器(CSTR)的基础上进行了改进的一种较高效率的厌氧反应器。反应器排出的混合液首先在沉淀池中进行固液分离,污水由沉淀池上部排出,沉淀池下部的污泥被回流至厌氧消化池内。这样的工艺既保证污泥不会流失,又可提高厌氧消化池内的污泥浓度,从而提高了反应器的有机负荷率和处理效率,与普通厌氧消化池相比,可大大缩短水力停留时间。目前,全混合式的厌氧接触反应器已被广泛应用于SS浓度较高的废水处理中。其不足之处在于,厌氧污泥经沉淀池再回流,温度变化较大,影响了厌氧处理效率的提高,同时,厌氧罐内的热能损失也较大。但因受水泵性能的限制,该装置进料的干物质浓度(TS%)为4-6%,故需配兑2.5-3倍于发酵原料重量的配料污水;还需多级“预处理”以去除堵察水泵和管道的秸草等较大固形物。 (3)厌氧滤器(AF) 厌氧滤器是采用填充材料作为微生物载体的一种高速厌氧反应器,厌氧菌在填充材料上附着生长,形成生物膜。生物膜与填充材料一起形成固定的滤床。厌氧滤床可分为上流式厌氧滤床和下流式厌氧滤床二种。污水在流动过程中生长并保持与充满厌氧细菌的填料接触,因为细菌生长在填料上将不随出水流失,在短的水力停留时间下可取得较长的污泥泥龄。厌氧滤器的缺点是填料载体价格较贵,反应器建造费用较高,此外,当污水中SS含量较高时,容易发生短路和堵塞。 (4)上流式厌氧污泥床反应器(UASB) 待处理的废水被引入UASB反应器的底部,向上流过由絮状或颗粒状厌氧污泥的污泥床。随着污水与污泥相接触而发生厌氧反应,产生沼气引起污泥床的扰动。在污泥床产生的沼气有一部分附着在污泥颗粒上,自由气泡和附着在污泥颗粒上的气泡上升至反应器的上部。污泥颗粒上升撞击到三相分离器挡板的下部,这引起附着的气泡释放;脱气的污泥颗粒沉淀回到污泥层的表面。自由状态下的沼气和由污泥颗粒释放的气体被收集在三相分离器锥顶部的集气室内。液体中包含一些剩余的固体物和生物颗粒进入到三相分离器的沉淀区内,剩余固体物和生物颗粒从液体中分离并通过三相分离器的锥板间隙回到污泥层。UASB反应器的特点在于可维持较高的污泥浓度,很长的污泥泥龄(30天以上),较高的进水容积负荷率,

发酵工艺及设备复习资料

《发酵工程》复习资料 一、单项选择题 1、被现代誉为微生物学鼻祖、发酵学之父的巴斯德。 A、首次观察到大量活着的微生物; B、建立了单种微生物的分离和纯培养技术; C、阐明了微生物产生的化学反应本质; D、首次证明酒精发酵是酵母菌所引起的。 2、关于Pirt方程π=a + bμ,不正确的有。 A、a=0、b≠0:可表示一类发酵; B、a≠0、b ≠ 0:可表示二类发酵; C、a=0、b≠0:可表示三类发酵; D、第二类发酵表明产物的形成和菌体的生长非偶联。 3、代谢参数按性质分可分。 A、物理参数、化学参数和间接参数; B、中间参数和间接参数; C、物理参数、化学参数和生物参数; D、物理参数、直接参数和间接参数。 4、关于菌种低温保藏的原理正确的有。 A、低于最低温度,微生物很快死亡; B、低于最低温度,微生物代谢受到很大抑制,并不马上死亡; C、高于最高温度,微生物很快死亡; D、低于最低温度,微生物胞内酶均会变性。 5、下列不是利用热冲击处理技术提高发酵甘油产量的依据的有。 A、酵母在比常规发酵温度髙10~20℃的温度下经受一段时间刺激后,胞内海藻糖的含量显著增加; B、Lewis发现热冲击能提高细胞对盐渗透压的耐受力; C、Toshiro发现热冲击可使胞内3-磷酸甘油脱氢酶的活力提高15~25%,并导致甘油产量提高; D、Lewis发现热冲击可使胞内3-磷酸甘油脂酶的活力提高15~25%,并导致甘油产量提高。 6、霉菌生长pH为5左右,因此染为多。 A、细菌; B、放线菌; C、酵母菌; D、噬菌体。 7、放线菌由于生长的最适pH为7左右,因此染为多 A、细菌; B、酵母菌; C、噬菌体; D、霉菌。 8、不是种子及发酵液无菌状况检测方法的有。 A、酚红肉汤培养基检测; B、平板划线; C、显微镜观察; D、尘埃粒子检测。 9、要实现重组大肠杆菌的高密度培养,最常用和最有效的方法就是。 A、反复分批培养; B、分批补料流加培养法; C、连续培养法; D、反复分批流加培养法。 10、微生物菌种的筛选最关键的是要找到一个合适的“筛子”,在耐高酒精浓度酿酒酵母的筛选中,这个“筛子”是。 A、平板培养基中高葡萄糖含量; B、种子培养基中高酒精含量; C、平板培养基中高酒精含量; D、发酵培养基中高酒精含量。 11、在摇瓶发酵法生产糖化酶实验中,糖化酶比酶活力单位应为。 A、U/mL粗酶液; B、U/g淀粉; C、U/g酶; D、U/mL培养基。 12、在反复分批发酵过程中,细胞回用操作必须在进行。 A、密闭条件下; B、无菌条件下; C、稳定条件下; D、任何条件下。 13、现代发酵工程采取的优化策略是。 A、高产量; B、高转化率; C、高产率; D、高产量、高得率和高生产强度的相对统一。 14、下列叙述正确的是。 A、在稳定期,细胞增加速度和死亡速度达到平衡,细胞浓度达最大,活细胞重量基本维持恒定; B、稳定期往往是微生物次级代谢产物大量产生的时期; C、在稳定期,细胞的能量贮备已消耗完,细胞开始死亡; D、在工业生产中,通常在对数生长期的末期或衰亡期开始之后结束发酵过程。 15、在微生物培养过程中,消耗的底物。 A、只用于菌体生长、菌体维持和产物生成; B、只用于菌体生长和产物生成; C、用于菌体生长、菌体维持和产物的生成,有的底物还与能量的产生有关; D、只用于菌体生长。 16、现代发酵工程采取的优化策略是。 A、高产量; B、高转化率; C、高产率; D、高产量、高得率和高生产强度的相对统一。

两相厌氧消化反应器设计及启动方法

龙源期刊网 https://www.doczj.com/doc/769174473.html, 两相厌氧消化反应器设计及启动方法 作者:杨红艳尹芳赵兴玲柳静杨红王昌梅刘士清张无敌 来源:《现代农业科技》2017年第23期 摘要本文设计应用UASB和EGSB 2种反应器进行串联耦合处理猪粪废水。由于产氢产乙酸菌和产甲烷菌繁殖特性的差异性,传统的厌氧消化工艺并不能使其发挥各自的优势。两相厌氧消化工艺可以使2个反应在各自最适宜的环境内进行厌氧发酵,由于产氢产酸和产甲烷2个阶段相互独立,故酸化反应器具有一定的缓冲作用,能够缓解冲击负荷对后续产甲烷反应器的影响,可以提高厌氧消化的反应效率。试验设计的目的在于将产氢气与产甲烷两相耦合起来,并探讨运行参数对猪粪两相厌氧消化的影响,同时为两相厌氧工艺的实施提供参考。 关键词两相厌氧消化反应器;串联耦合;能源转换效率;设计 中图分类号 X713 文献标识码 A 文章编号 1007-5739(2017)23-0152-03 Abstract In this paper,two digester(UASB and EGSB)were series-coupled,which were designed and applied to treatment of pig manure wastewater.Due to the difference of reproductive characteristics between obligate H2-producing acetogenic bacteria and methanogens,the traditional anaerobic fermentation process is not beneficial for methanogens and the obligate H2-producing acetogenic bacteria.Two-phase anaerobic process make the two anaerobic process in the more suitable for different fermentation.Due to the two stage of the producing acid and methane are independent and simultaneous,the acidification digester has a certain buffer action.It can alleviate the impact of shock load on the subsequent methane production digester,so the reaction rate of anaerobic digestion can be improved.The purpose of this experiment is to couple the hydrogen and methane together,and to discuss some factors on the effect of pig manure two-phase anaerobic fermentation. It′s hoped to find the optimal anaerobic fermentation conditions in order to maximize the energy conversion efficiency of raw materials,and to provide a reference for the implementation of two-phase anaerobic process. Key words two-phase anaerobic digester;series-coupling;energy conversion efficiency;design 两相厌氧工艺(two-phase anaerobic process)是由Ghosh和Pohland在20世纪70年代初 开发的,将水解发酵菌归为第一相产酸相,将共生的产氢产乙酸菌和产甲烷菌归为第二相[1]。传统的单相厌氧反应包括厌氧消化的全过程,即将产酸阶段和产甲烷阶段放置在一个反 应器中。而两相厌氧发酵工艺是将水解酸化过程的反应器和产甲烷过程的反应器进行串联。猪场污水具有高污染浓度、高COD、可生化性能强的特点,污水中主要含有未被猪吸收消化的食物如玉米颗粒和猪的代谢产物,其中含有大量微生物繁殖所需的营养物质[2],利用两相厌 氧消化工艺将其资源化利用对保护环境和缓解能源紧张问题都具有重要意义。厌氧消化工艺具有无能耗、减少二次污染[3]、产生清洁能源等优势。本文设计应用UASB和EGSB两相串联

厌氧发酵工艺

环化系环测1001 李园方 厌氧发酵 1前言 餐厨垃圾是城市生活垃圾中有机相的主要来源。餐厨垃圾以蛋白质、淀粉类、食物纤维类、动物脂肪类等有机物质为主要成分, 是能源和肥料潜在的资源。餐厨垃圾含水率高达75% ~ 90%, 渗沥液易通过渗透作用污染地下水, 产生出大肠杆菌等病原微生物, 直接危害人体健康[ 1] 。另外, 餐厨垃圾处理过程中也会产生大量的高浓度有机废水, 如果处理不当, 将造成巨大的环境污染和资源浪费。宁波市于2009 年6月建成了一座餐厨垃圾废水厌氧 发酵工程, 经过2个月的调试运转, 于2009年8月开始正式运行。现将该工程情况介绍如下。 2废水概况 餐厨垃圾经提油处理和加工成饲料的处理后会产生大量有机废水, 该工程废水处理量约为110m3 d- 1, 其水质pH 为3. 5 ~ 4. 0, CODC r 80 ~ 1602废水概况餐厨垃圾经提油处理和加工成饲料的处理后会产生大量有机废水, 该工程废水处理量约为110m3 d- 1, 其水质pH 为3. 5 ~ 4. 0, CODC r 80 ~ 1603工艺流程根据工艺流程, 餐厨垃圾废水制沼气及发电主 要为以下三个步骤。 3-1厌氧发酵调试阶段 活性污泥的培养及驯化对反应器的正常运行至关重要。本项目的

接种污泥取自宁波骆驼沼气站(该沼气站以猪粪为原料)。 ( 1)污泥驯化初期(时间10天)。投入一定量的接种污泥, 再加入稀释后的废水( CODCr < 10 g L- 1 )一起投入改进型升流式厌氧污泥床反应器( UASB )中, 调节pH 至中性, 使污泥恢复活性。 ( 2)污泥驯化中期(时间30天)。投入一定量的接种污泥, 餐厨垃圾废水稀释为50% ( CODC r 40~ 80 g L- 1 ) , 出水水质良好。污泥性质基本稳定,上清液澄清透明。这表明, 活性污泥开始驯化, 适应餐厨垃圾废水。 ( 3)污泥驯化后期(时间20天)。餐厨垃圾废水提高到进料COD 浓度80~ 120 g L- 1, 保持一个 水力停留期。随着餐厨垃圾废水投加量的增加, 出水COD有所提高, 但仍能保持较高的COD 去除率。较长时间稳定的去除率表明, 污泥已基本适应餐厨垃圾废水的特性, 活性污泥驯化完成。 3-2厌氧发酵阶段 该工程采用2000m3 的改进型升流式厌氧污泥床反应器进行厌 氧发酵制沼气, 发酵装置外观见图1。该反应器处理效率高, 耐负荷能力强, 出水水质相对较好, 沼泥生成量小, 具有防堵防爆的特点, 其 结构、运行操作维护管理相对简单, 造价也相对较低。具有良好的沉淀性能和聚凝性能的污泥在下部形成污泥层, 运行一段时间后, 出水悬浮物增加, 需要按时排泥。 该工程设计为连续投料的工业化生产工艺路线。厌氧发酵启动后,

厌氧发酵原理及其工艺

1.4 实验研究目的,技术路线 我国目前的农作物发酵制沼气技术与发达国家相比,起步较晚,大型项目的运行经验相对较少。由于我国幅员辽阔,不同地域的农作物资源种类不同,其物理和化学性质也有较大的差别,加之我国不同地区年平均气温差别较大,使我国农作物厌氧发酵制备沼气的大型项目难有统一的设计参数标准。对于不同的大型沼气项目,必须结合项目实际的农作物种类和物性、气候条件、供热条件、沼液和沼渔的消纳和后续处理工艺、农作物的价格和最大运输半径、原料的储存和供料方式、发电机组的选型等因素进行综合考虑,才能使项目实施后获得最佳的经济和社会效益。 根据我国农作物制备沼气技术的应用现状,结合本文研究的农作物制备沼气项目实际案例,本文的研究目的为:;研究发酵原料的物理化学性质和产气率,提出合理估算农作物(主要是黄瓜藤)和粒径的方法,为项目实例提供工艺选择、系统设计和经济性计算提供可靠依据。 为了实现上述目的,本文研究内容主要集中如下几个方面: (1)研究农作物破碎预处理的特点,为合理计算破碎预处理能耗提供计算方法。 (2)研究了黄瓜藤的鲜活度对发酵产气量和产气速率等因素的影响。 (3)不同投配率对发酵产气量和产气速率等因素的影响;为了厌氧发酵反应的持续反应,同时还研究不同投配率对于pH值的影响。 1.5 论文章节安排 本论文共包括六章内容。 第一章介绍课题的研究背景,国内能源消费和可再生能源利用现状,以及课题的主要研究内容和意义。 第二章厌氧发酵反应制备沼气的基本原理和影响参数。

第三章阐述农作物的破碎原理,从中说明粒度与能耗间的关系,并且从能耗的角度分析不同粒度的颗粒的耗能情况。 第四章针对需要采用实验方法对各个因素进行研究,确定实验的数据测量的方法以及实验进行过程中需要的注意事项,防止实验失败。 第五章实验采用定制CSTR厌氧反应器对黄瓜藤在中温条件下进行厌氧消化反应实验,研究系统的稳定性能和产气性能。 第六章作出对课题的总结和展望,总结本课题的研究成果,并提出不足之处和以后还需进一步研究的方向。

常见的几种厌氧发酵工艺分类汇总

常见的几种厌氧发酵工艺分类汇总 厌氧发酵工艺是一种产能又环保的生物处理工艺,已经广泛应用于禽畜粪污、废水、有机固体垃圾处理等领域。厌氧发酵工艺类型较多,从不同的角度可以将厌氧发酵工艺分为以下几类:根据发酵温度的不同可分为常温、中温和高温发酵;按照投料运转方式可分为连续和序批式发酵;按照发酵物料中固含量的多少可分为湿式和干式厌氧发酵;按照反应是否在同一反应器进行分为单相和两相厌氧发酵。 一、常温、中温和高温发酵 温度主要是通过影响对厌氧微生物细胞内某些酶的活性而影响微生物的生长速率和微生物对基质的代谢速率,从而影响厌氧生物处理工艺中污泥的产量,有机物的去除速率,反应器所能达至的处理负荷,有机物在生化反应中的流向,某些中间产物的形成,各种物质在水中的溶解度,及沼气的产量和成分等。 常温发酵一般是物料不经过外界加热直接在自然温度下进行消化处理,发酵温度会随着季节气候昼夜变化有所波动。常温发酵工艺简单造价低廉,但是其缺点是处理效果和产气量不稳定。 中温发酵温度在30℃~40℃之间,中温发酵加热量少,发酵容器散热较少,反应和性能较为稳定,可靠性高,如果物料有较好的预处理,会提高反应速度和气体发生量;受毒性抑制物阻害作用较小,受抑制后恢复快,会有浮渣、泡沫、沉砂淤积等问题,对浮渣、泡沫、沉砂的处理是工艺难点,其诸多优点使其得到广泛的应用并有很多的成功案例。 高温发酵温度在50℃~60℃之间,需要外界持续提供较多的热量,高温厌氧消化工艺代谢速率、

有机质去除率和致病细菌的杀灭率均比中温厌氧消化工艺要高,但是高温发酵受毒性抑制物阻害作用大,受抑制后很难恢复正常,可靠性低;高温厌氧产气率比中温厌氧稍有提高,提高的是杂质气体的量,但沼气中有效成分甲烷的含量并没有提高,限制的高温厌氧的应用;高温发酵罐体及管路需要耐高温耐腐蚀性能好的材料,运行复杂,技术含量高。 二、连续发酵和序批式发酵 连续发酵是从投加物料启动以后,经过一段时间发酵稳定以后,每天连续定量的向发酵罐内添加新物料和排出沼渣沼液。序批式发酵就是一次性投加物料发酵,发酵过程中不添加新物料,当发酵结束以后,排出残余物再重新投加新物料发酵,一般进料固体浓度在15%~40%之间。 研究表明,对于处理高木质素和纤维素的物料,若在动力学速率低、存在水解限制时,序批式反应器比全混式连续反应器处理效率高。且序批式发酵水解程度更高,甲烷产量更大,投资连续式进料系统减少约40%。虽然序批式进料处理系统占地面积比连续进料处理系统大,但由于其设计简单、易于控制、对粗大的杂质适应能力强,投资少,适合于在发展中国家推广应用。 三、湿式发酵和干式发酵 湿式发酵是以固体有机废物(固含率为10%~15%)为原料的沼气发酵工艺。干式发酵是以固体有机废物(固含率为20%~30%)为原料,没有或几乎没有自由流动的条件下进行的沼气发酵工艺,是一种新生的废物循环利用方法。 湿式发酵系统与废水处理中污泥厌氧稳定化处理技术相似,但在实际设计中有很多问题需要考虑,特别是对于城市生活垃圾,分选去除粗糙的硬垃圾,及将垃圾调成充分连续的浆状的预处理过程等。为达到既去除杂质,又保证有机垃圾正常处理,需要采用过滤、粉碎、筛分等复杂的处理。这些预处理过程会导致15%~25%的挥发性固体损失。浆状垃圾不能保持均匀的连续性,因为在消化过程中重物质沉降,轻物质形成浮渣层,导致反应器中形成两种明显不同密度的物质层,重物质在反应器底部聚集可能破坏搅拌器,必须通过特殊设计的水力旋流分离器或者粉碎机去除。 干式发酵系统的难点在于: 其一,生物反应在高固含率条件下进行; 其二,输送、搅拌; 其三,反应启动条件苛刻,在运行中存在着很高的不稳定性。 但是在法国、德国己经证明对于机械分选的城市生活有机垃圾的发酵采用干式系统是可靠的。且与湿式发酵相比,又有明显的优势:

集装箱干式厌氧发酵设备简介

集装箱干式厌氧发酵设备简介 集装箱干式厌氧发酵设备是一种全新概念的有机废弃物厌氧发酵装置,它以干式沼气发酵工艺为核心技术,将现有沼气工程系统进行了装备化、产品化,形成了一套具有完整沼气发酵功能的标准设备,是目前中小型沼气发酵行业中一个独创的新产品。 一、产品开发背景 集装箱干式厌氧发酵设备是将干式发酵工艺和集装箱进行了融合,使设备具有了沼气发酵功能的同时实现了整套设备的可移动性,将以往的沼气系统的工程概念创造性的转变为设备概念。 利用干式发酵的工艺特点及集装箱的设备优势。实现了沼气工程设备化后的运输安装的便捷性、处理工艺的高效性、操作的简单、运行的稳定以及占地小投资低等。 二、运行工艺及参数 将工程中绝大部分系统进行设备化,如发酵、搅拌、加热、沼气存储、保温、沼气存储、沼气净化、固液分离、控制等。最后融合为一整体,进而装备化、产品化。基本工艺如下: 集装箱干式发酵设备

设备参数: 三、产品的特点及优势 (1)全套设备由集装箱高度集成,实现全套系统设备可移动,便于运输及搬迁;(2)设备安装简单,工程量大为减少,可实现系统设备的快速安装和启动;(3)集装箱场地布置简单,无需建造大量的土建设施; (4)设备自动化控制,操作简单,可实现单人操作; (5)模块集成,可扩容,可移动、可回收,可租赁,具有极高的残值; 四、项目工程案例 目前集装箱干式厌氧发酵设备目前已在全国多个地方进行了示范与推广,并取得了良好的市场反馈。

项目名称:湖北恩施某养鸡场粪污处理 运行时间:2015年4月 日产沼气:200立方米 沼气用途:发电与供暖 项目名称:广东揭阳某养牛场粪污处理 运行时间:2015年5月 日产沼气:200立方米 沼气用途:发电 上海华库环保科技有限公司 2015-10-27

厌氧发酵工艺

厌氧发酵处理工艺 有机垃圾的厌氧发酵处理正成为有机垃圾处理的一种新趋势,具有巨大的经济效益和环境效益。若技术应用于日处理有机垃圾 800 吨左右的厌氧发酵系统,每日可以产生100000m3左右生物气体,其中氢气含量 20%以上,发电 160000 度;处理后的沼渣不仅可以生产出 100 吨左右的优质有机肥,而且不对周围环境产生影响,相反,处理了大量的废物,可以大大降低固体废物对环境的危害。厌氧发酵工艺是一种产能又环保的生物处理工艺,已经广泛应用于废水的处理,在有机固体垃圾处理方面应用。有机垃圾主要包括城市生活垃圾中的有机成份、各类农作物的秸秆、禽兽的排泄物以及常见的餐饮垃圾等。统计显示,我国城市生活垃圾的清运量约 1.5 亿吨/年,并以接近 10%的速度迅猛增加;我国作为农业大国,农作物秸秆资源丰富,总产量约为 7 亿吨/年,并且以每年 6%的速度增加;禽兽养殖粪便每年产量超过 20 亿吨;我国餐饮垃圾总量约合 2000 吨/天,目前,处理这些有机垃圾的方法主要有卫生填埋、焚烧、堆肥(好氧发酵)以及厌氧发酵方法。卫生填埋的优点是填埋量大且成本较低,不足是浪费大量的土地资源,对于城市而言,可供填埋的土地越来越少;焚烧的优点是短时间内减量幅度大(达80%~90%),同时可以回收部分能源,但是其初投资和运行成本较高,而且对环境污染严重;堆肥的资源化程度较高,但减量较少且堆肥过程中容易产生恶臭,影响空气质量,在发达国家受到严格限制。厌氧发酵方法处理有机垃圾是通过厌氧微生物的作用,将有机垃圾降解为甲烷、氢气和二氧化碳的生化过程,该方法最终产物恶臭味减小,并且产生的甲烷气体可以作为能源回收,同时达到减少垃圾容积,达到“减量化、资源化、无害化”的目的,具有巨大的经济效益和环境效益,是未来处理有机垃圾的重要发展方向之一。 厌氧发酵工艺: 厌氧发酵处理工艺的分类方法诸多,根据不同的分类方法,厌氧发酵方法被分成不同的发酵工艺。根据发酵阶段所处的反应器的不同进行分类,可以分为两相发酵工艺和单相发酵工艺。按照反应器的操作条件不同(如固含率、发酵温度)等可分为三类:按固含率分湿式、干式工艺;按运行温度可以分为高温发酵、中温发酵和常温发酵三类。 按进料方式可分为间歇式、连续式。

厌氧发酵工艺

以农业废弃物和农产品加工废水及废渣等各种有机物为原料,在厌氧条件下利用微生物的话动,生产沼气并使有机物得到处理的过程称为沼气发酵工艺。由于发酵原料和发酵条件的不同,所采用的发酵工艺也多种多样,目前应用或研究较多的工艺类型有塞流式反应器、完全混合厌氧消化工艺、上流式厌氧污泥床反应器、升流式固体反应器等。 1.塞流式反应器(Plug Flow Reactor,简称PFR) 塞流式反应器也称推流式反应器,是一种长方形的非完全混合式反应器。高浓度悬浮固体发酵原料从一端进入,从另一端排出,它是一种结构简单、应用广泛的工艺类型。该反应器没有搅拌装置,原料在反应器内呈自然沉淀状态,一般分为四层,从上到下依次为浮渣层、上清掖、活性层和沉渣层,其中厌氧微生物活动较为旺盛的场所只局限于活性层内,因而效率较低,多于常温条件下运转。我国农村应用最多的水压式沼气池和印度的哥巴式沼气池均属PFR。近年来经过研究和改进,一些新的农村家用沼气池得到应用,如曲流布料池,集气罩式池、塞流式池,北京-Ⅰ型池等。这些沼气池的性能有所提高,产气率都达到0.5 m3/(m3·d)以上。 2.完全混合厌氧消化工艺(continual stir Tank Reactor,简称CSTR) 完全混合厌氧消化工艺即工艺是世界上使用最多、适用范围最广的一种反应器。CSTR反应器内设有搅拌装置,使发酵原料与微生物处于完全混合状态,使活性区遍布整个反应器,其效率比常规反应器有明显提高。该反应器常采用恒温连续投料或半连续投料运转。CSTR反应器应用于含有大量悬浮固体的有机废物和废水,如酒精费醪、禽畜粪便等。在CSTR反应器内,进入的原料由于搅拌作用很快与反应器内发酵液混合,其排出的料液又与发酵液的浓度相等,并且在出料时发酵微生物也一起排出,所以出料浓度一般较高,停留时间要求较长,一般需15天或更长一些时间。CSTR反应器一般负荷,中温为3-4 kg COD/(m3·d),高温为5-6 kg COD/(m3·d)。为了提高反应器效率,在应用过程常加以改进,通过延长固体停留时间(SRT)来提高产气率。该工艺的优点是处理量大,产沼气多,易启动,便于管理,投资费用低,但是水力停留时间(HRT)和SRT要求较长。 3.上流式厌氧污泥床反应器: 上流式厌氧污泥床反应器,Upflow Anaerobic Sludge Bed Reactor,简称UASB 反应器。该工艺装置的特点为在反应器上部安装有气、液、固三相分离器,反应器内所产生的气体在分离器下被收集起来,污泥和污水升流进入沉淀区,由于该区不再有气体上升的搅拌作用,悬浮于污水中的污泥则发生絮凝和沉降,它们沿着分离器斜壁滑回反应器内,使反应器内积累起大量活性污泥。在反应器的底部是浓度很高并具有良好沉降性能的絮状或颗粒状活性污泥,形成污泥床。有机污

水解(酸化)工艺与厌氧发酵的区别

水解(酸化)工艺与厌氧发酵的区别 从原理上讲,水解(酸化)是厌氧消化过程的第一、二两个阶段。但水解(酸化)-好氧处理工艺中的水解(酸化)段和厌氧消化的目标不同,因此是两种不同的处理方法。 水解(酸化)-好氧处理系统中的水解(酸化)段的目的,对于城市污水是将原水中的非溶解态有机物截留并逐步转变为溶解态有机物;对于工业废水处理,主要是将其中难生物降解物质转变为易生物降解物质,提高废水的可生化性,以利于后续的好氧生物处理。水解工艺的开发过程是从低浓度城市污水开始的,与高浓度废水的厌氧消化中的水解、酸化过程是不同的。在连续厌氧过程中水解、酸化的目的是为混合厌氧消化过程中的甲烷化阶段提供基质。而两相厌氧消化中的产酸段(产酸相)是将混合厌氧消化中的产酸段和产甲烷段分开,以便形成各自的最佳环境。因此,尽管水解(酸化)-好氧处理工艺中的水解(酸化)段、两相法厌氧发酵工艺中的产酸相和混合厌氧消化工艺中的产酸过程均产生有机酸,但是由于三者的处理目的的不同,各自的运行环境和条件有着明显的差异,主要表现在以下几个方面。 (1)氧化还原电位(Eh)不同 在混合厌氧消化系统中,由于完成水解、酸化的微生物和产甲烷微生物共处于同一个反应器中,整个反应器的氧化还原电位(Eh)的控制必须首先满足对Eh要求严格的甲烷菌,一般为300mV以下,因此,系统中的水解(酸化)微生物也是在这一电位值下工作的。而两相厌氧消化系统中,产酸相的氧化还原电位一般控制在-300—-100mV之间。水解(酸化)-好氧处理工艺中的水解(酸化)段为一典型的兼性过程,只要Eh控制在0mV左右,该过程即可孙里进行。 (2)pH值不同 在厌氧消化系统中,消化液的pH值控制在甲烷菌生长的最佳pH值范围,一般为6.8-7.2。在两相厌氧消化系统中,产酸相的pH值一般控制在6.0-6.5之间,在酸化反应器pH值降低时,丙酸的相对含量增大,而丙酸对后续的甲烷相中的产甲烷菌将产生强烈的抑制作用。对于水解(酸化)-好氧处理系统来说,由于浓度低不存在酸的抑制问题,因此,可以不控制pH值的范围,一般pH在6.5-7.5之间。 (3)温度不同 三种工艺对温度的控制也不同,通常厌氧消化系统以及两相厌氧消化系统的温度均严格控制,要么中温消化(30-35℃),要么高温消化(50-55℃)。而水解处理工艺对温度无特殊要求,通常在常温下运行,也可获得较为满意的水解(酸化效果)。 由于反应条件不同,三种工艺系统种优势菌群也不相同。在厌氧消化系统种,由

CSTR厌氧发酵罐工作基础学习知识原理

CSTR厌氧发酵罐工作原理 一、概述厌氧生物处理技术在水处理行业中一直都受到环保工作者们的青睐,由于其具有良好的去除效果,更高的反应速率和对毒性物质更好的适应,更重要的是由于其相对好氧生物处理废水来说不需要为氧的传递提供大量的能耗,使得厌氧生物处理在水处理行业中应用十分广泛。 但由于总体反应式基于莫诺方程的厌氧处理受到低浓度废水Ks的限制,所以厌氧在处理低浓度废水方面没有太大的空间,可最近的一些报道和试验表明,厌氧如果提供合适的外部条件,在处理低浓度废水方面仍然有非常高的处理效果。 我们可以根据厌氧反应的原理加以动力学方程推导出厌氧生物处理低浓度废水尤其在处理生活污水方面的合适条件。 二、厌氧反应四个阶段 一般来说,废水中复杂有机物物料比较多,通过厌氧分解分四个阶段加以降解: (1)水解阶段:高分子有机物由于其大分子体积,不能直接通过厌氧菌的细胞壁,需要在微生物体外通过胞外酶加以分解成小分子。废水中典型的有机物质比如纤维素被纤维素酶分解成纤维二糖和葡萄糖,淀粉被分解成麦芽糖和葡萄

糖,蛋白质被分解成短肽和氨基酸。分解后的这些小分子能够通过细胞壁进入到细胞的体内进行下一步的分解。 (2)酸化阶段:上述的小分子有机物进入到细胞体内转化成更为简单的化合物并被分配到细胞外,这一阶段的主要产物为挥发性脂肪酸(VFA),同时还有部分的醇类、乳酸、二氧化碳、氢气、氨、硫化氢等产物产生。 (3)产乙酸阶段:在此阶段,上一步的产物进一步被转化成乙酸、碳酸、氢气以及新的细胞物质。 (4)产甲烷阶段:在这一阶段,乙酸、氢气、碳酸、甲酸和甲醇都被转化成甲烷、二氧化碳和新的细胞物质。这一阶段也是整个厌氧过程最为重要的阶段和整个厌氧反应过程的限速阶段。 再上述四个阶段中,有人认为第二个阶段和第三个阶段可以分为一个阶段,在这两个阶段的反应是在同一类细菌体类完成的。前三个阶段的反应速度很快,如果用莫诺方程来模拟前三个阶段的反应速率的话,Ks(半速率常数)可以在50mg/l以下,μ可以达到5KgCOD/KgMLSS.d。而第四个反应阶段通常很慢,同时也是最为重要的反应过程,在前面几个阶段中,废水的中污染物质只是形态上发生变化,COD几乎没有什么去除,只是在第四个阶段中污染物质变成甲烷等气体,使废水中COD大幅度下降。同时在第四个阶段产生大量的碱度这与前三个阶段产生的有机酸相平衡,维持废水中的PH稳定,保证反应的连续进行。 三水解反应

发酵工艺及设备期末复习

《发酵工艺及设备》期末复习 一、填空题 1、现代生物技术包含、、、、五大主要工程技术体系? 2、发酵菌种培养有哪六种基本类型和方法? 3、厌氧固体发酵设备有:发酵室、发酵槽(池)、发酵缸。 4、厌氧液体发酵设备有哪些? 5、好氧固体深层发酵设备:机械搅拌通风制曲池、旋转式固体深层发酵罐、传送带式固体深层发酵设备。 6、好氧液体深层通气菌种培养包括哪三个基本控制点? 7、发酵过程产生泡沫的消除方法有哪些?

34、污水生物处理的优点有:效率高、效果好、适用范围广、成本低运行费用少、处理的水量大方法成熟 35、污水生物处理的方法按微生物与氧的关系可分为:好氧处理与厌氧处理;按微生物在构筑物中的状态可分为:活性污泥法与生物膜法 36、污水生物处理的作用机理是:吸附作用、生物氧化和细胞合成作用、絮凝体的形成与絮凝沉淀 37、污水生物处理的类型有:推流式曝气处理、完全混合曝气、接触氧化稳定法、分段布水推流式活性污泥法、氧化沟(氧化塘)式活性污泥法。 38、污水生物膜法类型有:生物滤池、塔式生物滤池、生物转盘、生物接触氧化、生物流化床 39、氧化塘活性污泥法的类型有:厌氧塘、好氧塘、兼性塘和曝气塘 40、污水的厌氧生物处理方法有:常规消化池或普通消化池、厌氧生物滤池、厌氧接触法、上流式厌氧污泥床反应器。 41、沼气发酵有:水解和发酵性细菌群、产氢产乙酸菌、耗氢产乙酸菌、食氢产甲烷菌和食乙酸产甲烷菌等五大微生物菌群参与活动。 42、人工制取沼气的基本条件是:、适宜的发酵原料、质优足量的菌种、严格的厌氧环境、适宜的发酵温度、适度的发酵浓度、适宜的酸碱度。 43、青贮饲料的分类:(1)高水分青贮、(2)低水分青贮、(3)特种青贮(添加剂青贮)。 44、微生物资源开发六大新领域:A 微生物食品、B 微生物饲料、C微生物肥料、D微生物农药、 E微生物能源、F、微生物生态环境保护剂 45、SCP生产的原料有:(1)从甲醇、乙醇、甲烷和多链烷烃等能源物质生产单细胞蛋白、(2)从纤维素、淀粉和糖类等可再生资源生产单细胞蛋白、(3)从甘薯、木薯以及马铃薯等淀粉质原料生产单细胞蛋白、(4)以糖蜜原料生产单细胞蛋白、(5)用纤维素类原料生产单细胞蛋白、(6)从造纸厂、酒精厂、味精 1、发酵过程的影响因素有哪些?温度、ph值、基质浓度如何控制?如何判断发酵终点?P150-174 影响因素有:温度、ph值、溶解氧、基质浓度、泡沫、CO2浓度、空气量、设备管道消毒、杂菌、罐压等控制:温度—根据菌种特性、生长阶段及培养条件综合选择最适温度,控制手段:热交换。 ph值—根据菌种特性、发酵各阶段要求选择最适ph值,手段:加缓冲剂、弱酸碱、氨水、通风、变温等。基质浓度—根据菌体生长代谢、合成途径选择最适补料时机、方式。手段:中间流加补料、放料 终点判断:根据产物量、残糖、氨基氮含量、菌体形态、ph、外观、黏度、发酵类型、成本构成、有无异常等综合考虑。 2、连续式发酵及特点:p34-36 培养基料液连续输入发酵罐,并同时放出含有产品的相同体积发酵液,使发酵罐内料液量维持恒定,微生物在近似恒定状态(恒定的基质浓度、恒定的产物浓度、恒定的pH、恒定菌体浓度、恒定的比生长速率)下生长的发酵方式。 优点:能维持低基质浓度;简化了发酵罐的多次灭菌、清洗、出料,可以提高设备利用率和单位时间的产量;便于自动控制;产品质量稳定。 缺点:菌种发生变异的可能性较大;易污染要求严格的无菌条件;工艺控制较分批发酵难度大;难以用于发酵次生代谢物的工业化生产。 3,分批式发酵及特点:p31-32 A、属于非稳态培养发酵法,发酵的环境条件(温度、pH值、培养基成分、溶解氧、氧化还原电位等)随微生物生长代谢的变化而变化,细胞生长可分为延迟、对数生长、稳定生长、衰亡期四个阶段。 B、发酵动力学模型根据细胞生长和产物生成的关系可分为偶联型、非偶联型、混合型;根据基质消耗和产物生成的关系可分为类型Ⅰ、Ⅱ、Ⅲ C、一旦发生杂菌污染,容易终止操作 D、对原料组分的要求比较粗放 E、很难采用控制培养条件的方法提供生产能力

相关主题
文本预览
相关文档 最新文档