当前位置:文档之家› 最新sas第九章 t检验和方差分析

最新sas第九章 t检验和方差分析

最新sas第九章 t检验和方差分析
最新sas第九章 t检验和方差分析

s a s第九章t检验和

方差分析

第九章 t 检验和方差分析

在科研中,我们往往是根据样本之间的差异,去推断其总体之间是否有差异。样本差异可能是由抽样误差所致,也可能是由本质的不同所致。应用统计学方法来处理这类问题,称为“差异的显著性检验”。若已知总体为正态分布,进行差异的显著性检验,称为“参数性检验”,SAS 中MEANS 、TTEST 、ANOVA 、GLM 等均属此类检验;若未知总体分布,进行差异的显著性检验,称为“非参数性检验”,SAS 中采用NPAR1WAY 过程。

第一节 t 检验

9.1.1 简介

t 检验是用于两组数据均值间差异的显著性检验。它常用于以下场合:

1.样本均值与总体(理论)均值差别的显著性检验

检验所测得的一组连续资料是否抽样于均值已知的总体

根据大量调查的结果或以往的经验,可得到某事物的平均数(例如生理生化的正常值),以此作总体均值看待。

SAS 中采用MEANS 过程,计算出观察与总体均值的差值,再对该差值的均值进行t 检验。

2.同一批对象实验前后差异的显著性检验(自身对照比较)或配对资料差异的显著性检验(配对比较检验)

比如,在医学研究中,我们常常对同一批病人治疗前后的某些生理生化指标(如血压、体温等)进行测量,以观察疗效;或对同一批人群进行预防接种,以观察预防效果;或把实验对象配成对进行测定,比较其实验结果。

SAS 中采用MEANS 过程,计算出两样本观察的差值(如治疗前、后实验数据的差值),再对该差值的均值进行t 检验。

3.两样本均值差异的显著性检验

作两样本均值差异比较的两组原始资料各自独立,没有成对关系。两组样本所包含的个数可以相等,也可以不相等。每组观测值都是来自正态总体的样本。

设1X 与2X 为两样本的均值,1n 与2n 为两样本数,21s ,22s 为两样本方差,分两种情形,其数学模型为:

(1)方差齐(相等)时:

)

/1/1(212

21n n s x x t +-=

)2/(])1()1[(212

222112-+-+-=n n s n s n s

(2)方差不齐时: 2

22

121

21//n s n s x x t +-=

SAS 中采用TTEST 过程,先作方差齐性检验(F 检验),然后根据方差齐(EQUAL)和方差不齐(UNEQUAL)输出t 值和P 值以及基本统计量。

在作方差齐性检验时,用F 检验。F 值计算公式为:

)

,()

,(2

2212

221S S Min S S Max F =

9.1.2 用MEANS 过程作t 检验

1.过程格式

PROC MEANS MEAN STD STDERR T PRT ; VAR 变量表;

2.说明

(1)PROC MEANS 语句中,选择了5个统计量:均值、标准差、标准误差、t 值、P 值。

(2)VAR 语句中的变量是分析变量。缺省时,计算所有数值型变量。

3.举例

例1: 样本均值与总体均值差别的显著性检验。

已知某水样中含CaCO 3的真值为20.7mg /L ,现用某方法重复测定该水样11次,CaCO 3的含量为:20.99,20.41,20.10,20.00,20.91,22.60,20.99,20.41,20,23,22。问用该法测CaCO 3的含量所得的均值与真值有无显著差别 ?

程序: (yp111.sas) 编程说明:

在数据步中,变量x 读取测定值,产生一个差值变量y(y=x-20.7),在过程步中,计算出Y 的均值、标准差、标准误差、t 值、P 值。

结果说明:

因t =1.0636907,0.05

例2:配对比较的t 检验。

研究食物中维生素E 与肝脏中维生素A 含量的关系。将大白鼠按性别、体重配对。每对随机分配,一个用正常饲料,一个用缺乏维生素E

的饲料。经过一个时期饲养,杀死动物测定肝中维生素A的含量,结果如下表:

大白鼠肝脏中维生素A含量(IU/g)

配对号 1 2 3 4 5 6 7 8

正常饲料3550 2000 3000 3950 3800 3750 3450 3050 缺乏E饲料2450 2400 1800 3200 3250 2700 2500 1750

程序:(yp112.sas)

编程说明:

数据步中,把每对数据中的一个作为x,另一个作为y,计算出差数d(d=x-y),在过程步中,计算差数d的均值、标准差、标准误差、t 值、P值。

结果说明:

因t=4.21 p=0.0040<0.05,故有非常显著差异,即正常饲料组鼠肝维生素A含量比维生素E缺乏组的含量大。

例3 自身对照比较的t检验。

应用克矽平治疗矽肺患者10名,治疗前后血红蛋白的含量如下表,问该药是否会引起血红蛋白的变化?

治疗前后血红蛋白的含量(mg%)

治疗前11.3 15.0 15.0 13.5 12.8 10.0 11.0 12.0 13.0 12.3 治疗后14.0 13.8 14.0 13.5 13.5 12.0 14.7 11.4 13.8 12.0

程序:(yp113.sas)

编程说明:

数据步中,把每对数据中的一个作为x,另一个作为y,计算出差数d(d=x-y),在过程步中,计算差数d的均值、标准差、标准误差、t 值、P值。

结果说明:

因t=1.1989377,O.05

9.1.3用TTEST过程作t检验

1.过程格式

PROC TTEST [DATA=数据集];

CLASS变量;

VAR变量表;

2.说明

(1)CLASS语句中的变量是分类变量,其水平值只能有两个,并对应两组观察。是必选语句。

(2)VAR语句中的变量是被分析的变量,如果缺省,则对所有的数值型变量进行分析。

3.举例

观察某药物对大白鼠肉瘤的影响。数据如下表,试作差异性检验。对照组56 55 54 53 56 52 57 54 52 56

实验组50 48 49 49 50 50 60 55 43 52 56 57 程序: (yp114.sas)

编程说明:

数据步中,用循环控制变量a作分类变量,其水平值为1(对照组)和2(实验组),变量n表示样本数,分别为10和12,用变量x读取原始数据,在过程步中,用CLASS语句标识分类变量,用VAR语句标识分析变量。

结果说明:

输出的最后:H0:Variances are equal(方差相等)表示给出的是对方差相等假设的结果。

先看方差齐性检验(F检验),然后根据F检验的结果,选择方差齐(Equal)或不齐(Unequal)的t值和p值,以及两组观察的均值、标准差、标准误差、最大值、最小值。

找Prob>F’=右边的值,即方差相等假设检验的P值,如果此值大于0.01则在方差相等假设下继续进行,否则只能使用近似T检验。因

P=0.0074,说明方差差异显著,即方差不齐。

当方差不齐时,T=2.0000,0.05

第二节方差分析

当试验结果受到多个因素的影响,而且也受到每个因素的各水平的影响,为从数量上反映各因素以至各因素诸水平对试验结果的影响时使用方差分析的方法。

方差分析的基本思想是把全部数据关于总均值的离差平方和分解成几个部分,每一部分表示某因素交互作用所产生的效应,将各部分均方与误差均方相比较,从而确认或否认某些因素或交互作用的重要性。用公式概括为:

总变异=组间变异+组内变异

其中:组间变异由各因素所引起,组内变异由个体差异所引起的,或者说由误差引起的。

常用的方差分析法有以下4种:

(1)完全随机设计资料的方差分析(单因素方差分析)

(2)随机区组设计资料的方差分析(二因素方差分析)

(3)拉丁方设计资料的方差分析(三因素方差分析)

(4)R*C析因设计资料的方差分析(有交互因素的方差分析)

SAS系统中,ANOVA过程可以处理以上情形的方差分析,但它要求每个分类因子的组合观察数相等,即数据是均衡的。若不均衡,就要求用GLM过程进行处理。在只考虑组间变异和误差变异时,称为单向方差分析。此时ANOVA会自动处理均衡和非均衡数据。

在方差分析中,每次只研究1个指标时,称之为一元方差分析(简称ANOVA),同时考虑多个指标时,称之为多元方差分析(MANOVA)。在这一节里,我们还将讨论协方差分析。

9.2.1 均衡数据的方差分析(ANOVA过程)

1.过程格式

PROC ANOVA 选项

CLASS 变量表;

MODEL 因变量表=效应;

MEANS 效应[/选择项];

2.使用说明

(1)程序中,CLASS语句和MODEL语句是必需的,而且,CLASS语句必须出现在MODEL语句之前。

(2)CLASS语句中的变量是分类变量,可以是数值型,也可以是字符型。

(3)MODEL语句指明因变量和自变量(因子变量)效应。效应是分类变量的各种组合,效应可以是主效应、交互效应、嵌套效应和混合效应。对应的效应模型如下:

·主效应模型MODEL y=a b c;

模型中,a,b,c是主效应,y是因变量。下同。

·交互模型MODEL y=a b c a*b a*c b*c a*b*c;

模型中,a*b,a*c,b*c,a*b*c是交互效应。

·嵌套效应模型MODEL y=a b c(a b);

模型中,c(a b)是嵌套效应。

·混合效应模型MODEL y=a b(a) c(a) b*c(a);

(4)MEANS语句是选择语句,计算并输出所列的效应对应的因变量均值,若指明了选择项,则将进行主效应均值间的检验。常用的选择项如下:BON、DUNCAN、LSD、REGWF、REGWO、SNK(Q检验)、SCHEFFE、SIDAK、SMM(GT2)、TUKEY、WALLER。以上选择项在实际应用中,一般选择一种或两种方法即可。

ALPHA=p确定检验的显著性水平。缺省值是0.05。

3.举例

(1)完全随机设计资料的方差分析(单因素方差分析)

某劳动卫生研究所研究棉布、府绸、的确凉、尼龙四种衣料吸附十硼氢量。每种衣料各做五次测量,所得数据如下表。试检验各种衣料吸附十硼氢量有没有显著差别?

各种衣料间棉花吸附十硼氢量

棉布府绸的确凉尼龙

2.33 2.48

3.06

4.00

2.00 2.34

3.06 5.13

2.93 2.68

3.00

4.61

2.73 2.34 2.66 2.80

2.33 2.22

3.06 3.60

程序: (yp115.sas)

编程说明:数据步中,用循环控制变量a做分类变量,其水平数是4,分别代表不同的衣料。过程步中,用CLASS语句指明一个因素a,用MODEL语句反映出该因素的效果模型。

结果说明:

在输出中,找CLASS语句指出的变量的P值。此例中,P≤0.0003,可得出各衣料组间有非常显著差异。说明各种衣料间吸附十硼氢量是不同的。R-Square(R平方)对单向方差分析时,描述组间变异占总变异的比例,它越接近1,说明变异越归因于组间变异。

(2)随机区组设计资料的方差分析(两因素方差分析)

用4种不同方法治疗8名患者,其血浆凝固时间的资料如下表,试分析影响血浆凝固的因素。

(整理)sas第九章 t检验和方差分析.

第九章 t 检验和方差分析 在科研中,我们往往是根据样本之间的差异,去推断其总体之间是否有差异。样本差异可能是由抽样误差所致,也可能是由本质的不同所致。应用统计学方法来处理这类问题,称为“差异的显著性检验”。若已知总体为正态分布,进行差异的显著性检验,称为“参数性检验”,SAS 中MEANS 、TTEST 、ANOVA 、GLM 等均属此类检验;若未知总体分布,进行差异的显著性检验,称为“非参数性检验”,SAS 中采用NPAR1WAY 过程。 第一节 t 检验 9.1.1 简介 t 检验是用于两组数据均值间差异的显著性检验。它常用于以下场合: 1.样本均值与总体(理论)均值差别的显著性检验 检验所测得的一组连续资料是否抽样于均值已知的总体 根据大量调查的结果或以往的经验,可得到某事物的平均数(例如生理生化的正常值),以此作总体均值看待。 SAS 中采用MEANS 过程,计算出观察与总体均值的差值,再对该差值的均值进行t 检验。 2.同一批对象实验前后差异的显著性检验(自身对照比较)或配对资料差异的显著性检验(配对比较检验) 比如,在医学研究中,我们常常对同一批病人治疗前后的某些生理生化指标(如血压、体温等)进行测量,以观察疗效;或对同一批人群进行预防接种,以观察预防效果;或把实验对象配成对进行测定,比较其实验结果。 SAS 中采用MEANS 过程,计算出两样本观察的差值(如治疗前、后实验数据的差值),再对该差值的均值进行t 检验。 3.两样本均值差异的显著性检验 作两样本均值差异比较的两组原始资料各自独立,没有成对关系。两组样本所包含的个数可以相等,也可以不相等。每组观测值都是来自正态总体的样本。 设1X 与2X 为两样本的均值,1n 与2n 为两样本数,21s ,22s 为两样本方差,分两种情形,其数学模型为: (1)方差齐(相等)时: ) /1/1(212 21n n s x x t +-= )2/(])1()1[(212 222112-+-+-=n n s n s n s

t检验、u检验、卡方检验、F检验、方差分析

统计中经常会用到各种检验,如何知道何时用什么检验呢,根据结合自己的工作来说一说: t检验有单样本t检验,配对t检验和两样本t检验。 单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。 配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。 u检验:t检验和就是统计量为t,u的假设检验,两者均是常见的假设检验方法。当样本含量n较大时,样本均数符合正态分布,故可用u检验进行分析。当样本含量n小时,若观察值x符合正态分布,则用t检验(因此时样本均数符合t 分布),当x为未知分布时应采用秩和检验。 F检验又叫方差齐性检验。在两样本t检验中要用到F检验。 从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。 其中要判断两总体方差是否相等,就可以用F检验。 简单的说就是检验两个样本的方差是否有显著性差异这是选择何种T检验(等方差双样本检验,异方差双样本检验)的前提条件。 在t检验中,如果是比较大于小于之类的就用单侧检验,等于之类的问题就用双侧检验。 卡方检验 是对两个或两个以上率(构成比)进行比较的统计方法,在临床和医学实验中应用十分广泛,特别是临床科研中许多资料是记数资料,就需要用到卡方检验。方差分析 用方差分析比较多个样本均数,可有效地控制第一类错误。方差分析(analysis of variance,ANOVA)由英国统计学家R.A.Fisher首先提出,以F命名其统计量,故方差分析又称F检验。 其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。我们要学习的主要内容包括 单因素方差分析即完全随机设计或成组设计的方差分析(one-way ANOVA):用途:用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。完全随机设计(completely random design)不考虑个体差异的影响,仅涉及一个处理因素,但可以有两个或多个水平,所以亦称单因素实验设计。在实验研究中按随机化原则将受试对象随机分配到一个处理因

t检验与方差分析

第六章数值变量资料的统计分析 数值变量资料又称计量资料,通常是指每个观察单位某项指标量的大小,一般具有计量单位。这类资料按分析的内容一般可分为两种:一种是比较几种处理之间的效应,简单地讲就是比较各处理组观察值均数、方差的大小;另一种是寻找指标间的关系,即某个(或某些)指标的取值是否受其它指标的影响。本章主要介绍不同设计类型的数值变量资料的比较。 §6.1 样本均数与总体均数比较的 t 检验 t检验亦称 student's t 检验,主要用于下列三种情况:(1)样本均数与总体均数比较;(2)配对数值变量资料的比较;(3)两样本均数的比较。 Stata用于样本均数与总体均数比较的 t 检验的命令是: ttest 变量名= #val 这里,#val 表示总体均数。 命令中可以选用 if 语句和 in 语句对要分析的内容加一些条件限制。 对已知样本含量、均数和标准差的资料,欲将其与某总体均数进行比较,Stata 还提供了更为简洁的命令是: ttesti #obs #mean #sd #val 这里,#obs 表示样本含量,#mean 表示样本均数,#sd 表示样本标准差, #val 表示总体均数。 §6.2 两样本均数比较的t检验 一、配对设计t检验 医学研究中常将受试对象配成对子,对每对中的两个受试对象分别给予两种不同的处理,观察两种处理的结果是否一致,称为配对(设计)研究。有时以同一个受试对象先后给予两种不同的处理,观察两种处理的结果是否相同,这种配对称为自身配对。配对设计的优点是能消除或部分消除个体间的差异,使比较的结果更能真实地反映处理的效应。 配对t检验首先计算每对结果之差值,再将差值均数与0作比较。如两种处理的效应相同,则差值与0没有显著性差异。 检验假设 H0为:两种处理的效应是相同,或总体差值均数为 0。 stata用于配对样本t检验的命令是: Ttest变量1=变量2 这里,这里“变量 1”和“变量 2”是成对输入的配对样本。 ttest 命令容许使用[if 表达式]和[in范围]条件限制。 或者: gen d=0 ttest d=0 二、成组设计t检验

STATA 第四章 t检验和单因素方差分析命令输出结果说明

第四章 t检验和单因素方差分析命令与输出结果说明 ·单因素方差分析 单因素方差分析又称为Oneway ANOVA,用于比较多组样本的均数是否相同,并假定:每组的数据服从正态分布,具有相同的方差,且相互独立,则无效假设。 :各组总体均数相同。 原假设:H 在STATA中可用命令: oneway 观察变量分组变量[, means bonferroni] 其中子命令bonferroni是用于多组样本均数的两两比较检验。 例:测定健康男子各年龄组的淋巴细胞转化率(%),结果见表,问:各组的淋巴细胞转化率的均数之间的差别有无显著性? 健康男子各年龄组淋巴细胞转化率(%)的测定结果: 11-20 岁组:58 61 61 62 63 68 70 70 74 78 41-50 岁组:54 57 57 58 60 60 63 64 66 61-75 岁组:43 52 55 56 60 用变量x 表示这些淋巴细胞转化率以及用分组变量group=1,2,3分别表示 则用 STATA 命令: oneway x group, mean bonferroni | Summary of x group | Mean ① -------------+------------ 1 | 66.5 2 | 59.888889 3 | 53.2 ------+------------ Total | 61.25 ②

Analysis of Variance Source SS df MS F Prob > F ------------------------------------------------------------------------------- Between groups 616.311111③ 2 ④ 308.155556⑤ 9.77⑥ 0.0010⑦Within groups 662.188889⑧ 21⑨ 31.5328042⑴ ------------------------------------------------------------------------------- Total 1278.50 23 55.586956 (2)Bartlett's test for equal variances:chi2(2) = 2.1977 (3)Prob>chi2=0.333 Comparison of x by group (Bonferroni) Row Mean- | Col Mean | 1 2 -------------- --|-------------------------------------- 2 | -6.61111 (4) | 0.054 (5) | 3 | -13.3 (6) -6.68889(8) | 0.001 (7) 0.134 (9) ①对应三个年龄组的淋巴细胞转化率的均数;②三组合并在一起的总的样本 均数;③组间离均差平方和;④组间离均差平方和的自由度;⑤组间均方和(即: ⑤=③/④);⑧组内离均差平方和;⑨组内离均差平方和的自由度;(1)组内均 方和(即:(1)=⑧/⑨);⑥为F 统计值(即为⑤/(1));⑦为相应的p值;(2) 为方差齐性的Bartlett检验;(3)方差齐性检验相应的p值;(4)第二组的淋 巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(5)第二和 第一组均数差的显著性检验所对应p 值;(6)第三组的淋巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(7)第三和第一组均数差的显著 性检验所对应的 p 值;(8)第三组的淋巴细胞转化率样本均数—第二组的淋巴 细胞转化率的样本均数的差;(9)第三和第二组均数差的显著性检验所对应的p 值。 由上述结果可知:三组方差无显著地齐性,因此若三组数据近似服从正态 分布,无效假设Ho检验所对应的p值<0.01,可以认为这三组均数有显著差异。 由 Bonferroni统计检验结果表明:第一组淋巴细胞转化率显著地高于第三组淋 巴细胞转化率(p<0.005),其它各组之间均数无显著性差异。

t检验和方差分析的前提条件及应用误区精编版

t检验和方差分析的前提条件及应用误区 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

t检验和方差分析的前提条件及应用误区用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子。无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的。 若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。 值得注意的是,方差分析与成组设计t检验的前提条件是相同的,即正态性和方差齐性。t检验是目前医学研究中使用频率最高,医学论文中最常见到的处理定量资料的假设检验方法。t检验得到如此广泛的应用,究其原因,不外乎以下几点:现有的医学期刊多在统计学方面作出了要求,研究结论需要统计学支持;传统的医学统计教学都把t检验作为假设检验的入门方法进行介绍,使之成为广大医学研究人员最熟悉的方法;t 检验方法简单,其结果便于解释。简单、熟悉加上外界的要求,促成了t检验的流行。但是,由于某些人对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性。将这些问题归类,可大致概括为以下两种情况:不考虑t检验的应用前提,对两组的比较一律用t检验;将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较。以上两种情况,均不同程度地增加了得出错误结论的风险。而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小。

T检验及其与方差分析的区别

T检验及其与方差分析的 区别 Last revision on 21 December 2020

T检验及其与方差分析的区别 假设检验是通过两组或多组的样本统计量的差别或样本统计量与总体参数的差异来推断他们相应的总体参数是否相同。 t 检验:1.单因素设计的小样本(n<50)计量资料 2.样本来自正态分布总体 3.总体标准差未知 4.两样本均数比较时,要求两样本相应的总体方差相等 ?根据研究设计t检验可由三种形式: –单个样本的t检验 –配对样本均数t检验(非独立两样本均数t检验) –两个独立样本均数t检验 (1)单个样本t检验 ?又称单样本均数t检验(one sample t test),适用于样本均数与已知总体均数μ0的比较,其比较目的是检验样本均数所代表的总体均数μ是否与已知总体均数μ0有差 别。 ?已知总体均数μ0一般为标准值、理论值或经大量观察得到的较稳定的指标值。 ?单样t检验的应用条件是总体标准未知的小样本资料( 如n<50),且服从正态分布。(2)配对样本均数t检验 ?配对样本均数t检验简称配对t检验(paired t test),又称非独立两样本均数t检验,适用于配对设计计量资料均数的比较,其比较目的是检验两相关样本均数所代表的未知总体均数是否有差别。

?配对设计(paired design)是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。 ?应用配对设计可以减少实验的误差和控制非处理因素,提高统计处理的效率。 ?配对设计处理分配方式主要有三种情况: ①两个同质受试对象分别接受两种处理,如把同窝、同性别和体重相近的动物配成一对,或把同性别和年龄相近的相同病情病人配成一对; ②同一受试对象或同一标本的两个部分,随机分配接受两种不同处理,如例资料; ③自身对比(self-contrast)。即将同一受试对象处理(实验或治疗)前后的结果进行比较,如对高血压患者治疗前后、运动员体育运动前后的某一生理指标进行比较。 (3)两独立样本t检验 两独立样本t 检验(two independent samples t-test),又称成组t 检验。 ?适用于完全随机设计的两样本均数的比较,其目的是检验两样本所来自总体的均数是否相等。 ?完全随机设计是将受试对象随机地分配到两组中,每组对象分别接受不同的处理,分析比较处理的效应。或分别从不同总体中随机抽样进行研究。 ?两独立样本t检验要求两样本所代表的总体服从正态分布N(μ1,σ12)和N(μ2,σ 2),且两总体方差σ12、σ22相等,即方差齐性(homogeneity of variance, 2 homoscedasticity)。 ?若两总体方差不等,即方差不齐,可采用t’检验,或进行变量变换,或用秩和检验方法处理。 t 检验中的注意事项 1.假设检验结论正确的前提作假设检验用的样本资料,必须能代表相应的总

T检验及其与方差分析的区别.docx

T检验及其与方差分析的区别 假设检验是通过两组或多组的样本统计量的差别或样本统计量与总体参数的差异来推断他们相应的总体参数是否相同。 t 检验:1.单因素设计的小样本(n<50)计量资料 2.样本来自正态分布总体 3.总体标准差未知 4.两样本均数比较时,要求两样本相应的总体方差相等 ?根据研究设计t检验可由三种形式: –单个样本的t检验 –配对样本均数t检验(非独立两样本均数t检验) –两个独立样本均数t检验 (1)单个样本t检验 ?又称单样本均数t检验(one sample t test),适用于样本均数与已知总体均数μ0的比较,其比较目的是检验样本均数所代表的总体均数μ是否与已知总体均数μ0有差别。 ?已知总体均数μ0一般为标准值、理论值或经大量观察得到的较稳定的指标值。 ?单样t检验的应用条件是总体标准 未知的小样本资料( 如n<50),且服从正态分布。(2)配对样本均数t检验 ?配对样本均数t检验简称配对t检验(paired t test),又称非独立两样本均数t检验,适用于配对设计计量资料均数的比较,其比较目的是检验两相关样本均数所代表的未知总体均数是否有差别。 ?配对设计(paired design)是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。 ?应用配对设计可以减少实验的误差和控制非处理因素,提高统计处理的效率。 ?配对设计处理分配方式主要有三种情况: ①两个同质受试对象分别接受两种处理,如把同窝、同性别和体重相近的动物配成一对,或把同性别和年龄相近的相同病情病人配成一对; ②同一受试对象或同一标本的两个部分,随机分配接受两种不同处理,如例5.2资料; ③自身对比(self-contrast)。即将同一受试对象处理(实验或治疗)前后的结果进行比较,如对高血压患者治疗前后、运动员体育运动前后的某一生理指标进行比较。 (3)两独立样本t检验 两独立样本t 检验(two independent samples t-test),又称成组t 检验。 ?适用于完全随机设计的两样本均数的比较,其目的是检验两样本所来自总体的均数是否相等。 ?完全随机设计是将受试对象随机地分配到两组中,每组对象分别接受不同的处理,分析比较处理的效应。或分别从不同总体中随机抽样进行研究。 ?两独立样本t检验要求两样本所代表的总体服从正态分布N(μ1,σ12)和N(μ2,σ 2),且两总体方差σ12、σ22相等,即方差齐性(homogeneity of variance, 2 homoscedasticity)。 ?若两总体方差不等,即方差不齐,可采用t’检验,或进行变量变换,或用秩和检验方法处理。 t 检验中的注意事项 1.假设检验结论正确的前提作假设检验用的样本资料,必须能代表相应的总体,同时各

最新sas第九章 t检验和方差分析

s a s第九章t检验和 方差分析

第九章 t 检验和方差分析 在科研中,我们往往是根据样本之间的差异,去推断其总体之间是否有差异。样本差异可能是由抽样误差所致,也可能是由本质的不同所致。应用统计学方法来处理这类问题,称为“差异的显著性检验”。若已知总体为正态分布,进行差异的显著性检验,称为“参数性检验”,SAS 中MEANS 、TTEST 、ANOVA 、GLM 等均属此类检验;若未知总体分布,进行差异的显著性检验,称为“非参数性检验”,SAS 中采用NPAR1WAY 过程。 第一节 t 检验 9.1.1 简介 t 检验是用于两组数据均值间差异的显著性检验。它常用于以下场合: 1.样本均值与总体(理论)均值差别的显著性检验 检验所测得的一组连续资料是否抽样于均值已知的总体 根据大量调查的结果或以往的经验,可得到某事物的平均数(例如生理生化的正常值),以此作总体均值看待。 SAS 中采用MEANS 过程,计算出观察与总体均值的差值,再对该差值的均值进行t 检验。 2.同一批对象实验前后差异的显著性检验(自身对照比较)或配对资料差异的显著性检验(配对比较检验) 比如,在医学研究中,我们常常对同一批病人治疗前后的某些生理生化指标(如血压、体温等)进行测量,以观察疗效;或对同一批人群进行预防接种,以观察预防效果;或把实验对象配成对进行测定,比较其实验结果。 SAS 中采用MEANS 过程,计算出两样本观察的差值(如治疗前、后实验数据的差值),再对该差值的均值进行t 检验。 3.两样本均值差异的显著性检验 作两样本均值差异比较的两组原始资料各自独立,没有成对关系。两组样本所包含的个数可以相等,也可以不相等。每组观测值都是来自正态总体的样本。 设1X 与2X 为两样本的均值,1n 与2n 为两样本数,21s ,22s 为两样本方差,分两种情形,其数学模型为: (1)方差齐(相等)时: ) /1/1(212 21n n s x x t +-= )2/(])1()1[(212 222112-+-+-=n n s n s n s

T检验及其与方差分析的区别

T 检验及其与方差分析的区别 假设检验是通过两组或多组的样本统计量的差别或样本统计量与总体参数的差异来推断他们相应的总体参数是否相同。 t 检验:1.单因素设计的小样本(n <50)计量资料 2.样本来自正态分布总体 3.总体标准差未知 4.两样本均数比较时,要求两样本相应的总体方差相等 ? 根据研究设计t 检验可由三种形式: – 单个样本的t 检验 – 配对样本均数t 检验(非独立两样本均数t 检验) – 两个独立样本均数t 检验 (1)单个样本t 检验 ? 又称单样本均数t 检验(one sample t test),适用于样本均数与已知总体均数μ0的比较, 其比较目的是检验样本均数所代表的总体均数μ是否与已知总体均数μ0有差别。 ? 已知总体均数μ0一般为标准值、理论值或经大量观察得到的较稳定的指标值。 ? 单样t 检验的应用条件是总体标准 未知的小样本资料( 如n <50),且服从正态分布。 (2)配对样本均数t 检验 ? 配对样本均数t 检验简称配对t 检验(paired t test),又称非独立两样本均数t 检验,适用 于配对设计计量资料均数的比较,其比较目的是检验两相关样本均数所代表的未知总体均数是否有差别。 ? 配对设计(paired design)是将受试对象按某些重要特征相近的原则配成对子,每对中 的两个个体随机地给予两种处理。 ? 应用配对设计可以减少实验的误差和控制非处理因素,提高统计处理的效率。 ? 配对设计处理分配方式主要有三种情况: ①两个同质受试对象分别接受两种处理,如把同窝、同性别和体重相近的动物配成一对,或把同性别和年龄相近的相同病情病人配成一对; ②同一受试对象或同一标本的两个部分,随机分配接受两种不同处理,如例5.2资料; ③自身对比(self-contrast)。即将同一受试对象处理(实验或治疗)前后的结果进行比较,如对高血压患者治疗前后、运动员体育运动前后的某一生理指标进行比较。 (3)两独立样本t 检验 两独立样本t 检验(two independent samples t -test),又称成组 t 检验。 ? 适用于完全随机设计的两样本均数的比较,其目的是检验两样本所来自总体的均数 是否相等。 ? 完全随机设计是将受试对象随机地分配到两组中,每组对象分别接受不同的处理, 分析比较处理的效应。或分别从不同总体中随机抽样进行研究。 ? 两独立样本t 检验要求两样本所代表的总体服从正态分布N (μ1,σ12)和N (μ2,σ 22),且两总体方差σ12、σ22相等,即方差齐性(homogeneity of variance, homoscedasticity)。 ? 若两总体方差不等,即方差不齐,可采用t ’检验,或进行变量变换,或用秩和检验方法 处理。 t 检验中的注意事项 1. 假设检验结论正确的前提 作假设检验用的样本资料,必须能代表相应的总体,同时各

t检验、卡方检验、方差分析

一、T检验 t检验有单样本均数t检验,配对t检验和两随机样本均数t检验。 1、单样本均数t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来推论此样本代表的总体与已知总体是否同质。 检验条件:正态分布 2、配对t检验:是采用配对设计方法观察以下几种情形: (1)两个同质受试对象分别接受两种不同的处理; (2)同一受试对象接受两种不同的处理; (3)同一受试对象处理前后效应。 检验条件:差数服从正态分布 3、两随机样本均数t检验。 检验条件:正态分布、方差齐性 从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。判断两总体方差是否相等,用F检验。

在t检验中,如果假设检验的目的是比较大于小于之类的就用单侧检验,等于、是否相同之类的问题就用双侧检验。 二、卡方检验 是对两个或两个以上样本率(构成比)进行差别比较的统计方法,在临床和医学实验中应用十分广泛,特别是临床科研中许多资料是计数资料,就需要用到卡方检验。资料类型: 1、四格表资料;两个样本率比较 2、配对四格表: 3、行列表资料:多个样本率比较 三、方差分析 1、定义、目的:用方差分析比较多个样本均数,可有效地控制第一类错误。方差分析(analysis of variance,ANOVA)由英国统计学家R.A.Fisher首先提出,以F命名其统计量,故方差分析又称F检验。 其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。我们要学习的主要内容包括:

t检验和方差分析的前提条件及应用误区

t检验和方差分析的前提条件及应用误区 用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子。无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的。 若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t 分布作为其理论依据的检验方法。 值得注意的是,方差分析与成组设计t检验的前提条件是相同的,即正态性和方差齐性。 t检验是目前医学研究中使用频率最高,医学论文中最常见到的处理定量资料的假设检验方法。t检验得到如此广泛的应用,究其原因,不外乎以下几点:现有的医学期刊多在统计学方面作出了要求,研究结论需要统计学支持;传统的医学统计教学都把t检验作为假设检验的入门方法进行介绍,使之成为广大医学研究人员最熟悉的方法;t检验方法简单,其结果便于解释。简单、熟悉加上外界的要求,促成了t检验的流行。但是,由于某些人对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性。将这些问题归类,可大致概括为以下两种情况:不考虑t检验的应用前提,对两组的比较一律用t检验;将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较。以上两种情况,均不同程度地增加了得出错误结论的风险。而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小。 医学论文中常见的统计方法误用 一、等级资料用卡方检验代替秩和检验

t检验与方差分析思考与练习

t检验与方差分析 【思考与练习】 一、思考题 1.两样本均数比较t检验的应用条件是什么? 答:方差是否齐性是否符合正态分布 2. 方差分析的基本思想及其应用条件是什么? 基本思想:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。 应用条件:1.各观察值相互独立,且每一水平下的观察值均服从正态分布。 2.个总体方差相等,即具有方差齐性。完全随机设计的方差分析 3. 为什么总的方差分析的结果为拒绝原假设时,若想进一步了解两两之间的差别需要进行多重比较? 答:方差分析中备择假设是多个总体均数不等或不全相等,拒绝原假设只说明多个总体均数总的来说差别有统计学意义,并不能说明任意两总体均数之间均有差别,因此,若希望进一步了解两两的差别。需进行多重比较。 二、综合分析题 1.将20名某病患者随机分成两组,分别用甲、乙两种药物治疗,用药一个月后测得治疗前后的血沉(mm/h)如下表。 表1 甲、乙两药治疗前后的血沉(mm/h) 甲药组乙药组 受试者编号治疗前治疗后受试者编号治疗前治疗后 1 10 6 1 9 4 2 1 3 9 2 10 2 3 6 3 3 9 5 4 11 10 4 13 6 5 10 10 5 8 3 6 7 4 6 6 3 7 8 2 7 10 4 8 8 5 8 11 2 9 5 3 9 10 5 10 9 3 10 10 4

问:甲药是否有效? 答:两独立样本的t检验 1 建立检验假设,确立检验水准 H0:μ1=μ2,甲、乙两种药物的治疗效果无差别 H1:μ1≠μ2, 甲、乙两种药物的治疗效果有差别 α=0.05 甲、乙两种药物的疗效有无差别? n1=10,X1=3.20 mm/h S1=1.93mm/h n2=10,X2=5.80mm/h S2=1.81mm/h t=3.10, p=0.006 2. 某医生研究不同方案治疗缺铁性贫血的效果,将36名缺铁性贫血患者随机等分为3组,分别给予一般疗法、一般疗法+药物A低剂量,一般疗法+药物A高剂量三种处理,测量一个月后患者红细胞的升高数(102/L),结果如表2所示。问三种治疗方案有无差异? 表2 三种方案治疗一个月后缺铁性贫血患者红细胞的升高数(102/L) 编号一般疗法一般疗法+A1 一般疗法+A2 1 0.81 1.3 2 2.35 2 0.75 1.41 2.50 3 0.7 4 1.3 5 2.43

T检验及其与方差分析的区别

T检验及其与方差分析 的区别 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

T检验及其与方差分析的区别 假设检验是通过两组或多组的样本统计量的差别或样本统计量与总体参数的差异来推断他们相应的总体参数是否相同。 t 检验:1.单因素设计的小样本(n<50)计量资料 2.样本来自正态分布总体 3.总体标准差未知 4.两样本均数比较时,要求两样本相应的总体方差相等 ?根据研究设计t检验可由三种形式: –单个样本的t检验 –配对样本均数t检验(非独立两样本均数t检验) –两个独立样本均数t检验 (1)单个样本t检验 ?又称单样本均数t检验(one sample t test),适用于样本均数与已知总体均数μ0的比较,其比较目的是检验样本均数所代表的总体均数μ是否与已知总体均数μ0有差 别。 ?已知总体均数μ0一般为标准值、理论值或经大量观察得到的较稳定的指标值。 ?单样t检验的应用条件是总体标准未知的小样本资料( 如n<50),且服从正态分布。(2)配对样本均数t检验 ?配对样本均数t检验简称配对t检验(paired t test),又称非独立两样本均数t检验,适用于配对设计计量资料均数的比较,其比较目的是检验两相关样本均数所代表的未知总体均数是否有差别。

?配对设计(paired design)是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。 ?应用配对设计可以减少实验的误差和控制非处理因素,提高统计处理的效率。 ?配对设计处理分配方式主要有三种情况: ①两个同质受试对象分别接受两种处理,如把同窝、同性别和体重相近的动物配成一对,或把同性别和年龄相近的相同病情病人配成一对; ②同一受试对象或同一标本的两个部分,随机分配接受两种不同处理,如例资料; ③自身对比(self-contrast)。即将同一受试对象处理(实验或治疗)前后的结果进行比较,如对高血压患者治疗前后、运动员体育运动前后的某一生理指标进行比较。 (3)两独立样本t检验 两独立样本t 检验(two independent samples t-test),又称成组t 检验。 ?适用于完全随机设计的两样本均数的比较,其目的是检验两样本所来自总体的均数是否相等。 ?完全随机设计是将受试对象随机地分配到两组中,每组对象分别接受不同的处理,分析比较处理的效应。或分别从不同总体中随机抽样进行研究。 ?两独立样本t检验要求两样本所代表的总体服从正态分布N(μ1,σ12)和N(μ2,σ 2),且两总体方差σ12、σ22相等,即方差齐性(homogeneity of variance, 2 homoscedasticity)。 ?若两总体方差不等,即方差不齐,可采用t’检验,或进行变量变换,或用秩和检验方法处理。 t 检验中的注意事项 1.假设检验结论正确的前提作假设检验用的样本资料,必须能代表相应的总

相关主题
文本预览
相关文档 最新文档