当前位置:文档之家› 基于经验模态分解_EMD_的小波阈值除噪方法

基于经验模态分解_EMD_的小波阈值除噪方法

基于经验模态分解_EMD_的小波阈值除噪方法
基于经验模态分解_EMD_的小波阈值除噪方法

小波阈值去噪

基于小波阈值的图像去噪方法研究 摘要:本文根据已有的阈值处理函数的优缺点,提出了一种新的阈值处理函数,用于图像的小 波阈值去噪.实验表明,该方法比传统的硬阈值函数与软阈值函数具有更好的去噪效果 关键字:小波阈值去噪,阈值函数 0 引言 图像在获取或传输过程中会因各种噪声的干扰使质量下降,这将对后续图像的处理产生 不利影响.所以必须对图像进行去噪处理,而去噪所要达到的目的就是在较好去除噪声的基 础上,良好的保持图像的边缘等重要细节.近年来,小波理论得到了迅速的发展和广泛的应用. 由于其具有低熵性,多分辨性,去相关性和选基灵活性等优点,在图像去噪领域得到广泛的应 用.本文提出一种新阈值函数,并将其应用于小波阈值去噪,该函数是现有软、硬阈值函数的 推广,通过调整参数,可以克服硬阈值函数不连续和软阈值函数有偏差的缺点。 1 小波阈值处理 小波阈值收缩法是Donoho 和Johnstone 提出的,其主要理论依据是,小波变换具有很强的 去数据相关性,它能够使信号的能量在小波域集中在一些大的小波系数中;而噪声的能量却 分布于整个小波域内.因此,经小波分解后,信号的小波系数幅值要大于噪声的系数幅值.可 以认为,幅值比较大的小波系数一般以信号为主,而幅值比较小的系数在很大程度上是噪声. 于是,采用阈值的办法可以把信号系数保留,而使大部分噪声系数减小至零.小波阈值收缩法 去噪的具体处理过程为:将含噪信号在各尺度上进行小波分解,设定一个阈值,幅值低于该阈 值的小波系数置为0,高于该阈值的小波系数或者完全保留,或者做相应的“收缩 (shrinkage)”处理.最后将处理后获得的小波系数用逆小波变换进行重构,得到去噪后的图 像. 2 阈值函数的选取 阈值去噪中,阈值函数体现了对超过和低于阈值的小波系数不同处理策略,是阈值去噪中 关键的一步。 设w 表示小波系数,T 为给定阈值,sign(*)为符号函数,常见的阈值函数有: 硬阈值函数: ? ??<≥=T w T w w w new ,0, (1) 软阈值函数: ? ??<≥-=T w T w T w w w new ,0),)(sgn( (2) 分析(1)(2)式可以得出:硬阈值函数在阈值点是不连续的,软阈值函数,原系数和分解得 到的小波系数总存在着恒定的偏差,这将影响重构的精度.同时这两种函数不能表达出分解 后系数的能量分布。因此,寻找一种新阈值函数,使它既能实现阈值函数的功能,又具有高阶 导数,同时可以体现出分解后系数的能量分布,将是我们的目标。我们提出一种新的阈值函 数为:

基于经验模态分解的探地雷达信号去噪处理(精)

基于经验模态分解的探地雷达信号去噪处理 杨建军刘鸿福 (太原理工大学太原 030024 【摘要】探地雷达作为一种先进的地球物理探测方法,具有探测效率高、操作简单、采样迅速、无损伤探测、探测分辨率高等优点。探地雷达的信号的去噪问题已成为一个公认的技术难题。本文用经验模态分解的方法对探地雷达信号进行信号去噪处理,并取得了良好的效果。 【关键词】探地雷达;经验模态分解;信号去噪 1引言 探地雷达又称地质雷达 ,是近几年迅速发展起来的一种高分辨高效率的无损探测技术。探地雷达通过天线向地下发射高频电磁脉冲波 ,电磁波在地下介质传播过程中 ,当遇到存在电性差异的地下目标体,如空洞和分界面时,电磁波便会发生反射,返回到地面时由接收天线所接收。在对接收到的雷达波信号处理和分析的基础上,根据信号的波形、振幅和双程走时等参数便可推断地下目标体的空间位置、结构、电性及几何形态,从而达到对地下隐蔽目标体的探测目的。 信号处理是探地雷达技术中的研究重点之一, 其目的是以高的分辨率在探地雷达显示设备上显示反射波图像,提取反射波的振幅、相位和频率等各种有用的参数,帮助解释地质结构信息。 2固有模态函数 由于大多数信号或数据不是固有模态函数, 在任意时刻数据可能包含多个振荡模式, 这也解释了为什么简单的 Hilbert 变换不能给出一个普通信号的频率内容的完整描述。所以必须把数据分解成固有模态函数,从物理上定义一个有意义的瞬时频率的必要条件是:函数对称于局部零均值,且有相同的极值和过零点。据此,Huang 提出了固有模态函数的定义。一个固有模态函数是满足如下两个条件的函数:

(1在整个数据序列中,极值点的数量与过零点的数量必须相等,或最多相差不能多于一个。 (2在任一时间点上,信号的局部极大值和局部极小值定义的包络平均值为零。 第一个限定条件是非常明显的;它近似于传统的平稳高斯过程关于窄带的定义。第二个条件是一个新的想法;它把传统的全局限定变为局部限定。这种限定是必须的,它可去除由于波形不对称而造成的瞬时频率的波动。采用固有模态函数(以下简称 IMF这个名称是因为它代表了信号数据中的振荡模式。IMF 在按过零点定义的每一个周期中,只包括一个本征模态的振荡,没有复杂的叠加波存在。如此定义,一个基本的 IMF 并不限定为窄带信号,也可以是幅度调制和频率调制的。事实上,它可以是非平稳的。图 1是一个典型的 IMF 。固有模态函数(IMF概念的提出使得用 Hilbert 变换定义的瞬时频率具有实际的物理意义, 而提出 IMF 分量的 EMD 分解方法的出现则使瞬时频率可用于复杂的非平稳信号的分析。图 1所示为一典型的固有模态函数,具有相同数目的过零点和极值点,上下包络关于零值对称。 图 1一个典型的固有模态函数(Huang 3经验模态分解

EMD经验模式分解信息汇总资料

EMD Empirical Mode Decomposition 经验模态分解 美国工程院院士黄锷1998年提出 一种自适应数据处理或挖掘方法,适用于非线性、非平稳时间序列的处理。 1.什么是平稳和非平稳 时间序列的平稳,一般是宽平稳,即时间序列的方差和均值是和时间无关的常数,协方差与与时间间隔有关、与时间无关。未来样本时间序列,其均值、方差、协方差必定与已经获得的样本相同,理解为平稳的时间序列是有规律且可预测的,样本拟合曲线的形态具有“惯性”。 而非平稳信号样本的本质特征只存在于信号所发生的当下,不会延续到未来,不可预测。 严格来说实际上不存在理想平稳序列,实际情况下都是非平稳。 2.什么是EMD经验模态分解方法? EMD理论上可以应用于任何类型时间序列信号的分解,在实际工况中大量非平稳信号数据的处理上具有明显优势。这种优势是相对于建立在先验性假设的谐波基函数上的傅里叶分解和小波基函数上的小波分解而言的。EMD分解信号不需要事先预定或强制给定基函数,而是依赖信号本身特征自适应地进行分解。 相对于小波分解:EMD克服了基函数无自适应性的问题,小波分析需要选定一个已经定义好的小波基,小波基的选择至关重要,一旦选定,在整个分析过程中无法更换。这就导致全局最优的小波基在局部的表现可能并不好,缺乏适应性。而EMD不需要做预先的分析与研究,可以直接开始分解,不需要人为的设置和干预。 相对于傅里叶变换:EMD克服了传统傅里叶变换中用无意义的谐波分量来表示非线性、非平稳信号的缺点,并且可以得到极高的时频分辨率。 EMD方法的关键是将复杂信号分解为有限个本征模函数IMF,Intrinsic Mode Function。分解出来的IMF分量包含了原信号的不同时间尺度上的局部特征信号。 这句话中:不同时间尺度=局部平稳化,通过数据的特征时间尺度来获得本征波动模式,然后分解or筛选数据。 本质上,EMD将一个频率不规则的波化为多个单一频率的波+残波的形式。 原波形=ΣIMFs+余波 信号()t f 筛选出的本征模函数IMF包括余波,对应有实际的物理成因。 现实中的信号分量IMF不会保持完全稳定的频率和振幅,也常常无法从各个分量中直接看出信号规律。EMD分解经常被用作信号特征提取的一个预先处理手段,将各IMF分量作为后续分析方法的输入,以完成更加复杂的工作。 3.IMF的筛选过程 第一步: Get原数据曲线f(t)所有极大值点,三次样条插值函数拟合成原数据的上包络线; Get原数据曲线f(t)所有极小值点,三次样条插值函数拟合成原数据的下包络线。

经验模态分解和算法

经验模态分解和算法 摘要——黄提出了经验模态分解(EMD)的数据处理方法,也对这种技术应用的有效性进行了讨论。许多变种算法(新的停止准则,即时版本的算法)也产生出来。数值模拟用来作经验性的评估执行单元运用于语音识别和分离方面,得出的实验结果认为这种方法是根据自适应的常数Q的滤波器组提出的。 1.介绍 近来,一种被称为EMD的新的非线性方法被黄等人提出,这种方法能够自适应的把非平稳信号分解成一系列零均值的AMFM信号(调频调幅) 的总和。尽管这种方法经常有着显著的效果,但是这个方法在算法方面的定义是困难的,因此这种方法没有作为一种分析方法得到承认,一般一种分析方法是需要有理论分析和性能评估。因此本文的目的是用实验的方式使得该算法更容易理解,并且提出了基于原算法的各种各样的改进的算法。设置实验性能评估的许多初始条件是为了获取一种有效的分解并且使得该算法更容易理解。 2.EMD基础 EMD的出发点是把信号内的震荡看作是局部的。实际上,如果我们要看评估信号x(t)的2个相邻极值点之间的变化(2个极小值,分别在t-和t+处),我们需要定义一个(局部)高频成分{d(t),t-<=t<=t+}(局部细节),这个高频成分与震荡相对应,震荡在2个极小值之间并且通过了极大值(肯定出现在2极小值之间)。为了完整这个图形,我们还需要定义一个(局部)低频成分m(t)(局部趋势),这样x(t)=m(t)+d(t),(t-<=t<=t+)。对于整个信号的所有震动成分,如果我们能够找到合适的方法进行此类分解,这个过程可以应用于所有的局部趋势的残余成分,因此一个信号的构成成分能够通过迭代的方式被抽离出来。 对于一个给定的信号x(t),进行有效的EMD分解步骤如下: 1)找出想x(t)的所有极值点 2)用插值法对极小值点形成下包络emint(t),对极大值形成上包络emax(t) 3)计算均值m(t)=(emint(t)+emax(t))/2 4)抽离细节d(t)=x(t)-m(t) 5)对残余的m(t)重复上诉步骤 在实际中,上述过程需要通过一个筛选过程进行重定义,筛选过程的第一个迭代步骤是对细节信号d(t)重复从1-4步,直到d(t)的均值是0,或者满足某种停止准则才停止迭代。一旦满足停止准则,此时的细节信号d(t)就被称为IMF,d(t)对应残量信号用第5步计算。通过以上过程,极值点的数量伴随着残量信号的产生而越来越少,整个分解过程会产生有限个模函数(IMF)。 模函数和残量信号可以进行谱分析,但是这个谱分析不能从狭隘的角度来看。首先,需要强调一下,即使是谐振荡,应用上述方法产生的高频和低频也只是局部的,没办法产生一个预设的频带过滤(例如小波变换)进行辨识。选择的模函数对应了一个自适应(依赖于信号自身的)的时变滤波器。一个这方面的例子:一个信号由3个部分组成(这3个部分是时间频率上都明显叠加的信号),用上述方法成功的分解了。分解如图1所示。这个例子的程序是emd_fmsin2.m 另外一个例子(emd_sawtooth.m)强调了EMD潜在的非谐振性质如图2所示。在这些例子中,线性的非线性的震荡都能被有效的识别和分离。因而,任何谐振分析(傅里叶,小波,…)可能结束在同类文章中,更少的紧凑和更少的实际意义的分解。 3.算法的改进 正如第二部分所定义的,EMD算法依赖于一系列的选项,这些选项需要用户控制,并且需要专业的知识。在此我们的目的找出更准确的选项,并且给予原来的算法进行改进。3.1采样率,插值方法和边缘效应

基于小波变换的图像去噪中阈值选取的研究

自适应图像分析与识别 课程论文 题目基于小波变换的图像去噪中的阈值研究学院电子工程学院 专业电路与系统

摘要:图像去噪是对图像进行高级处理的重要基础,已经成为当今数字图像处理的热门领域之一。基于小波多尺度分解的阈值方法是一种有效的信号去噪方法.本文详细介绍了阈值的选取方法,并列举了几种常用的阈值函数,并对它们进行了比较,以期给小波图像处理研究者一些参考。 关键字:图像去噪;阈值;阈值函数;小波变换

Abstract:Image denoising is an important foundation for advanced image processing,and is the hot research area in digital image processing.The thresholding denoising based on the multi-scales wavelet is an effective way.This text intuoduced the way how to choose the threshold, listed some common thresholding function and compared them,in the hope of giving some references for the researcher in image processing with wavelet. Key words:image denoising,thresholding,thresholding function,wavelet transform

小波阈值去噪及MATLAB仿真

哈尔滨工业大学华德应用技术学院毕业设计(论文) 摘要 小波分析理论是一种新兴的信号处理理论,它在时间上和频率上都有很好的局部性,这使得小波分析非常适合于时—频分析,借助时—频局部分析特性,小波分析理论已经成为信号去噪中的一种重要的工具。利用小波方法去噪,是小波分析应用于实际的重要方面。小波去噪的关键是如何选择阈值和如何利用阈值来处理小波系数,通过对小波阈值化去噪的原理介绍,运用MATLAB 中的小波工具箱,对一个含噪信号进行阈值去噪,实例验证理论的实际效果,证实了理论的可靠性。本文设计了几种小波去噪方法,其中的阈值去噪的方法是一种实现简单、效果较好的小波去噪方法。 关键词:小波变换;去噪;阈值 -I-

哈尔滨工业大学华德应用技术学院毕业设计(论文) Abstract Wavelet analysis theory is a new theory of signal process and it has good localization in both frequency and time do-mains.It makes the wavelet analysis suitable for time-frequency analysis.Wavelet analysis has played a particularly impor-tant role in denoising,due to the fact that it has the property of time- frequency analysis. Using wavelet methods in de-noising, is an important aspect in the application of wavelet analysis. The key of wavelet de-noising is how to choose a threshold and how to use thresholds to deal with wavelet coefficients. It confirms the reliability of the theory through the wavelet threshold de-noising principle, the use of the wavelet toolbox in MATLAB, carrying on threshold de-noising for a signal with noise and actual results of the example confirmation theory.In this paper,the method of Wavelet Analysis is analyzed.and the method of threshold denoising is a good method of easy realization and effective to reduce the noise. Keywords:Wavelet analysis;denoising;threshold -II-

matlab小波去噪详解

小波去噪 [xd,cxd,lxd]=wden(x,tptr,sorh,scal,n,'wname') 式中: 输入参数x 为需要去噪的信号; 1.tptr :阈值选择标准. 1)无偏似然估计(rigrsure)原则。它是一种基于史坦无偏似然估计(二次方程)原理的自适应阈值选择。对于一个给定的阈值t,得到它的似然估计,再将似然t 最小化,就得到了所选的阈值,它是一种软件阈值估计器。 2)固定阈值(sqtwolog)原则。固定阈值thr2 的计算公式为:thr 2log(n) 2 = (6)式中,n 为信号x(k)的长度。 3)启发式阈值(heursure)原则。它是rigrsure原则和sqtwolog 原则的折中。如果信噪比很小,按rigrsure 原则处理的信号噪声较大,这时采用sqtwolog原则。 4)极值阈值(minimaxi)原则。它采用极大极小原理选择阈值,产生一个最小均方误差的极值,而不是没有误差。 2.sorh :阈值函数选择方式,即软阈值(s) 或硬阈值(h). 3.scal :阈值处理随噪声水平的变化,scal=one 表示不随噪声水平变化,scal=sln 表示根据第一层小波分解的噪声水平估计进行调整,scal=mln 表示根据每一层小波分解的噪声水平估计进行调整. 4.n 和wname 表示利用名为wname 的小波对信号进行n 层分解。输出去噪后的数据xd 及xd 的附加小波分解结构[cxd,lxd]. 常见的几种小波:haar,db,sym,coif,bior haar db db1 db2 db3 db4 db5 db6 db7 db8 db9 db10 sym sym2 sym3 sym4 sym5 sym6 sym7 sym8 coif coif1 coif2 coif3 coif4 coif5 coif6 coif7 coif8 coif9 coif10 bior bior1.1 bior1.3 bior1.5 bior2.2 bior2.4 bior2.6 bior2.8 bior3.5 bior3.7 bior3.9 bior4.4

小波去噪最优阈值自适应选取概要

30 李剑等:局部放电在线监测中小波阈值去噪法的最优阈值自适应选择 its application in partial discharge detection[J] . IEEE Trans on Dielectrics and Electrical Insulation,2002,9(3:446-457. Vol. 30 No. 8 wavelet polarity of modulus maxima[J].Power System Technology, 2003,27(5:55-57,71. [12] Saito N,Beylkin G.Multiresolution representations using the autocorrelation functions of compactly supported wavelets[J] . IEEE Trans on Signal Processing,1993,41(12:3584-3590. [13] 徐冰雁,黄成军,钱勇,等.多小波相邻系数法在局部放电去噪中的应用[J].电网技术,2005,29(15:61-64,70. Xu Bingyan, Huang Chengjun,Qian Yong,et al.Application of multiwavelet based neighboring coefficient method in denoising of partial discharge[J]. Power System Technology,2005 ,29(15: 61-64,70. [14] Donoho D L . De-noising by soft- thresholding[J]. IEEE Trans on Information Theory,1995,41(3:613-627. [15] 王立欣,诸定秋,蔡维铮.局部放电在线监测中基于小波变换的阈值消噪算法研究[J].电网技术,2003,27(4:46-48,78. Wang Lixin , Zhu Dingqiu , Cai Weizheng . Wavelet transform based de-noise algorithm by thresholding in on-line

二维经验模态分解的关键问题

Key Problems of Bidimensional Empirical Mode Decomposition Guangtao Ge School of Information and Electronic Engineering Zhejiang Gongshang University Hangzhou, China ggtggtggt@https://www.doczj.com/doc/778729547.html, Guangtao Ge Department of Information Science & Electronic Engineering Zhejiang University Hangzhou, China ggtggtggt@https://www.doczj.com/doc/778729547.html, Abstract—In recent years , an emerging theory of Empirical Mode Decomposition (EMD) is an important breakthrough in the field of signal processing. This paper reviews three key problems in the development of the Bidimensional Empirical Mode Decomposition (BEMD) theory and introduces the latest developments of surface-fitting algorithms, boundary corruption solution methods and the BEMD criterion for stopping the sifting process. Then this paper also comments several open problems in BEMD theory and discusses the existing difficult problems . Keywords-component; Bidimensional Empirical Mode Decomposition; surface-fitting; boundary corruption; BEMD criterion 二维经验模态分解的关键问题 葛光涛1, 2 1.浙江工商大学信息与电子工程学院,杭州,中国,310018 2. 浙江大学信息与电子工程学系,杭州,中国,310027 ggtggtggt@https://www.doczj.com/doc/778729547.html, 【摘要】近年国际上出现的经验模态分解理论(Empirical Mode Decomposition , EMD)是信号处理领域的一个重大突破。本文综述了二维经验模态分解(Bidimensional Empirical Mode Decomposition , BEMD)理论发展过程中涉及的三个关键问题,并着重介绍了曲面拟合、边界污染处理和停止准则制定这三个方面的最新进展,评述了其中的公开问题,对研究中现存的难点问题进行了探讨。 【关键词】二维经验模态分解;曲面拟合;边界污染;停止准则 1 引言 1998 年美国国家宇航局(NASA)的Norden E.huang等人首次提出对一列时间序列数据先进行经验模态分解(以Empirical Mode Decomposition表示 , 简写作EMD),然后对各个分量作希尔伯特变换。这种变换被称为希尔伯特黄变换(Hilbert-Huang transform, HHT)[1,3]。这种信号处理方法被认为是近年来对以傅立叶变换为基础的线性和稳态谱分析的一个重大突破。该方法从本质上讲是对一个复杂的信号进行平稳化处理[2],其结果是将信号中不同尺度的波动或趋势逐级分解开来,由于这种分解是基于局部特征尺度,作为一种完全的数据驱动方法,它具有良好的局部适应性,因此,该方法既能对平稳信号进行分析,又能对非平稳信号进行分析。 以往很多的一维信号处理方法被成功地推广到空间二维信号处理领域,被应用于二维图像数据的处理时同样可以得到良好的效果[4]。例如,傅立叶变换、离散余弦变换以及小波变换等信号处理的技术已经广泛应用于数字图像处理领域,具体应用包括图像滤波、图像复原、图像增强、图像拼接、图像压缩以及数字水印等方面。经验模态分解方法在一维信号处理方面已经获得巨大的成功,所以如果能将一维经验模式分解方法推广到二维,将会给图像处理等领域提供一种新的有效的数据处理手段。 二维经验模态分解理论的发展过程中主要涉及以下几个重要问题[5]:曲面的精确拟合,边界污染的克服,合理停止准则的制定等。 2010 International Conference on Remote Sensing (ICRS) 978-1-4244-8729-5/10/$26.00 ?2010 IEEE ICRS2010

经验模态分解及其雷达信号处理

0引言 当今信息时代,快速、高效的数据处理技术在科学研究、 工程应用乃至社会生活的方方面面都起着重要的作用。伴随着计算机技术的兴起,频谱分析被广泛应用于工程实践。但 Fourier 变换要求信号满足Dirichlet 条件,即对信号进行平稳 性假设,而现实中大量存在的是非平稳信号。针对Fourier 变换的不足,短时Fourier 变换(Short Time Fourier Transform , STFT ),即通过对一个时间窗内的信号进行Fourier 变换,分 析非平稳信号。虽然STFT 具有时频分析能力,但它具有固定 的时频分辨率,且难以找到合适的窗函数。而时频分析方法中的Wigner-Ville 分布存在严重的交叉项,会造成虚假信息的出现。小波变换具有可变的时频分析能力,在图像压缩和边缘检测等领域得到成功应用。但小波基不能自动更换,而且对众多小波基的合理选取也是一个难题。小波变换本质上是一种可变窗的Fourier 变换[1]。总之,这些方法没有完全摆脱 Fourier 变换的束缚,从广义上说都是对Fourier 变换的某种修 正,而且其时频分辨能力受到Heisenberg 不确定原理的制约。 Huang 等[1]在1998年提出了经验模态分解(Empirical 经验模态分解及其雷达信号处理 摘要 为了准确估计信号的瞬时频率,可用经验模态分解(EMD )将信号分解成有限个窄带信号。该方法因具有很强的自适应性及 处理非平稳信号的能力而引起广泛关注,已在众多工程领域得到应用。但EMD 是基于经验的方法,数值仿真和试验研究仍是分析 EMD 算法的主要方法。本文总结了EMD 算法存在的问题,并指出深入挖掘支持该方法的理论基础是消除制约EMD 算法进一步发 展和应用推广的关键。针对所存在的问题,从改进筛分停止准则、抑制端点效应、改进包络生成方法和解决模态混叠问题等诸方面阐述了改进EMD 算法的研究进展。综述了EMD 在雷达信号处理领域的应用。最后分析指出了进一步研究EMD 的几个主要方向。 关键词经验模态分解(EMD );希尔伯特-黄变换(HHT );时频信号分析;雷达信号处理 中图分类号TN911.7文献标识码A 文章编号1000-7857(2010)10-0101-05 杨彦利,邓甲昊 北京理工大学机电学院;机电工程与控制重点实验室,北京100081 Empirical Mode Decomposition and Its Application to Radar Signal 收稿日期:2010-03-24 作者简介:杨彦利,博士研究生,研究方向为探测、制导与控制,电子信箱:yyl070805@https://www.doczj.com/doc/778729547.html, ;邓甲昊(通信作者),教授,研究方向为中近程目标探测、 信号处理及感知与自适应控制,电子信箱:bitdjh@https://www.doczj.com/doc/778729547.html, YANG Yanli,DENG Jiahao Laboratory of Mechatronic Engineering &Control,School of Mechatronical Engineering,Beijing Institute of Technology,Beijing 100081,China Abstract In order to better estimate the instantaneous frequency of signals,the empirical mode decomposition (EMD)algorithm,proposed by Huang et al.,is used to break multi-component signals into several narrow subbands.EMD is an adaptive method and can be used to analyze nonstationary signals,so it has been widely applied to many engineering fields.However,EMD is still considered as an empirical method because it lacks a rigorous mathematical foundation,and its analysis depends largely on numerical simulations and experimental investigations.In this paper,related problems of the EMD algorithm are discussed,including its theoretical foundation and its applications.Some modified EMD algorithms are considered to overcome problems,such as stopping criterion,end effect,envelope of signals and mode aliasing.The applications of EMD to the processing of radar signals are reviewed.Some directions for further research on the EMD algorithm are suggested. Keywords empirical mode decomposition (EMD);Hilbert-Huang transform (HHT);time-frequency signal processing;radar signal processing 综述文章(Reviews )

经验模态分解(EMD)在地球物理资料中的应用(附MATLAB程序)

经验模态分解(EMD)在地球物理资料中的应用(附MATLAB程序) 摘要经验模态分解(EMD)是由Huang等人提出的一种新的分析非线性、非平稳信号的方法。本文研究经验模态分解原理及其在地球物理资料中的应用。首先研究经验模态分解的基本原理和算法,对地球物理资料(地震资料,重磁资料)进行EMD分解试验分析,然后研究基于...

摘  要
经验模态分解(EMD)是由Huang等人提出的一种新的分析非线性、非平稳信号的方法。本文研究经验模态分解原理及其在地球物理资料中的应用。首先研究经验模态分解的基本原理和算法,对地球物理资料(地震资料,重磁资料)进行EMD分解试验分析,然后研究基于EMD的Hilbert变换原理及其在提取地震属性信息中的应用,对实际地震时间剖面和时间切片进行EMD时频分析试验。
本文的方法研究和数据试验分析表明:经EMD分解变换得到的IMF序列是直接从原始时序数据中分离出来的,事先无需确定分解阶次,能更好反映原始数据固有的物理特性,每阶IMF序列都代表了某种特定意义的频带信息;EMD分解获得的IMF序列具有稳态性,对IMF进行Hilbert变换,就可以得到单个固有模态函数的瞬时振幅、瞬时相位和瞬时频率,这些信息可以清楚的显示信号的时频特征;EMD分析方法用于分解地球物理资料和作时频分析是有效的。
关键词:经验模态分解;地球物理;Hilbert变换;固有模态函数;时频分析
 
ABSTRACT
Empirical Mode Decomposition(EMD), which was developed by huang, is a new method to analyse nonlinear and nonstationary signals. In this paper, we study the theory of EMD and its applications in handling geophysical data. Firstly, we introduce the theory and the Methodology about EMD ,then we will use this method to analyse the geophysical information, including the g ravity anomaly data and seism’s data. Based on the EMD, we will study the theory of the Hilbert transform, and then use it to obtain the images,from which we can deal with the seism’s slice by time- frequency analysis in order to distill the seism’s information.


The studying of EMD and the data testing in this paper indicate: intrinsic mode functions(IMF) is comes from the original signal by the EMD, in this course, we need not fix on the Decomposition number and would not influenced by some men’s factors. Every intrinsic mode function stand for some given information and can reflect the

小波阈值降噪

一种基于小波阈值降噪方法的图像降噪效果研究 电子信息学院 赵华 2015201355 一、引言 数字图像处理(Digital Image Processing ,DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP 技术成为信息技术中最重要的学科分支之一。在现实生活中,DIP 应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。 然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所?干扰?的现象。如果图像被干扰得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。根据研究表明,当一张图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。本文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。 二、基本原理 1.小波基本原理 在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数ψ(x )来构造,ψ(x )称为母小波(mother wavelet ),或者叫做基本小波。一组小波基函数, {ψa,b (x )},可以通过缩放和平移基本小波来生成: ?? ? ??-ψ=ψa b x a x b a 1)(, 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波ψ(x )为基的连续小波变换定义为函数f (x )和ψa,b (x )的内积: ( )()dx a b x a x f f x W b a b a ?? ? ??-ψ=ψ=?∞ ∞-1,,,

MATLAB中地阈值获取和阈值去噪(超级有用)

1.阈值获取 MATLAB中实现阈值获取的函数有ddencmp、thselect、wbmpen和wwdcbm,下面对它们的用法进行简单的说明。 (1)ddencmp的调用格式有以下三种: (1)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,IN2,X) (2)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,'wp',X) (3)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,'wv',X) 函数ddencmp用于获取信号在消噪或压缩过程中的默认阈值。输入参数X为一维或二维信号;IN1取值为'den'或'cmp','den'表示进行去噪,'cmp'表示进行压缩;IN2取值为'wv'或'wp',wv表示选择小波,wp表示选择小波包。返回值THR是返回的阈值;SORH是软阈值或硬阈值选择参数;KEEPAPP表示保存低频信号;CRIT是熵名(只在选择小波包时使用)。 (2)函数thselect的调用格式如下: THR=thselect(X,TPTR); THR=thselect(X,TPTR)根据字符串TPTR定义的阈值选择规则来选择信号X的自适应阈值。 自适应阈值的选择规则包括以下四种: *TPTR='rigrsure',自适应阈值选择使用Stein的无偏风险估计原理。 *TPTR='heursure',使用启发式阈值选择。 *TPTR='sqtwolog',阈值等于sqrt(2*log(length(X))).

*TPTR='minimaxi',用极大极小原理选择阈值。 阈值选择规则基于模型 y = f(t) + e,e是高斯白噪声N(0,1)。(3)函数wbmpen的调用格式如下: THR=wbmpen(C,L,SIGMA,ALPHA); THR=wbmpen(C,L,SIGMA,ALPHA)返回去噪的全局阈值THR。THR 通过给定的一种小波系数选择规则计算得到,小波系数选择规则使用Birge-Massart的处罚算法。{C,L]是进行去噪的信号或图像的小波分解结构;SIGMA是零均值的高斯白噪声的标准偏差;ALPHA是用于处罚的调整参数,它必须是一个大于1的实数,一般去ALPHA=2。 设t*使crit(t)=-sum(c(k)^2,k<=t) + 2 * SIGMA^2 * t*(ALPHA+log(n/t))的最小值,其中c(k)是按绝对值从大到小排列的小波包系数,n是系数的个数,则THR=|c(t*)|。 wbmpen(C,L,SIGMA,ALPHA,ARG)计算阈值并画出三条曲线。 2 * SIGMA^2 * t*(ALPHA+log(n/t)) sum(c(k)^2, k<=t) crit(t) (4)wdcbm的调用格式有以下两种: (1)[THR,NKEEP]=wdcbm(C,L,ALPHA); (2)[THR,NKEEP]=wdcbm(C,L,ALPHA,M); 函数wdcbm是使用Birge-Massart算法获取一维小波变换的阈值。返回值THR是与尺度无关的阈值,NKEEP是系数的个数。[C,L]是要进行压缩或消噪的信号在j=length(L)-2层的分解结构;LAPHA

小波变换去噪基础知识整理

1.小波变换的概念 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么? 有几种定义小波(或者小波族)的方法: 缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。在双正交小波的情况,分解和重建的滤波器分别定义。 高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。例如Daubechies和Symlet 小波。 缩放函数:小波由时域中的小波函数(即母小波)和缩放函数(也称为父小波)来定义。 小波函数实际上是带通滤波器,每一级缩放将带宽减半。这产生了一个问题,如果要覆盖整个谱需要无穷多的级。缩放函数滤掉变换的最低级并保证整个谱被覆盖到。 对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。例如Meyer小波。 小波函数:小波只有时域表示,作为小波函数。例如墨西哥帽小波。 3.小波变换分类 小波变换分成两个大类:离散小波变换(DWT) 和连续小波转换(CWT)。两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。 DWT用于信号编码而CWT用于信号分析。所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。 4.小波变换的优点 从图像处理的角度看,小波变换存在以下几个优点: (1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述) (2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性 (3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口) (4)小波变换实现上有快速算法(Mallat小波分解算法) 另: 1) 低熵性变化后的熵很低; 2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性 3) 去相关性域更利于去噪; 4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。 小波变换的一个最大的优点是函数系很丰富, 可以有多种选择, 不同的小波系数生成的小波会有不同的效果。噪声常常表现为图像上孤立像素的灰度突变, 具有高频特性和空间不相关性。图像经小波分解后可得到低频部分和高频部分, 低频部分体现了图像的轮廓, 高频部分体现为图像的细节和混入的噪声, 因此, 对图像去噪, 只需要对其高频系数进行量化处理即可。

相关主题
文本预览
相关文档 最新文档