当前位置:文档之家› 基于Labview的快速傅里叶变换的实现

基于Labview的快速傅里叶变换的实现

基于Labview的快速傅里叶变换的实现
基于Labview的快速傅里叶变换的实现

一、概述

FFT(Fast Fourier Transformation),即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。DFT对于X(K)的每个K值,需要进行4N次实数相乘和(4N-2)次相加,对于N个k值,共需N*N乘和N(4N-2)次实数相加。改进DFT算法,减小它的运算量,利用DFT中的周期性和对称性,使整个DFT的计算变成一系列迭代运算,可大幅度提高运算过程和运算量,这就是FFT的基本思想。虽然它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。

虽然FFT大幅度地降低了常规傅立叶变换的运算量,但对于一般的单片机而言,处理FFT运算还是力不从心。主要原冈是FFT计算过程中的蝶形运算是复数运算,要分开实部和虚部分别计算。在这里利用LabVIEW来实现快速傅立叶变化。LabVIEW是一种程序开发环境,类似于BASIC开发环境;但LabVIEW与其它计算机语言相比,有一个特别重要的不同点:其它计算机语言都是采用基于文本的语言产生代码行;而LabVIEW使用图形化编程语言G编写程序,产生.的程序是框图的形式。像C或BASIC一样,LabVIEW也是通用的编程系统,有一个可完成任何编程任务的庞大的函数库。LabVIEW的函数库包括数据采集、GPIB、串口控制、数据分析、数据显示及数据存储等。LabVIEW也有传统的程序调试工具,如设置断点、以动画方式显示数据及其通过程序(子V1)的结果、单步执行等,便于程序的调试。

二、方案论证

1:单一频率正弦信号的FFT

采用Labview的信号产生模板提供的常用的信号发生器,从中找到正弦信号发生器,使其产生一个正弦信号。将此正弦信号输入到实数FFT.vi中的X端进行快速傅里叶变换处理,使时域信号转换为频域信号。然后经过复数至极坐标转换后将其显示出来。其结构如图1所示。

2:叠加了高频噪声的正弦信号的FFT

在Labview的信号产生模板提供的常用的信号发生器中找到均匀白噪声发生器,使其产生一个均匀白噪声,再将均匀白噪声输入到一个巴特沃斯高通滤波器,使其产生一个高频噪声,将此高频噪声与一正弦信号合并从而产生一个混合信号。再将混合信号输入到一个低通滤波器进行低通滤波,滤掉高频噪声。将滤波后的信号输入到实数FFT.vi中的X端进行快速傅里叶变换处理,使时域信号转换为频域信号。然后经过复数至极坐标转换后将其显示出来。其结构如图2所示。

合并

种用图标代替文本行创建应用程序的图形化编程语言。Labview程序又称为虚拟仪器(Virtual Instrument,简称VI)。LabVIEW是一种程序开发环境,类似于C和BASIC开发环境,但LabVIEW与其它计算机语言的显著区别是:其它计算机语言都是采用基于文本的语言产生代码行,而LabVIEW使用图形化编程语言G语言编写程序,产生的程序是框图的形式。像C或BASIC一样, LabVIEW也是通用的编程系统,有一个可完成任何编程任务的庞大的函数库。 LabVIEW的函数库包括数据采集、GPIB、串口控制、数据分析、数据显示及数据存储等等。 LabVIEW也有传统的程序调试工具,如设置断点、以动画形式显示数据及其通过程序(子VI)的结果、单步执行等等,便于程序的调试。

虚拟仪器,简称VI,包括三部分:前面板、框图程序和图标/连接器。程序前面板,用于设置输入量和观察输出量。它模拟真实仪器的前面板。其中,输入量被称为Controls(控件),用户可以通过控件向VI中设置输入参数等;输出量被称为Indicators(指示器),VI通过指示器向用户提

示状态或输出数据等。用户还可以使用各种图标,如旋钮、开关、按钮、图表及图形等,使前面板易看易懂。每一个程序前面板都有相应的框图程序与之对应。框图程序,用图形编程语言编写,可以把它理解成传统程序的源代码。框图中的部件可以看成程序节点,如循环控制、事件控制和算术功能等。这些部件都用连线连接,以定义框图的数据流动方向。图标/接口器件可以让用户把VI程序变成一个对象(VI子程序),然后在其他程序中像子程序一样地调用它。图标表示在其他程序中被调用的子程序,而接线端口则表示图标的输入/输出口,就像子程序的参数端口对应着VI程序前面板控件和指示器的数值。

虚拟仪器和传统仪器的差异很大,具有很强的优势。独立的传统仪器,例如示波器和波形发生器,性能强大,但是价格昂贵,且被厂家限定了功能,只能完成一件或几件具体的工作,因此,用户通常都不能够对其加以扩展或自定义其功能。仪器的旋钮和开关、置电路及用户所能使用的功能对这台仪器来说都是固定的。另外,开发这些仪器还必须要用专门的技术和高成本的元部件,从而使它们身价颇高且很不容易更新。基于PC机的虚拟仪器系统,诞生以来就充分利用了现成即用的PC机所带来的最新科技。这些科技和性能上的优势迅速缩短了独立的传统仪器和PC机之间的距离,包括功能强大的处理器(如Pentium4)、操作系统及微软Windows XP、NET 技术和Apple Mac OSx。除了融合诸多功能强大的特性,这些平台还为用户提供了简单的联网工具。此外,传统仪器往往不便随身携带,而虚拟仪器可以在笔记本电脑上运行,充分体现了其便携特性。需要经常变换应用项目和系统要求的工程师和科学家们需要有非常灵活的开发平台以便创建适合自己的解决方案。可以使用虚拟仪器以满足特定的需要,因为有安装在PC机上的应用软件和一系列可选的插入式硬件,无需更换整套设备,即能完成新系统的开发。

2.正弦信号的产生

在模拟电路围,信号频率以Hz或周期(Cycle)来测量,但在数字系统中使用数字频率,它是模拟频率与采样频率之比,即

数字频率=模拟频率/采样频率,其单位为周期数/采样数。

要产生一个正弦信号需要一个Sub VI: Sine Pattern .vi(在信号处理->信号生成子模板)。Sine Pattern .vi有4个输入我们只用采样和周期输入,如图3示。Sine Pattern.vi生成的是正弦信号的数组。数组的长度(1个完整周期)只与采样参数有关,是固定长度的。换句话说,我们可以任意确定正弦信号的一

个完整周期取多少个采样点。对于上面的默认参数是是一个完整正弦信号周期取128点(也就是数组的长度)。

图3 正弦信号

3.均匀噪声的加入

在实际的环境中,一定会有噪声的影响因此我们加入高频噪声。首先我们要建立一个均匀白噪声.vi(在信号处理->信号生成子模板)。将白噪声通过一个巴特沃斯高通滤波器与原正弦信号合并,使其产生一个叠加了高频噪声的正弦波。其结构如图4示。

图4 叠加了高频噪声的正弦波框图

其中均匀白噪声如图5所示,我们可以控制白噪声的采样频率和幅值。而巴特沃斯高通滤波器如图6所示,高截止频率:fh是高截止频率。默认值为0.45。如滤波器类型为0(lowpass)或1(highpass),VI将忽略该参数。滤波器类型为2 (Bandpass)或3 (Bandstop)时,fh必须大于低截止频率,fl并且满足奈奎斯特准则。奈奎斯特准则(Nyquist criterion): f1< 0.5fs,其中f1为截止频率,fs为采样频率。低截止频率:fl是低截止频率并且必须满足Nyquist准则。默认值为0.125。fl小于0或大于采样频率的一半,VI将把滤波后X设置为空数组并返回错误。滤波器类型为2 (Bandpass) 或3 (Bandstop)时,fl必须小于高截止频率(fh)。介数:阶数指定滤波器的阶数并且必须大于0。默认值为2。如阶数小于等于0,VI将把滤波后X设置为空数组并返回错误。采样频

率:fs是采样频率并且必须大于0。默认值为1.0。如采样频率:fs小于等于0,VI将把滤波后X设置为空数组并返回错误。

图5 均匀白噪声发生器

图6 巴特沃斯滤波器

4.低通滤波

将叠加了高频噪声的正弦波通过一个低通滤波器,使用低通滤波器对原始信号滤波,滤掉高频噪声。其结构如图7示。

图7 低通滤波

5.快速傅里叶变换

时域信号有一定缺陷,需要将时域信号转换为频域信号,将时域信号转换为频域信号的方法有很多,例如,Fourier变换,快速Fourier变换FFT,小波变

换等。下面使用Labview的FFT将上述的时域信号转换为频域信号,FFT的框图如图8所示,其中左端的X是FFt接受时域输入序列的输出;右端的FFT{X}是FFT的频域输出。将滤波后的正弦波输入到X端(实数FFT.vi的输入为实数数组)连接后结构如图9所示。输出FFT{X}表示的是一个复数,是FFT变换的结果[X],用Complex to Polar函数可以将r和θ分开。r越大,表示[X]序列在此处对应的频率成分越高。[X]序列之间的频率间隔df=fs/N,其中fs表示信号的采样率,N表示采样点数。因此由r序列的最大值对应的Index和df就可以确定该信号中哪个频率下的谐波成分最高,该频率f=df*r序列中最大值对应的Index。

图8 FFT的框图

图9 快速傅里叶变换处理结构图

四、性能的测试

1.单一频率正弦信号的FFT

首先使正弦信号输出的采样频率为500,周期为5的正弦波。波形如图10所示。

实验八 利用快速傅里叶变换(FFT)实现快速卷积(精选、)

实验八 利用FFT 实现快速卷积 一、 实验目的 (1) 通过这一实验,加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。 (2) 进一步掌握循环卷积和线性卷积两者之间的关系。 二、 实验原理与方法 数字滤波器根据系统的单位脉冲响应h(n)是有限长还是无限长可分为有限长单位脉冲响应(Finite Impulse Response )系统(简记为FIR 系统)和无限长单位脉冲响应(Infinite Impulse Response )系统(简记为IIR 系统)。 对于FIR 滤波器来说,除了可以通过数字网络来实现外,也可以通过FFT 的变换来实现。 一个信号序列x(n)通过FIR 滤波器时,其输出应该是x(n)与h(n)的卷积: ∑+∞ -∞ =-= =m m n h m x n h n x n y )()()(*)()( 或 ∑+∞ -∞ =-= =m m n x m h n x n h n y ) ()()(*)()( 当h(n)是一个有限长序列,即h(n)是FIR 滤波器,且10-≤≤N n 时 ∑-=-=1 0) ()()(N m m n x m h n y 在数字网络(见图6.1)类的FIR 滤波器中,普遍使用的横截型结构(见下图6.2 图6.1 滤波器的数字网络实现方法 图6.2 FIR 滤波器横截型结构 y(n) y(n) -1-1-1-1

应用FFT 实现数字滤波器实际上就是用FFT 来快速计算有限长度列间的线性卷积。 粗略地说,这种方法就是先将输入信号x(n)通过FFT 变换为它的频谱采样 值X(k),然后再和FIR 滤波器的频响采样值H(k)相乘,H(k)可事先存放在存储器中,最后再将乘积H(k)X(k)通过快速傅里叶变换(简称IFFT )还原为时域序列,即得到输出y(n)如图6.3所示。 图6.3 数字滤波器的快速傅里叶变换实现方法 现以FFT 求有限长序列间的卷积及求有限长度列与较长序列间的卷积为例来讨论FFT 的快速卷积方法。 (1) 序列)(n x 和)(n h 的列长差不多。设)(n x 的列长为1N ,)(n h 的列长为2N ,要求 )()(n x n y =N ∑-=-==1 ) ()()(*)()(N r r n h r x n h n x n h 用FFT 完成这一卷积的具体步骤如下: i. 为使两有限长序列的线性卷积可用其循环卷积代替而不发生混叠,必须选择循环卷积长度121-+≥N N N ,若采用基2-FFT 完成卷积运 算,要求m N 2=(m 为整数)。 ii. 用补零方法使)(n x ,)(n h 变成列长为N 的序列。 ?? ?-≤≤-≤≤=10 10)()(11N n N N n n x n x ?? ?-≤≤-≤≤=10 1 0)()(22N n N N n n h n h iii. 用FFT 计算)(),(n h n x 的N 点离散傅里叶变换 )()(k X n x FFT ??→? )()(k H n h FFT ??→? iv. 做)(k X 和)(k H 乘积,)()()(k H k X k Y ?= v. 用FFT 计算)(k Y 的离散傅里叶反变换得 y(n)

傅里叶变换在信号处理中的应用

傅里叶变换在信号处理中的应用 傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、

概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值谱——显示与频率对应的幅值大小)。 尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅立叶变换具有非常好的性质,使得它如此的好用和有用,让人不得不感叹造物的神奇: 1.傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子; 2.傅立叶变换的逆变换容易求出,而且形式与正变换非常类似; 3.正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; 4.著名的卷积定理指出:傅立叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; 5.离散形式的傅立叶变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT)). 正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。

有関傅立叶变换的FPGA实现 傅立叶变换是数字信号处理中的基本操作,广泛应用于表述及分析离散时域信号领域。但由于其运算量与变换点数N的平方成正比关系,因此,在N较大时,直接应用DFT算法进行谱变换是不切合实际的。然而,快速傅立叶变换技术的出现使情况发生了根本性的变化。本文主要描述了采用FPGA来实现2k/4k/8k点FFT的设计方法。 离散傅里叶变换的应用 DFT在诸多多领域中有着重要应用,下面仅是颉取的几个例子。需要指出的是,所有DFT的实际应用都依赖于计算离散傅里叶变换及其逆变换的快速算法,即快速傅里叶变换(快速傅里叶变换(即FFT)是计算离散傅里叶变换及其逆变换的快速算法。)。 1.频谱分析 DFT是连续傅里叶变换的近似。因此可以对连续信号x(t)均匀采样并截断以得到有限长的离散序列,对这一序列作离散傅里叶变换,可以分析连续信号x(t)频谱的性质。前面还提到DFT应用于频谱分析需要注意的两个问题:即采样可能导致信号混叠和截断信号引起的频谱泄漏。可以通过选择适当的采样频率(见奈奎斯特频率)消减混叠。选择适当的序列长度并加窗可以抑制频谱泄漏。 2.数据压缩 由于人类感官的分辨能力存在极限,因此很多有损压缩算法利用

C语言实现FFT(快速傅里叶变换)

C语言实现FFT(快速傅里叶变换) 函数原型:空快速傅立叶变换(Struct Compx *xin,Intn) 函数函数:对输入复数组执行快速傅立叶变换(FFT)输入参数:*xin复结构组的第一个地址指针。结构输出参数:no * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *结构compx u,w,t。 nv2 =快速傅立叶变换_ N/2;nm1 =快速傅立叶变换_ N-1;(I = 0;i

实验一快速傅里叶变换

实验一 快速傅里叶变换之报告 一 、实验目的 1、在理论学习的基础上,通过本实验加深对快速傅立叶变换的理解; 2、熟悉并掌握按时间抽取FFT 算法的程序; 3、了解应用FFT 进行信号频谱分析过程中可能出现的问题,例如混淆、泄漏、 栅栏效应等,以便在实际中正确应用FFT 。 二 实验内容 a ) 信号频率F =50Hz ,采样点数N=32,采样间隔T= matlab 程序代码为: F=50; T=; N=32; n=0:N-1; t=n*T; A=sin(2*pi*F*t); figure; Y = fft(A,N); h = (abs(Y)); h=h/max(h(1:N)); for n=1:N; string1=strcat('X(',num2str(n-1), ')=',num2str(h(n))); disp(string1); f=(n/T)/N; end stem([0:N-1]/N/T,h); xlabel('?μ?ê/HZ'); ylabel('??·ùX£¨ejw£?'); title('·ù?μì?D?'); 上述代码命令中,将FFT 变换后的数字变量K ,在画图时转换成频域中的频率f 。这主 要是根据数字频率与模拟域频率之间的关系: T Ω=ω 其中ω、Ω分别为数字和模拟域中的频率,且N k πω2= f π2=Ω 于是有: NT k f = 运算结果: X(1)=1 X(2)= X(3)= X(4)=

X(5)= X(6)= X(7)= X(8)= X(9)= X(10)= X(11)= X(12)= X(13)= X(14)= X(15)= X(16)= X(17)= X(18)= X(19)= X(20)= X(21)= X(22)= X(23)= X(24)= X(25)= X(26)= X(27)= X(28)= X(29)= X(30)= X(31)=1 b)信号频率F=50Hz,采样点数N=32,采样间隔T= 同理可将a)中F、N、T,参数改成要求值(以下均是如此),即可得,X(0)= X(1)= X(2)= X(3)= X(4)= X(5)= X(6)= X(7)= X(8)=1 X(9)= X(10)= X(11)= X(12)= X(13)= X(14)= X(15)= X(16)= X(17)= X(18)= X(19)= X(20)= X(21)= X(22)= X(23)= X(24)=1 X(25)= X(26)= X(27)= X(28)= X(29)= X(30)= X(31)=

快速傅里叶变换FFT的FPGA设计与实现--电科1704 郭衡

快速傅里叶变换FFT的FPGA设计与实现 学生姓名郭衡 班级电科1704 学号17419002064 指导教师谭会生 成绩 2020年5 月20 日

快速傅里叶变换FFT 的设计与实现 一、研究项目概述 非周期性连续时间信号x(t)的傅里叶变换可以表示为:= )(?X dt t j e t x ? ∞ ∞ --1 )(?,式中计算出来的是信号x(t)的连续频谱。但是,在实际的控制系统中能够式中计算出来的是信号x(t)的连续频谱。但是,在实际的控制系统中能够算信号x(t)的频谱。 有限长离散信号x(n),n=0,1,…,N-1的DFT 定义为: ∑-=-=-==1 02,1.....10)()(N n N j N kn N e W N k W n x K X π、、。 可以看出,DFT 需要计算大约N2次乘法和N2次加法。当N 较大时,这个计算量是很大的。利用WN 的对称性和周期性,将N 点DFT 分解为两个N /2点的DFT ,这样两个N /2点DFT 总的计算量只是原来的一半,即(N /2)2+(N /2)2=N2/2,这样可以继续分解下去,将N /2再分解为N /4点DFT 等。对于N=2m 点的DFT 都可以分解为2点的DFT ,这样其计算量可以减少为(N /2)log2N 次乘法和Nlog2N 次加法。图1为FFT 与DFT-所需运算量与计算点数的关系曲线。由图可以明显看出FFT 算法的优越性。 图1 FFT 与DFT 所需乘法次数比 较

X[1] 将x(n)分解为偶数与奇数的两个序列之和,即x(n)=x1(n)+x2(n)。 x1(n)和x2(n)的长度都是N /2,x1(n)是偶数序列,x2(n)是奇数序列,则 ∑∑=--=-=+2 )12(120 2)1.....,0()(2)(1)(N n k n N N n km N N k W n x W n x K X 所以)1...,0()(2)(1)(12 22120 -=+=∑∑-=-=N k W n x W W n x K X N n km N k N km N N n 由于km N N j km N j km N W e e W 2/2 /2222===--ππ ,则 )1.....,0)((2)(1)(2)(1)(12 2/120 2/-=+=+=∑∑-=-=N k k X W k X W n x W W n x K X k N N n km N k N N n kn N 其中X1(k)和X2(k)分别为x1(n)和x2(n)的N /2点DFT 。由于X1(k)和X2(k)均以N /2为周期,且WNk+N/2=-WNk ,所以X(k)又可表示为: )12/....,1,0)((2)(1)(-=+=N k k X W k X K X k N )12/....,1,0)((2)(1)2/(-=-=+N k k X W k X N K X k N

快速傅里叶变换实验报告..

快速傅里叶变换实验报告 班级: 姓名: 学号:

快速傅里叶变换 一.实验目的 1.在理论学习的基础上,通过本实验加深对快速傅立叶变换的理解; 2.熟悉并掌握按时间抽取FFT 算法的程序; 3.了解应用FFT 进行信号频谱分析过程中可能出现的问题,例如混淆、泄漏、栅栏效应等,以便在实际中正确应用FFT 。 二.实验内容 1.仔细分析教材第六章‘时间抽取法FFT ’的算法结构,编制出相应的用FFT 进行信号分析的C 语言(或MATLAB 语言)程序; 2.用FFT 程序分析正弦信号 ()sin(2)[()(*)],(0)1y t f t u t u t N T t u π=---∞<<+∞=设 分别在以下情况进行分析并讨论所得的结果: a ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.000625s b ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.005s c ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.0046875s d ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.004s e ) 信号频率 f =50Hz ,采样点数N=64,采样间隔T=0.000625s f ) 信号频率f =250Hz ,采样点数N=32,采样间隔T=0.005s g ) 将c ) 信号后补32个0,做64点FFT 三.实验要求 1.记录下实验内容中各种情况下的X (k)值,做出频谱图并深入讨论结果,说明参数的变化对信号频谱产生哪些影响。频谱只做模特性,模的最大值=1,全部归一化;

2.打印出用C 语言(或MATLAB 语言)编写的FFT 源程序,并且在每一小段处加上详细的注释说明; 3.用C 语言(或MATLAB 语言)编写FFT 程序时,要求采用人机界面形式: N , T , f 变量均由键盘输入,补零或不补零要求设置一开关来选择。 四.实验分析 对于本实验进行快速傅里叶变换,依次需要对信号进行采样,补零(要求补零时),码位倒置,蝶形运算,归一化处理并作图。 此外,本实验要求采用人机界面形式,N,T,F 变量由键盘输入,补零或不补零设置一开关来选择。 1.采样 本实验进行FFT 运算,给出的是正弦信号,需要先对信号进行采样,得到有限 长序列()n x , N n ...... 2,1,0= Matlab 实现: t=0:T:T*(N-1); x=sin(2*pi*f*t); 2.补零 根据实验要求确定补零与否,可以用if 语句做判断,若为1,再输入补零个数, 并将补的零放到采样得到的序列的后面组成新的序列,此时新的序列的元素个数等于原采样点个数加上补零个数,并将新的序列个数赋值给N 。 Matlab 实现: a=input('是否增加零点? 是请输入1 否请输入0\n'); if (a) ZeroNum=input('请输入增加零点的个数:\n'); else ZeroNum=0; end if (a) x=[x zeros(1, ZeroNum)];%%指令zeros(a,b)生成a 行b 列全0矩阵,在单行矩阵x 后补充0 end N=N+ZeroNum; 3.码位倒置 本实验做FFT 变换的级数为M ,N M 2log =

傅里叶变换在信号处理中的应用

傅里叶变换在信号处理中的应用 姓名董柱班级电气工程及其自动化学号1109141013 摘要: 傅里叶变换是一种特殊的积分变换。通过傅里叶变换把信号的从时域变换到频域研究,采用频域法较之经典时域的方法有很多突出的优点,虽然傅里叶分析不是信息科学与技术领域中唯一的变换域方法,但是不得不承认,在此领域中,傅里叶变换分析始终有着广泛的应用,通过傅里叶变换实现信号的滤波,调制,抽样是傅里叶变换在信号处理中最主要的作用。通过对信号的调制可以将信号的低频成分调制到高频,实现频谱搬移,减少马间串扰,提高抗噪声新能,有利于信号的远距离传输,另外,对信号采样可以使连续信号离散化,有利于用计算机对信号进行处理,总之,傅里叶变换在信号处理中有着非常重要的作用。傅里叶变换是学习其他频域变换的基础。 关键词: 傅里叶变换,时域,频域,信号处理,信息科学与技术,滤波,调制,抽样。 一傅里叶变换 1.定义 f(t)是t的函数,如果t满足狄里赫莱条件:具有有限个间断点;具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换, ②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做 F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ① 傅里叶变换 傅里叶逆变换 2.分类 连续傅立叶变换:一般情况下,若“傅立叶变换”一词的前面未加任何限定语,则指的是“连续傅立叶变换”。“连续傅立叶变换”将平方可积的函数f(t) 表示成复指数函数的积分或级数形式。 f(t) = \mathcal^[F(ω)] = \frac{\sqrt{2π}} \int\limits_{-\infty}^\infty F(ω)e^{iωt}\,dω.

详解FFT(快速傅里叶变换FFT.

kn N W N N 第四章 快速傅里叶变换 有限长序列可以通过离散傅里叶变换(DFT)将其频域也离散化成有限长 序列.但其计算量太大,很难实时地处理问题,因此引出了快速傅里叶变换 (FFT). 1965 年,Cooley 和 Tukey 提出了计算离散傅里叶变换(DFT )的快 速算法,将 DFT 的运算量减少了几个数量级。从此,对快速傅里叶变换(FFT ) 算法的研究便不断深入,数字信号处理这门新兴学科也随 FFT 的出现和发 展而迅速发展。根据对序列分解与选取方法的不同而产生了 FFT 的多种算 法,基本算法是基2DIT 和基2DIF 。FFT 在离散傅里叶反变换、线性卷积 和线性相关等方面也有重要应用。 快速傅里叶变换(FFT )是计算离散傅里叶变换(DFT )的快速算法。 DFT 的定义式为 N ?1 X (k ) = ∑ x (n )W N R N (k ) n =0 在所有复指数值 W kn 的值全部已算好的情况下,要计算一个 X (k ) 需要 N 次复数乘法和 N -1 次复数加法。算出全部 N 点 X (k ) 共需 N 2 次复数乘法 和 N ( N ? 1) 次复数加法。即计算量是与 N 2 成正比的。 FFT 的基本思想:将大点数的 DFT 分解为若干个小点数 DFT 的组合, 从而减少运算量。 W N 因子具有以下两个特性,可使 DFT 运算量尽量分解为小点数的 DFT 运算: (1) 周期性: ( k + N ) n N = W kn = W ( n + N ) k (2) 对称性:W ( k + N / 2 ) = ?W k N N 利用这两个性质,可以使 DFT 运算中有些项合并,以减少乘法次数。例子: 求当 N =4 时,X(2)的值

快速傅里叶变换实验报告

快速傅里叶变换实验报告

————————————————————————————————作者:————————————————————————————————日期: ?

快速傅里叶变换实验报告 机械34班 刘攀 2013010558 一、 基本信号(函数)的FF T变换 1. 000()sin()sin 2cos36x t t t t π ωωω=+++ 1) 采样频率08s f f =,截断长度N =16; 取02ωπ=rad/s,则0f =1Hz ,s f =8Hz ,频率分辨率 f ?=s f f N ?= =0.5Hz 。 最高频率c f =30f =3Hz ,s f >2c f ,故满足采样定理,不会发生混叠现象。 截断长度02T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下:

幅值误差0A ?=,相位误差0??=。 2) 采样频率08s f f =,截断长度N=32; 取02ωπ=rad/s ,则0f =1Hz,s f =8Hz ,频率分辨率f ?=s f f N ?==0.25Hz 。 最高频率c f =30f =3H z,s f >2c f ,故满足采样定理,不会发生混叠现象。 截断长度04T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下:

幅值误差0A ?=,相位误差0??=。 2. 00()sin()sin116x t t t π ωω=++ 1) 采样频率08s f f =,截断长度N=16; 取02ωπ=ra d/s,则0f =1Hz ,s f =8Hz,频率分辨率f ?=s f f N ?==0.5H z。 最高频率c f =110f =11H z,s f <2c f ,故不满足采样定理,会发生混叠现象。 截断长度02T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图:

傅里叶变换在信号与系统系统中的应用

河北联合大学 本科毕业设计(论文) 题目傅里叶变换在信号与系统中的应用 院系理学院 专业班级07数学一班 学生姓名刘帅 学生学号200710050113 指导教师佟玉霞 2011年5月24日

题目傅里叶变换在信号与系统中的应用 专业数学与应用数学姓名刘帅学号200710050113 主要内容、基本要求、主要参考资料等 主要内容 傅里叶变换是一种重要的变换,且在与通信相关的信号与系统中有着广泛的应用。本文主要研究傅里叶变换的基本原理;其次,掌握其在滤波,调制、解调,抽样等方面中的应用。分析了信号在通信系统中的处理方法,通过傅里叶变换推导出信号调制解调的原理,由此引出对频分复用通信系统的组成原理的介绍。 基本要求 通过傅里叶变换实现一个高通滤波,低通滤波,带通滤波。用傅里叶变换推导出信号调制解调的原理。通过抽样实现连续信号离散化,简化计算。另外利用调制的原理推导出通信系统中的时分复用和频分复用。 参考资料 [1]《信号与系统理论、方法和应用》徐守时著中国科技大学出版社 2006年3月修订二版 [2]《信号与系统》第二版上、下册郑君里、应启珩、杨为理著高等教育出版社 [3]《通信系统》第四版 Simon Haykin 著宋铁成、徐平平、徐智勇等译沈 连丰审校电子工业出版社 [4]《信号与系统—连续与离散》第四版 Rodger E.Ziemer 等著肖志涛等译 腾建辅审校电子工业出版社 [5]《现代通信原理》陶亚雄主编电子工业出版社 [6]《信号与系统》乐正友著清华大学出版社 [7]《信号与线性系统》阎鸿森、王新风、田惠生编西安交通大学出版社 [8]《信号与线性系统》张卫钢主编郑晶、徐琨、徐建民副主编西安电 子科技大学出版社 [9] https://www.doczj.com/doc/793073552.html,/view/191871.htm//百度百科傅里叶变换 [10]《通信原理》第六版樊昌信曹丽娜编著国防工业出版社 [11]A.V.Oppenheim,A.S.Willsky with S.H.Nawab.Siganals and systems(Second edition).Prentice-Hall,1997.中译:刘树棠。信号与系统。西安交通工业大学出版社 完成期限 指导教师 专业负责人

快速傅里叶变换实验报告

快速傅里叶变换实验报告 快速傅里叶变换实验报告 机械34班刘攀 2019010558 一、基本信号(函数)的FFT变换 1. x(t)=sin(ω0t+)+sin2ω0t+cos3ω0t 6 1) 采样频率fs=8f0,截断长度N=16; 取ω0=2πrad/s,则f0=1Hz,fs=8Hz,频率分辨率?f=?f=fs=0.5Hz。 Nπ最高频率fc=3f0=3Hz,fs>2fc,故满足采样定理,不会发生混叠现象。截断长度T=2T0,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下: 幅值误差?A=0,相位误差??=0。 2) 采样频率fs=8f0,截断长度N=32; 取ω0=2πrad/s,则f0=1Hz,fs=8Hz,频率分辨率?f=?f=fs=0.25Hz。 N最高频率fc=3f0=3Hz,fs>2fc,故满足采样定理,不会发生混叠现象。截断长度T=4T0,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下: 幅值误差?A=0,相位误差??=0。 2. x(t)=sin(ω0t+π 6)+sin11ω0t 1) 采样频率fs=8f0,截断长度N=16; 取ω0=2πrad/s,则f0=1Hz,fs=8Hz,频率分辨率?f=?f=fs=0.5Hz。 N最高频率 fc=11f0=11Hz,fs 漏,但在整周期截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图:

由上图可以看出,并未体现出11f0的成分,说明波形出现混叠失真。为了消除混叠 现象,应加大采样频率,使之大于等于 22Hz。 f0处的幅值误差?A=0,11f0处由于出现 了混叠现象,幅值误差没有意义;相位误差??=0。 2) 采样频率fs=32f0,截断长度N=32; 取ω0=2πrad/s,则f0=1Hz,fs=32Hz,频率分辨率?f=?f=fs=1Hz。 N最高频率 fc=11f0=11Hz,fs>2fc,故满足采样定理,不会发生混叠现象。 漏,但在整周期截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图: 该频谱图体现出了f0和11f0的成分,说明未失真,且幅值均为1,。幅值误差?A=0,相位误差??=0。 3. x(t)=0t 1) 采样频率fs=8f0,截断长度N=16; 取ω0=2πrad/s,则f0=1Hz,fs=8Hz,频率分辨率?f=?f=fs=0.5Hz。 N最高频率f cf 0Hz,fs>2fc,故满足采样定理,不会发生混叠现象。 频谱图: 在忽略旁瓣信号的情况下,可近似认为: x(t)≈0.9098cos(3ω0t+56.9520?) 故幅值误差?A=0.9096-1=-0.0904,相位误差??=56.9520?。 2) 采样频率fs=32f0,截断长度N=32; 取ω0=2πrad/s,则f0=1Hz,fs=32Hz,频率分辨率?f=?f=fs=1Hz。N最高频率f cf 0Hz,fs>2fc,故满足采样定理,不会发生混叠现象。 频谱图: 在忽略旁瓣信号的情况下,可近似认为:

C语言实现FFT(快速傅里叶变换)

#include #include /********************************************************************* 快速福利叶变换C函数 函数简介:此函数是通用的快速傅里叶变换C语言函数,移植性强,以下部分不依赖硬件。此函数采用联合体的形式表示一个复数,输入为自然顺序的复 数(输入实数是可令复数虚部为0),输出为经过FFT变换的自然顺序的 复数 使用说明:使用此函数只需更改宏定义FFT_N的值即可实现点数的改变,FFT_N的应该为2的N次方,不满足此条件时应在后面补0 函数调用:FFT(s); 时间:2010-2-20 版本:Ver1.0 参考文献: **********************************************************************/ #include #define PI 3.1415926535897932384626433832795028841971 //定义圆周率值#define FFT_N 128 //定义福利叶变换的点数 struct compx {float real,imag;}; //定义一个复数结构struct compx s[FFT_N]; //FFT输入和输出:从S[1]开始存放,根据大小自己定义 /******************************************************************* 函数原型:struct compx EE(struct compx b1,struct compx b2) 函数功能:对两个复数进行乘法运算 输入参数:两个以联合体定义的复数a,b 输出参数:a和b的乘积,以联合体的形式输出 *******************************************************************/ struct compx EE(struct compx a,struct compx b) { struct compx c; c.real=a.real*b.real-a.imag*b.imag; c.imag=a.real*b.imag+a.imag*b.real; return(c); } /***************************************************************** 函数原型:void FFT(struct compx *xin,int N)

快速傅里叶变换实验报告

快速傅里叶变换实验报告 机械34班 攀 2013010558 一、 基本信号(函数)的FFT 变换 1. 000()sin()sin 2cos36 x t t t t πωωω=+++ 1) 采样频率08s f f =,截断长度N=16; 取02ωπ=rad/s ,则0f =1Hz ,s f =8Hz ,频率分辨率f ?=s f f N ?==0.5Hz 。 最高频率c f =30f =3Hz ,s f >2c f ,故满足采样定理,不会发生混叠现象。 截断长度02T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下:

幅值误差0A ?=,相位误差0??=。 2) 采样频率08s f f =,截断长度N=32; 取02ωπ=rad/s ,则0f =1Hz ,s f =8Hz ,频率分辨率f ?=s f f N ?==0.25Hz 。 最高频率c f =30f =3Hz ,s f >2c f ,故满足采样定理,不会发生混叠现象。 截断长度04T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下:

幅值误差0A ?=,相位误差0??=。 2. 00()sin()sin116 x t t t πωω=++ 1) 采样频率08s f f =,截断长度N=16; 取02ωπ=rad/s ,则0f =1Hz ,s f =8Hz ,频率分辨率f ?=s f f N ?==0.5Hz 。 最高频率c f =110f =11Hz ,s f <2c f ,故不满足采样定理,会发生混叠现象。 截断长度02T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图:

傅里叶变换及应用

傅里叶变换在MATLZB里的应用 摘要:在现代数学中,傅里叶变换是一种非常重要的变换,且在数字信号处理中有着广泛的应用。本文首先介绍了傅里叶变换的基本概念、性质及发展情况;其次,详细介绍了分离变数法及积分变换法在解数学物理方程中的应用。傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号,再利用傅立叶反变换将这些频域信号转换成时域信号。应用MATLAB实现信号的谱分析和对信号消噪。 关键词:傅里叶变换;MA TLAB软件;信号消噪 Abstract: In modern mathematics,Fourier transform is a transform is very important ,And has been widely used in digital signal processing.This paper first introduces the basic concepts, properties and development situation of Fourier transform ;Secondly, introduces in detail the method of separation of variables and integral transform method in solving equations in Mathematical Physics.Fourier transformation makes the original time domain signal whose analysis is difficult easy, by transforming it into frequency domain signal that can be transformed into time domain signal by inverse transformation of Fourier. Using Mat lab realizes signal spectral analysis and signal denoising. Key word: Fourier transformation, software of mat lab ,signal denoising 1、傅里叶变换的提出及发展 在自然科学和工程技术中为了把较复杂的运算转化为较简单的运算,人们常常采用所谓变换的方法来达到目的"例如在初等数学中,数量的乘积和商可以通过对数变换化为较简单的加法和减法运算。在工程数学里积分变换能够将分析运算(如微分,积分)转化为代数运算,正是积分变换这一特性,使得它在微分方程和其它方程的求解中成为重要方法之一。 1804年,法国科学家J-.B.-J.傅里叶由于当时工业上处理金属的需要,开始从事热流动的研究"他在题为<<热的解析理论>>一文中,发展了热流动方程,并且指出如何求解"在求解过程中,他提出了任意周期函数都可以用三角级数来表示的想法。他的这种

fft快速傅里叶变换 c语言实现

#include #include #include #define N 1000 /*定义复数类型*/ typedef struct{ double real; double img; }complex; complex x[N], *W; /*输入序列,变换核*/ int size_x=0; /*输入序列的大小,在本程序中仅限2的次幂*/ double PI; /*圆周率*/ void fft(); /*快速傅里叶变换*/ void initW(); /*初始化变换核*/ void change(); /*变址*/ void add(complex ,complex ,complex *); /*复数加法*/ void mul(complex ,complex ,complex *); /*复数乘法*/ void sub(complex ,complex ,complex *); /*复数减法*/ void output(); int main(){ int i; /*输出结果*/ system("cls"); PI=atan(1)*4; printf("Please input the size of x:\n"); scanf("%d",&size_x); printf("Please input the data in x[N]:\n"); for(i=0;i

快速傅里叶变换实验

快速傅里叶变换实验

————————————————————————————————作者:————————————————————————————————日期: ?

实验七快速傅里叶变换实验 2011010541?机14 林志杭 一、实验目的 1.加深对几个特殊概念的理解:“采样”……“混叠”;“窗函数”(截断)……“泄漏”;“非整周期截取”……“栅栏”。 2.加深理解如何才能避免“混叠”,减少“泄漏”,防止“栅栏”的方法和措施以及估计这些因素对频谱的影响。 3.对利用通用微型计算机及相应的FFT软件,实现频谱分析有一个初步的了解。 二、实验原理 为了实现信号的数字化处理,利用计算机进行频谱分析――计算信号的频谱。由于计算机只能进行有限的离散计算(即DFT),因此就要对连续的模拟信号进行采样和截断。而这两个处理过程可能引起信号频谱的畸变,从而使DFT的计算结果与信号的实际频谱有误差。有时由于采样和截断的处理不当,使计算出来的频谱完全失真。因此在时域处理信号时要格外小心。 时域采样频率过低,将引起频域的“混叠”。为了避免产生“混叠”,要求时域采样时必须满足采样定理,即:采样频率fs必须大于信号中最高频率fc的2倍(fs>2fc)。因此在信号数字处理中,为避免混叠,依不同的信号选择合适的采样频率将是十分重要的。 频域的“泄漏”是由时域的截断引起的。时域的截断使频域中本来集中的能量向它的邻域扩散(如由一个δ(f)变成一个sinc(f),而泄漏的旁瓣将影响其它谱线的数值。时域截断还会引起“栅栏效应”,对周期信号而言,它是由于截断长度不等于周期信号的周期的整数倍而引起的。因此避免“栅栏”效应的办法就是整周期截断。 综上所述,在信号数字化处理中应十分注意以下几点: 1.为了避免“混叠”,要求在采样时必须满足采样定理。 为了减少“泄漏”,应适当增加截断长度和选择合适的窗 对信号进行整周期截取,则能消除“栅栏数应”。 增加截断长度,则可提高频率分辨率。 三、预习内容 熟悉Matlab语言、函数和使用方法;利用Matlab所提供的FFT函数编写程序。 四、实验内容及步骤 调通所编写的程序,对下列信号〔函数〕进行离散FFT变换,根据题目的要求……FFT变换点数〔截断长度〕及采样频率,计算各点的傅里叶变换值,画出频谱图,对典型的谱线标出其幅值及相角。 (-)内容: 1. t t t t x 3 cos 2 sin ) 6 sin( )(ω ω π ω+ + + = 代码: N=input('N='); n=input('n=');t=1:1:N;

傅里叶变换的应用

傅立叶变换在图像处理中有非常非常的作用。因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法, 比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。 印象中,傅立叶变换在图像处理以下几个话题都有重要作用: 1.图像增强与图像去噪 绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘; 2.图像分割之边缘检测 提取图像高频分量 3.图像特征提取: 形状特征:傅里叶描述子 纹理特征:直接通过傅里叶系数来计算纹理特征 其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性 4.图像压缩 可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换; 傅立叶变换 傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。连续情况下要求原始信号在一个周期内满足绝对可积条件。离散情况下,傅里叶变换一定存在。冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时,讨论它的光谱或频率谱。同样,傅立叶变换使我们能通过频率成分来分析一个函数。 傅立叶变换有很多优良的性质。比如线性,对称性(可以用在计算信号的傅里叶变换里面); 时移性:函数在时域中的时移,对应于其在频率域中附加产生的相移,而幅度频谱则保持不变; 频移性:函数在时域中乘以e^jwt,可以使整个频谱搬移w。这个也叫调制定理,通讯里面信号的频分复用需要用到这个特性(将不同的信号调制到不同的频段上同时传输); 卷积定理:时域卷积等于频域乘积;时域乘积等于频域卷积(附加一个系数)。(图像处理里面这个是个重点) 信号在频率域的表现 在频域中,频率越大说明原始信号变化速度越快;频率越小说明原始信号越平缓。当频率为0时,表示直流信号,没有变化。因此,频率的大小反应了信号的变化

相关主题
文本预览
相关文档 最新文档