当前位置:文档之家› 数值分析第六章学习小结

数值分析第六章学习小结

数值分析第六章学习小结
数值分析第六章学习小结

第六章 数值积分

--------学习小结

姓名 班级 学号

一、 本章学习体会

本章主要讲授了数值积分的一些求积公式及各种求积公式的代数精度,重点应掌握插值型求积公式,什么样的求积公式可以被称为插值型求积公式,Newton-Cotes 求积公式及其收敛性与数值稳定性,复化求积公式和高斯求积公式,在本章的学习过程中也遇到不少问题,比如本章知识点多,公式多,在做题时容易张冠李戴,其次对Newton-Cotes 求积公式的收敛性与数值稳定性理解不够透彻,处理一个实际问题时,不知道选取哪一种求积公式,来达到最精确的结果。

二、 本章知识梳理

6.1求积公式及其代数精度

代数精度的概念:如果求积公式(6.1)当f(x)为任何次数不高于m 的多项式时都成为等式,而当f(x)为某个m+1次多项式时(6.1)不能成为等式,则称求积公式(6.1)具有m 次代数精度。

6.2插值型求积公式

(1)求积公式: ?+++=b a n n n dx x n f R )()!

1()(1)1(ωξ (2)重要的定理:n+1个节点的插值型求积公式至少具有n 次代数度。

(3)求积系数:a b A k n k -=∑=0

6.3Newton-Cotes 求积公式及其收敛性与数值稳定性

(1)公式:∑?=≈n k k n k

b a x f dx x f 0)()()(λ∑=-=n

k k n k x f c a b 0)()()(

(2)截断误差:?∏=++-+=n n j j n n n dt t t f n h R 00

)1(2)()()!1(ξ (3)重要的定理:当n 为偶数时,n+1个节点的Newton-Cotes 求积公式至少具有n+1次代数精度。

(4)常用的Newton-Cotes 求积公式

n=1 梯形公式:)]()([2

)(b f a f a b dx x f b

a +-≈? 余项:),(),(12

)(3

1b a f a b R ∈''--=ηη,具有一次精度。 n=2 Simpson 公式:)]()2

(4)([6)(b f b a f a f a b dx x f b a +++-≈? 余项:),(),(2880

)()4(5

2b a f a b R ∈--=ηη,具有三次精度。 6.4复化求积法

(1)复化梯形公式:

])(2)()([2)(11∑?

-=+++≈n k b a kh a f b f a f h dx x f

截断误差: ],[),(122b a f h a b R T ∈''--=ηη

(2)复化Simpson 公式:

])(2)(4)()([3)(111212∑∑?=-=-+++≈m k m k k k b

a x f x f

b f a f h dx x f

截断误差:

],[),(180)4(4b a f h a b R s ∈--=ηη

6.5Gauss 型求积公式

(1)定义:若n 个节点的插值型求积公式(6.23)具有2n-1

次代数精度,则称它为Gauss 型求积公式。

(2)定理:n 个节点的 Gauss 型求积公式的代数精度为2n-1。

(3)定理:设},1,0),({ =k x g k 是区间[a,b]上带权)(x ρ的正交多项式系,则求

积公式(6.23) 、式(6.24)是Gauss 型求积公式的充分必要条件是它的求积节点是n 次正交多项式

)(x g n 的n 个零点。 (4)求积系数

公式:

n k dx x g x x x g x A b a k n k n k ,,2,1,)()()

()( ='-=?ρ

性质:1.

n k A k ,,2,1,0 =>

2.?∑==b a n k k dx x A )(0ρ

(5)求积公式的构造

第一步:找高斯点

1)待定系数法:设

,)(,)(,1)(2210c bx x x g a x x g x g ++=+==由正交性确定待定系数a,b,c,…..

2)利用递推公式

第二步:确定求积系数

k A 1)解线性方程组

2)n k dx x l x A b a k k ,,2,1,)()( ==?ρ

n k x x x x x l n

k i i i k i k ,,2,1,)(0 =--=∏≠=

三、本章思考题

1.插值型求积公式有何特点?

答:插值型求积公式主要用于计算定积分的值。数学推导中用拉格朗日插值函数代替被积函数,其表现形式是有限个函数值的线性组合,而组合系数恰好是拉格朗日插值基函数的定积分。(n+1)个结点的插值型求积公式的代数精度一般不超过n 。用数值求积公式计算定积分可以克服牛顿—莱布尼兹公式的弱点,但是数值计算结果带有误差。在用数值求积公式设计算法时,一般要考虑到误差估计,还应该使所求的数据结果的误差得到控制。

2.复化求积公式的误差是如何估计的? 答:对于复化梯形公式可根据其截断误差公式,首先求得n a b h -=,然后求)(x f 的二阶倒数,判断)(x f 的二阶倒数的单调性,然后在积分区间上求得

)(x f 的二阶倒数的最大值就可以估计复化求积公式的误差,

利用估计出的复化求积公式的误差还可以求得用复化梯形公式近似求解某一积分的有效数字有多少位。对于复化Simpson 公式方法同估计复化梯形公式的误差,只是截断误差公式有所改变,此时需求出)(x f 的四阶倒数然后判断其最大值。

四、本章测验题

问题:如果用复化梯形公式计算定积分dx e x ?-1

,要求截断误差不超过

4105.0-?,试问n 至少取多少? 解:复化的梯形公式的截断误差为:()η''312

f h a b R T --= )(max 12''103ηf h a b R x T ≤≤-≤,而1)(max )(max 10''10==-≤≤≤≤x x x e f η,n

h 1= 将以上各式代入)(max 12

''103ηf h a b R x T ≤≤-≤可得: 42''103105.0121)(max 12-≤≤?≤=-≤

n f h a b R x T η 解上述方程得8.40=n ,取41=n ,所以n 至少取41。

最新第六章习题答案-数值分析

第六章习题解答 2、利用梯形公式和Simpson 公式求积分2 1 ln xdx ? 的近似值,并估计两种方法计算值的最大 误差限。 解:①由梯形公式: 21ln 2 ()[()()][ln1ln 2]0.3466222 b a T f f a f b --= +=+=≈ 最大误差限 3''2 ()111 ()()0.0833******** T b a R f f ηη-=-=≤=≈ 其中,(1,2)η∈ ②由梯形公式: 13()[()4()()][ln14ln()ln 2]0.38586262 b a b a S f f a f f b -+= ++=++≈ 最大误差限 5(4)4()66 ()()0.0021288028802880 S b a R f f ηη-=-=≤≈, 其中,(1,2)η∈。 4、推导中点求积公式 3''()()()()() ()224 b a a b b a f x dx b a f f a b ξξ+-=-+<

数值分析第二章小结

第二章小结 对于n 元线性方程组b A =x (*),其中A 为非奇异矩阵,当0det ≠A 时,方程组有唯一的解向量。求解线性方程组的方法可分为两类:直接法(如克莱姆法则,高斯消去法等)和迭代法(Jacobi 迭代法和GS 迭代法等)。 一 、直接法 1、Gauss 消去法:(1) 顺序Gauss 消去法:将矩阵化为上三角矩阵 (2) 列主元素Gauss 消去法:将增广矩阵],[)()(k k b A 中绝对值最大的元素交换到底k 行的主对角线上。 比较:顺序Gauss 消去法的计算结果数值稳定性没有列主元素Gauss 消去法的好。 2、直接三角分解法: (1)定义 Doolittle 分解法和Crout 分解法:如果方程组b A =x 的系数矩阵A 可以分解为A=LU,其中L 是下三角矩阵U 是上三角矩阵,这样方程组b A =x 就化为两个容易求解的三角方程组:y U b Ly ==x ,。 定理3 Doolittle 分解法的充要条件是矩阵A 的前n-1阶顺序主子式0≠K D (k 取1,2,3,4...,n-1) 推论 矩阵A 有唯一Crout 分解的充要条件是A 的前n-1阶顺序主子式0≠K D (k 取1,2,3,4...,n-1) Doolittle 分解计算公式为: 对于k=1,2,3...,n ),...,1,(1 1n k k j u l a u k t tj kt kj kj +=-=∑-=

);,...,2,1(/)(1 1n k n k k i u u l a l kk k t tk it kj ik <++=-=∑-= 则求解下三角方程组y U b Ly ==x 和上三角方程组的计算方程式: ???? ?????--=-===-==∑∑+=-=1 ,,2,1,/)(u /),,3,2(11111 n n i u x u y x y x n i y l b y b y ii n i t t it i i nn n n t i t it i i Crout 分解计算公式为: 对于k=1,2,3...,n ),...,1,(1 1n k k j u l a l k t tk it ik ik +=-=∑-= );,...,2,1(/)(1 1n k n k k j l u l a u kk k t tj kt kj kj <++=-=∑-= 则求解下三角方程组y b y U L ==x ~ ~和上三角方程组的计算方程式: ?????????--=-===-==∑∑+=-=1 ,,2,1,),,3,2()(/1111111 n n i x u y x y x n i l y l b y l b y n i t t it i i n n ii t i t it i i (2)选主元的Doolittle 分解法 优点:对A 的要求低,只要矩阵A 可逆即可,即只要矩阵A 非奇异便可通过对A 做适当变换就可以了. 二、迭代法 1、思想:通过构造一个无限的向量序列,使它的极限是方程组b A =x 的解向量,通过求迭代矩阵,再通过迭代公式使解向量逐步逼近精确解。所以迭代法的缺点也很明显,凡是迭代法都存在收敛性与

教资 第六章 学习活动与指导

第六章学习活动与指导 第一节学习概述 学习的特征 ①学习表现为行为或行为潜能的变化(学会绘画(直接), 人的意识变化(隐性)) ②学习引起的行为变化或行为潜能的变化可能是相对持 久的 ③学习是由主体与客体相互作用形成的经验而产生的 学习的分类 知识学习 陈述性知识:(描述性知识)解决是什么问题 程序性知识:(操作性知识)解决做什么和怎么做的问题 加涅学习分类 根据产生学习的情境,把学习分成8类,由低而高顺次排列成一个层级 1)信号学习 2)刺激—反应学习 3)连锁学习 4)言语联结学习 5)辨别学习 6)概念学习

7)规则或原理学习 8)解决问题的学习 根据学生的学习结果,加涅又提出5种学习结果的划分 a)言语信息 b)智慧技能 c)认知策略 d)动作技能 e)态度 第二节学习理论 主要的学习理论: 行为主义学习理论 认知主义学习理论 建构主义学习理论 人本主义学习理论

行为主义学习理论 巴普洛夫的狗: 获得与消退 刺激泛化与分化 斯金纳的小白鼠 a)正强化和负强化 正强化:物质奖励(普雷马克原则) 负强化:摆脱厌恶刺激,如撤销惩罚 b)惩罚 c)消退 桑代克的猫 1)学习的实质——形成情境与反应的联结 2)学习的过程——一种渐进的、盲目的、尝试错误的过程 3)桑代克的三大学习定律:准备率、练习律、效果律 班杜拉 a)学习的实质——观察学习 b)直接强化:指观察者因表现出观察行为而受到强化 c)替代强化:指观察者因看到榜样的行为被强化而受到强化 d)自我强化:指对自己表现也符合标准的行为进行自我奖励

认知学习理论 苛勒——顿悟学习理论 a)学习是通过顿悟过程实现的 b)学习的实质是在主体内部构成完型 托尔曼学习观点 1)学习是有目的的、有期望的 2)学习是对完型的认知,是形成认知地图的过程 3)、学习的目的性是人类学习区别于动物学习的主要标志, 期望是托尔曼学习理论中的核心概念 布鲁纳的认知发现理论 对学习的看法: 1)学习的实质是主动地形成认知结构 2)学习包括获得、转化和评价三个过程 对教学的看法: a)教学的目的在于理解学科的基本结构 b)提倡发现学习 c)提出掌握学科的基本结构的教学原则 奥苏贝尔的有意义学习理论 学习的分类 a)接受学习和发现学习 b)意义学习和机械学习

数值分析(计算方法)总结

第一章绪论 误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差 是的绝对误差,是的误差,为的绝对误差限(或误差限) 为的相对误差,当较小时,令 相对误差绝对值得上限称为相对误差限记为:即: 绝对误差有量纲,而相对误差无量纲 若近似值的绝对误差限为某一位上的半个单位,且该位直到的第一位非零数字共有n位,则称近似值有n位有效数字,或说精确到该位。 例:设x==…那么,则有效数字为1位,即个位上的3,或说精确到个位。 科学计数法:记有n位有效数字,精确到。 由有效数字求相对误差限:设近似值有n位有效数字,则其相对误差限为 由相对误差限求有效数字:设近似值的相对误差限为为则它有n位有效数字 令 1.x+y近似值为和的误差(限)等于误差(限)的 和 2.x-y近似值为 3.xy近似值为 4. 1.避免两相近数相减 2.避免用绝对值很小的数作除数 3.避免大数吃小数 4.尽量减少计算工作量 第二章非线性方程求根 1.逐步搜索法 设f (a) <0, f (b)> 0,有根区间为(a, b),从x0=a出发,按某个预定步长(例如h=(b-a)/N)

一步一步向右跨,每跨一步进行一次根的搜索,即判别f(x k)=f(a+kh)的符号,若f(x k)>0(而 f(x k-1)<0),则有根区间缩小为[x k-1,x k] (若f(x k)=0,x k即为所求根), 然后从x k-1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k-x k-1|0.将[a0,b0]对分,中点x0= ((a0+b0)/2),计算 f(x0)。 3.比例法 一般地,设[a k,b k]为有根区间,过(a k, f(a k))、(b k, f(b k))作直线,与x轴交于一点x k,则: 1.试位法每次迭代比二分法多算一次乘法,而且不保证收敛。 2.比例法不是通过使求根区间缩小到0来求根,而是在一定条件下直接构造出一个点列(递推公式),使该点列收敛到方程的根。——这正是迭代法的基本思想。 事先估计: 事后估计 局部收敛性判定定理: 局部收敛性定理对迭代函数的要求较弱,但对初始点要求较高,即初始点必须选在精确解的附近 Steffensen迭代格式: Newton法: Newton下山法:是下山因子 弦割法: 抛物线法:令 其中:

数值分析 第一章 学习小结

数值分析 第1章绪论 --------学习小结 一、本章学习体会 通过本章的学习,让我初窥数学的又一个新领域。数值分析这门课,与我之前所学联系紧密,区别却也很大。在本章中,我学到的是对数据误差计算,对误差的分析,以及关于向量和矩阵的范数的相关内容。 误差的计算方法很多,对于不同的数据需要使用不同的方法,或直接计算,或用泰勒公式。而对于二元函数的误差计算亦有其独自的方法。无论是什么方法,其目的都是为了能够通过误差的计算,发现有效数字、计算方法等对误差的影响。 而对误差的分析,则是通过对大量数据进行分析,从而选择出相对适合的算法,尽可能减少误差。如果能够找到一个好的算法,不仅能够减少计算误差,同时也可以减少计算次数,提高计算效率。 对于向量和矩阵的范数,我是第一次接触,而且其概念略微抽象。因此学起来较为吃力,仅仅知道它是向量与矩阵“大小”的度量。故对这部分内容的困惑也相对较多。 本章的困惑主要有两方面。一方面是如何能够寻找一个可靠而高效的算法。虽然知道算法选择的原则,但对于很多未接触的问题,真正寻找一个好的算法还是很困难。另一方面困惑来源于范数,不明白范数的意义和用途究竟算什么。希望通过以后的学习能够渐渐解开自己的疑惑。 二、本章知识梳理

2.1 数值分析的研究对象 数值分析是计算数学的一个重要分支,研究各种数学问题的数值解法,包括方法的构造和求解过程的理论分析。它致力于研究如何用数值计算的方法求解各种基本数学问题以及在求解过程中出现的收敛性,数值稳定性和误差估计等内容。 2.2误差知识与算法知识 2.2.1误差来源 误差按来源分为模型误差、观测误差、截断误差、舍入误差与传播误差五种。其中模型误差与观测误差属于建模过程中产生的误差,而截断误差、舍入误差与传播误差属于研究数值方法过程中产生的误差。 2.2.2绝对误差、相对误差与有效数字 1.(1)绝对误差e指的是精确值与近似值的差值。 绝对误差:

《教室里的正面管教》阅读第六章读书心得

《教室里的正面管教》阅读第六章读书心得 关键词:相互尊重的沟通技巧指挥、邀请和鼓励读书感悟:所有的观点从提出者的角度看都是对的。过多的指令会增加孩子们的依赖性,消除主动性和合作意愿,并会鼓励被动的攻击行为(勉强把一件事做最少的部分,留下尽可能多的部分让老师去“烦恼”)怎么理解这句话?比如说,如果你注意到自己不得不经常重复自己说过的话,并且抱怨学生们不听话,你就是给出了太多的指令。如果是那样,你可以运用邀请和鼓励来促进沟通。如“马上就要下课了,我会感激你们为帮老师整理讲桌,为下节课做准备做的任何事情。” 指挥会招致被动或主动的抵制和反叛。邀请则会鼓励合作。 在实际的运用中,比如,课前,老师可以说,“预备铃已经响了,我非常欣赏按时回到座位的同学,我非常高兴咱班的某某同学已经做好的上课的课前准备了,非常感谢咱班某某为老师把黑板擦干净,把讲桌整理的这么好。”而不是“今天该谁擦黑板和整理讲桌了?” 期望与肯定要寻找机会肯定孩子们的成就与独立性,而不是只是期望。比如说,一个上课从来不冒险举手的孩子突然问了一个问题,他的问题与你正在讲的东西没有关联。

但是你可以肯定这个学生问了一个问题,而不是;批评他上课没集中注意力或者插嘴。在肯定他善于提问之后,然后要问他对于正在讨论的话题是否有话要说。对于作弊的学生,你可以肯定他想得到一个好分数的愿望,然后邀请他探究实现这一目标的其他方式。这让我想到我班的乐和阳,上课常常就举手了,而他的问题不外是,某某抓我的帽子了,某某的脚踢我的椅子了。 “成人主义”与尊重 当你说“你怎么从来都不……?”“你为什么就不能……?”“我得跟你说多少遍?”几乎任何以“应该”或者“应当”开头的话或者用生气的语调说出来的话,都是一种成人主义。成人主义给孩子们造成的是内疚和羞辱,而不是鼓励和支持。它传达的信息是:“由于你不明白我能明白的,你就是错的。” 当你尊重学生时,你会认可你和你的学生有不同的观点。尊重会创造一种接纳的氛围,并鼓励成长和有效的沟通。比如,不要说,“你知道这个题目的要求!”而是要说,“你对于这个题目是怎么想的?” 通过阅读这一章节,我意识到我很多时候对于我的学生运用的是阻碍沟通的方式。我明白了,沟通不是简单地说话。在良好的沟通中,会有大量的倾听、尊重、好奇心和赋予力量。

第六章习题答案数值分析.docx

第六章习题解答 2 2、利用梯形公式和 Simpson 公式求积分 ln xdx 的近似值, 并估计两种方法计算值的最大 1 误差限。 解:①由梯形公式: T ( f ) b a [ f (a) f (b)] 2 1 [ln1 ln 2] ln 2 0.3466 2 2 2 最大误差限 R ( f ) (b a)3 f '' ( ) 1 1 1 0.0833 T 12 12 2 12 12 其中, (1,2) ②由梯形公式: b a 4 f ( b a f (b)] 1 4ln( 3 ln 2] 0.3858 S( f ) [ f (a) ) [ln1 ) 6 2 6 2 最大误差限 R S ( f ) (b a)5 f (4) ( ) 6 6 0.0021, 2880 2880 4 2880 其中, (1,2) 。 4、推导中点求积公式 f ( x)dx (b a) f ( a b ) (b a) 3 (a b) b a 2 24 证明: 构造一次函数 P ( x ),使 P a 2 b f a b , P ' ( a b ) f ' ( a b ), P '' ( x) 0 2 2 2 则,易求得 P( x) f ' ( a b )( x a b ) f ( a b ) 2 2 2 且 P(x)dx f ' ( a b )( x a b ) f ( a b ) dx b b a a 2 2 2 f ( a b )dx (b a) f ( a b ) ,令 P(x)dx I ( f ) b b a 2 2 a 现分析截断误差:令 r ( x) f ( x) P(x) f ( x) f ' ( a b )( x a b ) f ( a b ) 2 2 2 由 r ' ( x) f ' (x) f ' ( a b ) 易知 x a 2 b 为 r (x) 的二重零点, 2 a b )2 , 所以可令 r (x) ( x)( x 2

第六章学习小结

第6章数值积分 --------学习小结 一、本章学习体会 通过学习本章我学会了利用计算机求积分的方法,可以说这一章是第五章的一个应用。其基本思想是对被奇函数进行拟合,给出数值积分。 这一章有个小小的疑惑:王老师上课说,我们都是在第五章拉格朗日插值法的思想下推出的许多求积分的方法,别的方法不好。我想假如我们在实际中求某个函数的积分,我们可先求出某些节点的函数值,然后用曲线拟合的方法或别的函数逼近的方法求出函数近似表达式,然后积分,感觉这样也挺好的。还有一个疑惑就是高斯型求积公式是在拉格朗日插值法的基础上推出的为什么能具有收敛性。拉格朗日插值中当节点数过多时不是就不准确了吗? 二.本章知识梳理 第六章学的是数值积分。在实际工程中有很多积分我们是没有办法直接手工算出的,我们必须借助与计算机,而我们这章学的就是如何利用计算机实现积分的近似计算即数值积分法。 我们先介绍了插值型求积公式,这种方法实质是利用拉格朗日插值法近似逼近被插函数,后来我们通过一个例题了解到插值节点的选取对积分的代数精度有很大影响,我们就想到了直接将被积区间等分,就有了Newton-cotes求积公式,实质是等步长的拉格朗日插值近似逼近被插函数。但Newton-cotes求积公式不具有收敛性和稳定性,

我们常用n=1,2,4的求积公式。这其实也应了高次拉格朗日插值不可取。当插值节点多时我们怎么办呢?后来我们又引进了复化求积公式,包括复化梯形公式和复化Simpson 公式,实质是将区间等分,在每个小区间上利用Newton-cotes 求积公式。这样一来求积公式就具有了收敛性和稳定性。但复化求积公式要把节点的函数值都求出来,这就增大了计算量而且还不能按我们要求的精确度来选取补偿,基于复化求积的这些缺点我们又想出了用变步长算法即逐次半分法来求解。但如果我们遇到()()b a x f x dx ρ?这样的积分该怎么做呢?则我们又引进了高斯型求积公式。这种方法也是基于拉格朗日插值法思想构造的公式高斯型求积公式关键是确定节点。找一个在(a,b)区间带权()x ρ的正交多项式的零点位置即为节点。我们可以利用前面学到的四种正交多项式来求解。高斯型求积公式可以达到插值型求积公式的最高精度。如果有n 个节点,则其代数精度为2n-1.但高斯型求积公式实际应用是节点和求积系数没有继承性。所以在实际计算时我们要根据实际情况选择适当的求积公式。 1、求积公式的一般形式: )()(0 k b a n k k x f dx x f ? ∑=≈λ ?∑=-=b a n k k k n x f dx x f R 0 )()(λ 代数精度:当)(x f 为次数不高于m 的多项式时带入求积公式左边等于右边,当为m+1次时,左右两边不相等,此时求积公式就为m 次代数精度。

细胞生物学第六章总结

第六章线粒体与细胞能量转换 一、基本特征 1.詹纳斯绿Janus Green B 一种活体染色剂,专一用于线粒体的染色。它可以和线粒体中的细胞色素C氧化酶结合,从而出现蓝绿色。 2.结构 1)外膜(outer membrane):线粒体最外层所包绕的一层单位膜,厚约5~7nm,光滑平整。 在组成上,外膜的脂质和蛋白质成分各占1/2。 2)内膜向基质折叠形成特定的内部空间内膜(inner membrane)比外膜稍薄,平均厚 4.5nm,也是一层单位膜。内膜的化学组成中20%是脂类,80%是蛋白质。(基粒分为头 部、柄部和基片三部分,是由多种蛋白质亚基组成的复合体。基粒头部具有酶活性,能催化ADP磷酸化生成ATP,因此,基粒又称ATP合酶复合体) 3)基质为物质氧化代谢提供场所线粒体中催化三羧酸循环、脂肪酸氧化、氨基酸分 解、蛋白质合成等有关的酶都在基质中。还含有线粒体独特的双链环状DNA、核糖体,这些构成了线粒体相对独立的遗传信息复制、转录和翻译系统。 4)内外膜转位接触点:核编码蛋白质进入线粒体的通道 3.相对独立的遗传体系 1)线粒体基因的转录 i.线粒体mRNA不含内含子,也很少有非翻译区 ii.每个mRNA5ˊ端的起始密码为AUG(或AUA),起始氨基酸为甲酰甲硫氨酸 iii.线粒体的遗传密码也与核基因不完全相同 iv.UAA的终止密码位于mRNA的3ˊ端。某些情况下,一个碱基U就是mtDNA体系中的终止密码子 v.线粒体与核密码子编码氨基酸三联体密码有差异 2)线粒体DNA的复制 mtDNA的复制起始点被分成两半,个是在重链上,称为重链复制起始点(O H),位于环的顶部,顺时针合成;一个是在轻链上,称为轻链复制起始点(O L),位于环L的“8点钟”位置,逆时针合成。D型复制。mtDNA复制不受细胞周期影响。 4.线粒体靶序列引导核编码蛋白质向线粒体转运 1)核编码蛋白在进入线粒体需要分子伴侣蛋白的协助 线粒体含有4个蛋白质输入的亚区域:

数值分析第二章小结

第2章线性方程组的解法 --------学习小结 一、本章学习体会 通过本章知识的学习我首先了解到求解线性方程组的方法可分为两类:直接法和迭代法。计算机虽然运行速度很快,但面对运算量超级多的问题,计算机还是需要很长的时间进行运算,所以,确定快捷精确的求解线性方程组的方法是非常必要的。 本章分为四个小节,其中前两节Gauss消去法和直接三角分解法因为由之前《线性代数》学习的一定功底,学习起来还较为简单,加之王老师可是的讲解与习题测试,对这一部分有了较好的掌握。第三节矩阵的条件数与病态方程组,我 Ax 的系数矩阵A与左端向量b的元素往往是通首先了解到的是线性方程组b 过观测或计算而得到,因而会带有误差。即使原始数据是精确的,但存放到计算机后由于受字长的限制也会变为近似值。所以当A和b有微小变化时,即使求解过程精确进行,所得的解相对于原方程组也可能会产生很大的相对误差。对于本节的学习掌握的不是很好,虽然在课后习题中对课堂知识有了一定的巩固,但整体感觉没有很好的掌握它。第四节的迭代法,初次接触迭代法,了解到迭代法就是构造一个无线的向量序列,使他的极限是方程组的解向量。迭代法应考虑收敛性与精度控制的问题。三种迭代方法的基本思想我已经掌握了,但是在matlab 的编程中还存在很大的问题。 在本节的学习中我认为我最大的问题还是程序的编写。通过这段时间的练习,虽然掌握了一些编写方法和技巧。相比于第一章是对其的应用熟练了不少,但在程序编写上还存在很多问题。希望在以后的学习中能尽快熟练掌握它,充分发挥它强大的作用。 二、本章知识梳理 2.1、Gauss消去法(次重点) Gauss消去法基本思想:由消元和回代两个过程组成。 a(k=1,2,```,n-1)均不为零的充分必要条件定理顺序Gauss消去法的前n-1个主元素)(k kk 是方程组的系数矩阵A的前n-1个顺序主子式

(完整版)数值分析第7章答案

第七章非线性方程求根 一、重点内容提要 (一)问题简介 求单变量函数方程 ()0f x = (7.1) 的根是指求*x (实数或复数),使得(*)0f x =.称*x 为方程(7.1)的根,也称*x 为 函数()f x 的零点.若()f x 可以分解为 ()(*)()m f x x x g x =- 其中m 为正整数,()g x 满足()0g x ≠,则*x 是方程(7.1)的根.当m=1时,称*x 为单根;当m>1时,称*x 为m 重根.若()g x 充分光滑,*x 是方程(7.1)的m 重根,则有 (1)() (*)'(*)...(*)0,(*)0m m f x f x f x f x -====≠ 若()f x 在[a,b]上连续且()()0f a f b <,则方程(7.1)在(a,b)内至少有一个实根,称[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得. (二)方程求根的几种常用方法 1.二分法 设()f x 在[a,b]上连续,()()0f a f b <,则()0f x =在(a,b)内有根*x .再设()0f x =在 (a,b)内仅有一个根.令00,a a b b ==,计算0001 ()2x a b =+和0()f x .若0()0f x =则*x x =,结束计算;若00()()0f a f x >,则令10,1a x b b ==,得新的有根区间11[,]a b ;若 00()()0 f a f x <,则令 10,10 a a b x ==,得新的有根区间 11[,]a b .0011[,][,]a b a b ?,11001()2b a b a -=-.再令1111 ()2x a b =+计算1()f x ,同上法得 出新的有根区间22[,] a b ,如此反复进行,可得一有根区间套 1100...[,][,]...[,] n n n n a b a b a b --????

数值分析 第六章 习题

第六章 习 题 1. 计算下列矩阵的1A ,2A ,A ∞三种范数。 (1)1101A ???=????,(2)312020116A ????=??????? . 2. 用Jacobi 方法和Gauss-Seidel 迭代求解方程组 1231231 238322041133631236x x x x x x x x x ?+=??+?=??++=? 要求取(0)(0,0,0)T x =计算到(5)x ,并分别与精确解(3,2,1)T x =比较。 3. 用Gauss-Seidel 迭代求解 12312312 35163621122x x x x x x x x x ??=??++=???+=?? 以(0)(1,1,1)T x =?为初值,当(1)() 310k k x x +?∞?<时,迭代终止。 4. 已知方程组121122,2,x x b tx x b +=?? +=? (1)写出解方程组的Jacobi 迭代矩阵,并讨论迭代收敛条件。 (2)写出解方程组的Gauss-Seidel 迭代矩阵,并讨论迭代收敛条件. 5. 设有系数矩阵 122111221A ?????=?????? , 211111112B ?????=??????? , 证明:(1)对于系数矩阵A ,Jacobi 迭代收敛,而Gauss-Seidel 迭代不收敛. (2)对于矩阵B ,. 6. 讨论方程组 112233302021212x b x b x b ?????????????=??????????????????? 用Jacobi 迭代和Gauss-Seidel 迭代的收敛性;如果都收敛,比较哪种方法收敛更快.

数值分析第六章实验报告

一、实验名称 Newton-cotes型求积公式 二、实验目的 学会Newton-cotes型求积公式,并应用该算法于实际问题。 三、实验内容 求定积分?π cos xdx e x 四、实验要求 选择等分份数n,用复化Simpson求积公式求上述定积分的误差不超过8 10-的近似值,用MATLAB中的内部函数int求此定积分的准确值,与利用复化Simpson求积公式计算的近似值进行比较。 五、实验程序与输出结果 在MATALAB的Editor窗口中输入以下程序: function y=comsimpson(fun,a,b,n) z1=feval (fun,a)+ feval (fun,b);m=n/2; h=(b-a)/(2*m); x=a; z2=0; z3=0; x2=0; x3=0; for k=2:2:2*m x2=x+k*h; z2= z2+2*feval (fun,x2); end for k=3:2:2*m x3=x+k*h; z3= z3+4*feval (fun,x3); end y=(z1+z2+z3)*h/3; 然后保存为然后保存为comsimpson.m的文件 在MATALAB工作窗口命令窗口中输入: Q2 =comsimpson (@fun,0,pi,1000000000) syms x fi=int(exp(x).*cos(x),x,0,pi); Fs= double (fi)

wQ2= double (abs(fi-Q2) ) 运行后结果: Q2=-12.0703,Fs=-12.0703, wQ2=5.2654e-08 六、实验结果分析 利用复化simpson求积公式计算运行后其结果为Q2=-12.0703,利用内部函数求解的结果为Fs=-12.0703,两者的误差为wQ2=5.2654e-08。从中可以看出误差结果达到了1E-8级数,而相对应的N已经取到了10亿次,再增大N对结果已经没有太大变化。可见复化simpson要得到比较准确的结果需要运算的次数比较大。

东南大学_数值分析_第七章_偏微分方程数值解法

第七章 偏微分方程数值解法 ——Crank-Nicolson 格式 ****(学号) *****(姓名) 上机题目要求见教材P346,10题。 一、算法原理 本文研究下列定解问题(抛物型方程) 22(,) (0,0)(,0)() (0) (0,)(), (1,)() (0)u u a f x t x l t T t x u x x x l u t t u t t t T ?αβ???-=<<≤≤???? =≤≤??==<≤?? (1) 的有限差分法,其中a 为正常数,,,,f ?αβ为已知函数,且满足边界条件和初始条件。关于式(1)的求解,采用离散化方法,剖分网格,构造差分格式。其中,网格剖分是将区域{}0,0D x l t T =≤≤≤≤用两簇平行直线 (0) (0)i k x x ih i M t t k k N τ==≤≤?? ==≤≤? 分割成矩形网格,其中,l T h M N τ==分别为空间步长和时间步长。将式(1)中的偏导数使用不同的差商代替,将得到不同的差分格式,如古典显格式、古典隐格式、Crank-Nicolson 格式等。其中,Crank-Nicolson 格式具有更高的收敛阶数,应用更广泛,故本文采用Crank-Nicolson 格式求解抛物型方程。 Crank-Nicolson 格式推导:在节点(,)2 i k x t τ +处考虑式(1),有 22(,)(,)(,)222 i k i k i k u u x t a x t f x t t x τττ??+-+=+?? (2) 对偏导数 (,)2 i k u x t t τ ?+?用中心差分展开 []2311+13 1(,)(,)(,)(,) ()224k k i k i k i k i i k i k u u x t u x t u x t x t t t t ττηητ++??+=--<

数值分析第七章非线性方程求根习题答案

第七章非线性方程求根 (一)问题简介 求单变量函数方程 ()0f x = (7.1) 的根是指求*x (实数或复数),使得(*)0f x =.称*x 为方程(7.1)的根,也称*x 为函数() f x 的零点.若()f x 可以分解为 ()(*)()m f x x x g x =- 其中m 为正整数,()g x 满足()0g x ≠,则*x 是方程(7.1)的根.当m=1时,称*x 为单根;当m>1时,称*x 为m 重根.若()g x 充分光滑,*x 是方程(7.1)的m 重根,则有 (1)() (*)'(*)...(*)0,(*)0m m f x f x f x f x -====≠ 若()f x 在[a,b]上连续且()()0f a f b <,则方程(7.1)在(a,b)内至少有一个实根,称[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得. (二)方程求根的几种常用方法 1.二分法 设()f x 在[a,b]上连续,()()0f a f b <,则()0f x =在(a,b)内有根*x .再设()0f x =在(a,b)内 仅有一个根.令00,a a b b ==,计算0001()2x a b =+和 0()f x .若0()0f x =则*x x =,结束计算;若 00()()0 f a f x >,则令 10,1a x b b ==,得新的有根区间 11[,] a b ;若 00()()0 f a f x <,则令 10,10a a b x ==,得新的有根区间11[,]a b .0011[,][,]a b a b ?,11001 () 2b a b a -=-.再令1111 ()2x a b =+计算1()f x ,同上法得出新的有根区间22[,]a b ,如此反复进行,可得一有根区 间套 1100...[,][,]...[,] n n n n a b a b a b --???? 且110011 *,0,1,2,...,()...() 22n n n n n n a x b n b a b a b a --<<=-=-==-. 故 1 lim()0,lim lim ()* 2n n n n n n n n b a x a b x →∞→∞→∞-==+=

数值分析学习心得体会.doc

数值分析学习感想 一个学期的数值分析,在老师的带领下,让我对这门课程有了深刻的理解和感悟。这门 课程是一个十分重视算法和原理的学科,同时它能够将人的思维引入数学思考的模式,在处 理问题的时候,可以合理适当的提出方案和假设。他的内容贴近实际,像数值分析,数值微 分,求解线性方程组的解等,使数学理论更加有实际意义。 数值分析在给我们的知识上,有很大一部分都对我有很大的帮助,让我的生活和学习有 了更加方便以及科学的方法。像第一章就讲的误差,在现实生活中,也许没有太过于注意误 差,所以对误差的看法有些轻视,但在学习了这一章之后,在老师的讲解下,了解到这些误 差看似小,实则影响很大,更如后面所讲的余项,那些差别总是让人很容易就出错,也许在 别的地方没有什么,但是在数学领域,一个小的误差,就很容易有不好的后果,而学习了数 值分析的内容,很容易就可以将误差锁定在一个很小的范围内,在这一范围内再逼近,得出 的近似值要准确的多,而在最开始的计算中,误差越小,对后面的影响越小,这无疑是好的。 数值分析不只在知识上传授了我很多,在思想上也对我有很大的影响,他给了我很多数 学思想,很多思考的角度,在看待问题的方面上,多方位的去思考,并从别的例子上举一反三。像其中所讲的插值法,在先学习了拉格朗日插值法后,对其理解透彻,了解了其中 的原理和思想,再学习之后的牛顿插值以及三次样条插值等等,都很容易的融会贯通,很容 易的就理解了其中所想,他们的中心思想并没有多大的变化,但是使用的方式却是不同的, 这不仅可以学习到其中心内容,还可以去学习他们的思考方式,每个不同的思考方式带来的 都是不同的算法。而在看待问题上,不同的思考方式总是可以快速的全方位的去看透彻问题, 从而知道如何去解决。 在不断的学习中,知识在不断的获取,能力在不断的提升,同时在老师的不懈讲解下, 我逐渐的发现数值分析所涵盖的知识面特别的广泛,而我所需要学习的地方也更加的多,自 己的不足也在不断的体现,我知道这只是我刚刚接触到了数学的那一角,在以后我还会接触 到更多,而这求知的欲望也在不停的驱赶我,学习的越多,对今后的生活才会有更大的帮助。 计算132 2013014923 张霖篇二:数值分析学习报告 数值分析学习心得报告 班级:11级软工一班 姓名: * * * 学号: 20117610*** 指导老师:* * * 学习数值分析的心得体会 无意中的一次选择,让我接触了数值分析。 作为这学期的选修课,我从内心深处来讲,数值分析真的有点难。感觉它是在高等数学 和线性代数的基础上,又加深了探讨。虽然这节课很难,我学的不是很好,但我依然对它比 较感兴趣。下面就具体说说我的学习体会,让那些感兴趣的同学有个参考。 学习数值分析,我们首先得知道一个软件——matlab。matrix laboratory,即矩阵实验 室,是math work公司推出的一套高效率的数值计算和可视化软件。它是当今科学界最具影 响力、也是最具活力的软件,它起源于矩阵运算,并高速发展成计算机语言。它的优点是强 大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面、便捷的与其他程序和语 言接口。 根据上网搜集到的资料,你就会发现matlab有许多优点: 首先,编程简单使用方便。到目前为止,我已经学过c语言,机器语言,java语言,这

第六章非线性方程的数值解法习题解答

第六章非线性方程的数值解法习题解答 填空题: 1. 求方程()x f x =根的牛顿迭代格式是__________________。 Ans:1()1()n n n n n x f x x x f x +-=- '- 2.求解方程 在(1, 2)内根的下列迭代法中, (1) (2) (3) (4) 收敛的迭代法是(A ). A .(1)和(2) B. (2)和(3) C. (3)和(4) D. (4)和(1) 3.若0)()(,故迭代发散。 以上三中以第二种迭代格式较好。 2、设方程()0f x =有根,且'0()m f x M <≤≤。试证明由迭代格式1()k k k x x f x λ+=- (0,1,2,)k =L 产生的迭代序列{}0k k x ∞ =对任意的初值0(,)x ∈-∞+∞,当2 0M λ<< 时,均收敛于方程的根。

数值计算方法第七章习题 2013

计算方法 第七章 习题 复习与思考题 1.设f ∈C [a , b ],写出三种常用范数2 1 f f 及∞ f 。 2.f , g ∈C [a , b ],它们的内积是什么?如何判断函数族{? 0, ? 1, …, ? n }∈C [a , b ]在[a ,b ]上线性无关? 3.什么是函数f ∈C [a , b ]在区[a , b ]上的n 次最佳一致逼近多项式? 4.什么是f 在[a , b ] 上的n 次最佳平方逼近多项式?什么是数据{}m i f 0的最小二乘曲 线拟合? 5.什么是[ a , b ]上带权ρ (x )的正交多项式?什么是[ -1, 1 ]上的勒让德多项式?它有什 么重要性质? 6.什么是切比雪夫多项式?它有什么重要性质? 7.用切比雪夫多项式零点做插值得到的插值多项式与拉格朗日插值有何不同? 8.什么是最小二乘拟合的法方程?用多项式做拟合曲线时,当次数n 较大时为什么不直接求解法方程? 9.哪种类型函数用三角插值比用多项式插值或分段多项式插值更合适? 10.判断下列命题是否正确? (1)任何f (x ) ∈C [a , b ]都能找到n 次多项式P n (x ) ∈ H n ,使| f (x ) - P n (x ) | ≤ ε ( ε 为任给的误差限)。 (2)n n H x P ∈)(* 是f (x )在[ a , b ]上的最佳一致逼近多项式,则)()(lim * x f x P n n =∞ →对 ],[b a x ∈?成立。 (3)f (x ) ∈C [a , b ]在[a , b ]上的最佳平方逼近多项式P n (x ) ∈ H n 则)()(lim x f x P n n =∞ →。 (4))(P ~ x n 是首项系数为1的勒让德多项式,Q n (x ) ∈ H n 是任一首项系数为1的多项式,则 ? ? --1 1 21 1 2d )(d )](P ~ [x x Q x x n n 。 (5))(T ~ x n 是[-1 , 1]上首项系数为1的切比雪夫多项式。Q n (x ) ∈ H n 是任一首项系数为1的多项式,则 .)(max )(~ max 1 11 1x Q x T n x n x ≤≤-≤≤-≤ (6)当数据量很大时用最小二乘拟合比用插值好。

数值分析第七章上机题

数值分析第七章计算机实习题 写一程序实现下面问题的牛顿算法——求解方程组: ?? ???=--=-+.0)1sin(,18)7)(3(12321x e x x x 源程序如下: function [x,it,hist] = newton2(x0,f,g,maxit,tol) % Newton method for eqation systerm % INPUTS: % x0 initial point % f function % g gradient % maxit maximum iteration % tol tolerance for convergence % OUTPUTS: % x solution % it iteration % hist history of iteration format long ; if nargin<5, tol = 1e-7; if nargin<4, maxit = 100; if nargin<3, error('too few input!!'); end end end flag = 1; x0 = [0;0]; x = x0; hist = x; it = 0; for k = 1:maxit, x = x0 - feval(g,x0(1),x0(2))\feval(f,x0(1),x0(2)); if norm(x0-x)>=tol, x0 = x; else fprintf('\nNewton Iteration successes!!\n') return end it = it + 1;

hist = [hist x]; end flag = 0; fprintf('\nNewton Iteration fails!!\n'); 在命令窗口输入: >>f = inline('[(x1+3)*(x2^3-7)+18;sin(x2*exp(x1)-1)]','x1','x2'); >>g = inline ('[x2^3-7,3*x2^2*(x1+3);x2*exp(x1)*cos(x2*exp(x1)-1),exp(x1)*cos(x2*exp(x1)-1)]','x1','x2'); >> [x,it,hist] = newton2([0;0],f,g) 得到如下运行结果: >> [x,it,hist] = newton2([0;0],f,g) Newton Iteration successes!! x = -0.000000000000000 1.000000000000000 it = 5 hist = 0 -0.428571428571429 -0.141348392468100 -0.002875590925150 0.000000056935424 -0.000000000000101 0 1.557407724654902 1.087738055836075 1.001269946612821 1.000000431005363 1.000000000000127 由以上运行结果可知: 该方程组采用牛顿迭代法迭代5步可到足够精度,解为??? ? ??=10x .

相关主题
文本预览
相关文档 最新文档