当前位置:文档之家› 自动化专业 ---智能控制技术综述

自动化专业 ---智能控制技术综述

自动化专业 ---智能控制技术综述
自动化专业 ---智能控制技术综述

院系:自动化工程学院

姓名:**

班级:**

学号:*****

智能控制技术综述

?摘要?:本文综述了智能工程和控制技术的发展历程及基本问题。文

中着重论述了许多新方法和技术进入工程化、产品化阶段,这对自动控制

技术提出的挑战,促进了智能理论在控制技术中的应用,以解决用传统的

方法难以解决的复杂系统的控制问题。

?英文摘要?:With the development of information technology, many

new methods and technology into engineering, product phase, this control technology proposed Guang new challenges, promoting intelligent control theory in the application of technology to solve difficult using traditional methods complex system of control.

?关键词?:自动化智能控制应用

?正文?:

随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对

自动控制技术提出犷新的挑战,促进了智能理论在控制技术中的应用,以

解决用传统的方法难以解决的复杂系统的控制问题。

智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。

一、智能控制的主要方法

智能控制技术的主要方法有模糊控制、基于知识的专家控制、神经网络控

制和集成智能控制等,以及常用优化算法有:遗传算法、蚁群算法、免疫算

法等。

1、神经网络控制

神经网络是利用大量的神经元按一定的拓扑结构和学习调整方法. 它能

表示出丰富的特性:并行计算、分布存储、可变结构、高度容错、非线性

运算、自我组织、学习或自学习等. 这些特性是人们长期追求和期望的系

统特性. 它在智能控制的参数、结构或环境的自适应、自组织、自学习等

控制方面具有独特的能力. 神经网络可以和模糊逻辑一样适用于任意复

杂对象的控制,但它与模糊逻辑不同的是擅长单输入多输出系统和多输入

多输出系统的多变量控制. 在模糊逻辑表示的SIMO 系统和MIMO 系统中,

其模糊推理、解模糊过程以及学习控制等功能常用神经网络来实现.模糊

神经网络技术和神经模糊逻辑技术:模糊逻辑和神经网络作为智能控制的

主要技术已被广泛应用. 两者既有相同性又有不同性. 其相同性为:两者

都可作为万能逼近器解决非线性问题,并且两者都可以应用到控制器设计

中. 不同的是:模糊逻辑可以利用语言信息描述系统,而神经网络则不行;

模糊逻辑应用到控制器设计中,其参数定义有明确的物理意义,因而可提

出有效的初始参数选择方法;神经网络的初始参数(如权值等) 只能随机选择. 但在学习方式下,神经网络经过各种训练,其参数设置可以达到满足控制所需的行为. 模糊逻辑和神经网络都是模仿人类大脑的运行机制,可以认为神经网络技术模仿人类大脑的硬件,模糊逻辑技术模仿人类大脑的软件. 根据模糊逻辑和神经网络的各自特点,所结合的技术即为模糊神经网络技术和神经模糊逻辑技术. 模糊逻辑、神经网络和它们混合技术适用于各种学习方式智能控制的相关技术与控制方式结合或综合交叉结合,构成风格和功能各异的智能控制系统和智能控制器是智能控制技术方法的一个主要特点.

2、专家控制

专家控制是将专家系统的理论技术与控制理论技术相结合,仿效专家的经验,实现对系统控制的一种智能控制。主体由知识库和推理机构组成,通过对知识的获取与组织,按某种策略适时选用恰当的规则进行推理,以实现对控制对象的控制。专家控制可以灵活地选取控制率,灵活性高;可通过调整控制器的参数,适应对象特性及环境的变化,适应性好;通过专家规则,系统可以在非线性、大偏差的情况下可靠地工作,鲁棒性强。【1】

3、模糊控制

模糊控制以模糊集合、模糊语言变量、模糊推理为其理论基础,以先验知识和专家经验作为控制规则。其基本思想是用机器模拟人对系统的控制,就是在被控对象的模糊模型的基础上运用模糊控制器近似推理等手段,实现系统控制。在实现模糊控制时主要考虑模糊变量的隶属度函数的确定,以及控制规则的制定二者缺一不可。

4、学习控制

(1)遗传算法学习控制

智能控制是通过计算机实现对系统的控制,因此控制技术离不开优化技术。快速、高效、全局化的优化算法是实现智能控制的重要手段。遗传算法是模拟自然选择和遗传机制的一种搜索和优化算法,它模拟生物界/生存竞争,优胜劣汰,适者生存的机制,利用复制、交叉、变异等遗传操作来完成寻优。遗传算法作为优化搜索算法,一方面希望在宽广的空间内进行搜索,从而提高求得最优解的概率;另一方面又希望向着解的方向尽快缩小搜索范围,从而提高搜索效率。如何同时提高搜索最优解的概率和效率,是遗传算法的一个主要研究方向。【2】

(2)迭代学习控制

迭代学习控制模仿人类学习的方法、即通过多次的训练,从经验中学会某种技能,来达到有效控制的目的。迭代学习控制能够通过一系列迭代过程实现对二阶非线性动力学系统的跟踪控制。整个控制结构由线性反馈控制器和前馈学习补偿控制器组成,其中线性反馈控制器保证了非线性系统的稳定运行、前馈补偿控制器保证了系统的跟踪控制精度。它在执行重复运动的非线性机器人系统的控制中是相当成功的。

二、智能控制在现代科技中的应用

1.工业过程中的智能控制

生产过程的智能控制主要包括两个方面:局部级和全局级。局部级的智能控制是指将智能引入工艺过程中的某一单元进行控制器设计,例如智能PID控制器、专家控制器、神经元网络控制器等。研究热点是智能PID控

制器,因为其在参数的整定和在线自适应调整方面具有明显的优势,且可用于控制一些非线性的复杂对象。全局级的智能控制主要针对整个生产过程的自动化,包括整个操作工艺的控制、过程的故障诊断、规划过程操作处理异常等。【3】

2. 智能技术在工业过程系统中的必要性

在自动控制领域,人工智能的引入形成了所谓智能控制,其目的无非是要更好地改善产品质量,提高控制精度,节约能源和加强生产安全性。我们知道,工业过程中广泛存在着病态结构问题。单纯依靠计算机的数值处理能力难以解决这类非数值和非算法信息处理问题,而人工智能技术恰恰能显示出无可比拟的优势。

在工业系统控制领域,有以下五方面原因迫使人们去寻求智能技术: 1、工业过程存在着病态结构问题,同时这些问题也难以用形式化来表达,这使得经典的模型化方法和纯数值方法几乎失效,而AI技术为这类问题的解决提供了有效手段。

2、工业生产系统的操作条件常常随产品要求而频繁变化,存在着许多周期性操作过程。智能技术非常适于处理这类问题。

3、生产系统要求对随机发生的故障进行紧急处理。大量实例表明,智能故障诊断系统能有效地处理这类复杂情况。

4、不确定和模糊信息大量高于实际生产系统,传统控制系统往往对此缺少或不可能进行有效利用,而智能系统可以有效地处理这些不精确信息。

5、智能控制技术是一个新的技术挑战,它冲击和改变着传统过程控制的观念和方法。【5】

开发一个实时的智能控制系统,大致需经三个步骤:

步骤1:离线系统的开发。本阶段的目标是对智能系统进行结构组织和知识编码,在离线环境下评估系统性能,同时也对生产过程进行离线的操作监控。这种系统具有非常友好的人机交互能力,所以很适合用来作为培训系统。目前大部分智能系统还处于这一阶段,其主要功能是用它给现场操作人员提供决策支持信息。步骤2:在线监督系统。进入本阶段开发过程的智能系统,在硬件设备上已同实际过程相连接,全部或部分过程的信息将由智能系统来处理,同时提供支持和决策信息。此阶段的目标是对智能系统的人机界面、计算机系统和硬件设备进行综合评价。步骤3:在线闭环系统。一个有效的闭环智能系统,将直接实时从过程系统接受信息,将输出反馈到过程,并把操作人员保持在控制环路之中。其目标是有效地提高生产效率和生产安全性,降低工人的劳动强度。

3.电力电子学研究领域中的智能控制

电力系统中发电机、变压器、电动机等电机电器设备的设计、生产、运行、控制是一个复杂的过程,国内外的电气工作者将人工智能技术引入到电气设备的优化设计、故障诊断及控制中,取得了良好的控制效果。遗传算法是一种先进的优化算法,采用此方法来对电器设备的设计进行优化,可以降低成本,缩短计算时间,提高产品设计的效率和质量。【6】应用于电气设备故障诊断的智能控制技术有:模糊逻辑、专家系统和神经网络。在电力电子学的众多应用领域中,智能控制在电流控制PWM技术中的应用是具有代表性的技术应用方向之一,也是研究的新热点之一。

以上的三个例子只是智能控制在各行各业应用中的一个缩影,它的作用以

及影响力将会关系国民生计。并且智能控制技术的发展也是日新月异,我们只有时课关注智能控制技术才能跟上其日益加快的技术更新步伐。

?参考文献?:

?1?刘红波,李少远,柴天佑.一种设计模糊PID复合控制器的新方法及其在电厂控制中的应用[J].动力工程,2004,24(1):78-82.

?2?George F.Luger.人工智能复杂问题求解的结构和策略[M].机械工业出版社,2003

?3?严宇,刘天琪.基于神经网络和模糊理论的电力系统动态安全评估[J].四川大学学报,2004,36(1):106-110.

?4?刘红波,李少远,柴天佑.一种设计模糊PID复合控制器的新方法及其在电厂控制中的应用[J].动力工程,2004,24(1):78-82.

?5?顾伟军,彭亦功.智能控制技术及其应用. PROCESS AUTOMATION IN STRUMENTATION. 2006

【6】蔡自兴,徐光〖FJF〗皊〖FJ〗.人工智能及其应用第三版[M].清华大学出版社,2003

自动化专业学生就业形势浅析

展望新的世纪,随着信息革命的兴起和新经济的冲击,自动化专业教育必然会受到世界各国的更加重视。因为这一技术已从办公自动化、工业自动化逐渐向家庭自动化发展,它与普通民众的日常生活发生了千丝万缕的联系,更进一步的发展势在必然。

本专业是一门适应性强、应用面广的工程技术学科。旨在培养学生成为基础扎实、自动控制技术知识系统深入、计算机应用能力强的高级工程技术人才。所以学生在毕业后都能从事自动控制、自动化、信号与数据处理及计算机应用等方面的技术工作。就业领域也非常的宽广,比如高科技公司、科研院所、设计单位、大专院校、金融系统、通信系统、税务、外贸、工商、铁路、民航、海关、工矿企业及政府和科技部门等。历年来,本专业的毕业生的供求比例一直都保持在1∶10左右,近年的就业去向主要是在系统集成、计算机软件硬件开发和通信等领域。

由于20世纪下半叶,以信息技术为显著特征的第四次科技革命浪潮冲击着全球,对各国经济的发展起着极大的推动作用。能否抓住这一难得的发展机遇,就决定了世界各国能否在未来的国际竞争中占有有利的地位。我国在改革开放这一大好形势下,采取积极应对的态势,迎接着这一挑战。党和国家领导人十分重视自动化技术对国民经济的巨大作用,制订出了相应的措施,加大对自动化专业教育的投资,在各高校纷纷设立实验室,改善教学环境以培养出更多出色的专业人才。

本专业毕业生有着广阔的就业渠道,因为自动化技术的应用广泛,其就业领域也五花八门。正因为如此,有些同学在择业时容易产生“皇帝的女儿不愁嫁”的心理,认为自己的自动化专业紧俏,社会需求量大,工作单位可以随自己挑。尽管现在学生就业实行的是“双向”选择的政策,你选用人单位,但用人单位也在选你。所以千万不要表现出一种“老子天下第一”的神情,自我感觉很了不起,这样只会引起用人单位的反感甚至最终不录用你。谦虚、踏实、稳重是本专业毕业生在择业时的第一选择。根据近几年毕业生就业的情况看,他们的工作都非常理想,收入状况也颇为乐观。

调查研究数据显示,2009届自动化专业本科毕业生的半年后就业率为9 2%,较同届本专业大类工学90%、本专业中类电气信息类89%的平均半年后就业率高。从薪资来看,本专业2009届毕业生的半年后平均月收入为22 75元,较全国同届本科毕业生平均水平2133元和本专业大类工学毕业生平均水平2208元稍高,与专业中类电气信息类半年后平均月收入基本持平。

2009届自动化专业本科毕业生选择毕业即读研和留学者占8.1%;而在就业的毕业中,从事与专业对口工作的比例为73%,尽管高于同届全国本科毕业生71%的工作与专业对口平均比例,但低于工学大类的平均值(77%)。其主要的职业流向如下表所示:

可以看到,本专业毕业生成为电气工程师的较多,薪资相对较高,这一职业主要为商业、工业、军事和科学方面进行应用设计、开发、检测,并监督电气设备、元件或系统的生产及安装。电子工程师则研究、设计、开发并检测电子元件和应用在商业、工业、军事和科学方面的系统,为通信等设计电路和元件。

但是面临两年后的就业考验,我们还是要从自己的专业素养和综合水平的提高开始。在大学期间学好C语言、Visual Basic、MATLAB、Multisim、La bVIEW、Protel、单片机、Keil C、Proteus、A VR、PIC、DSP、SOC、CPLD、F PGA等计算机的学习,业余适当学习一些业余软件,费时不多,受益多多,比如:Photoshop、Flash等等。这些东西对以后的工作和生活都有很大帮助。同时综合应用我们所学的这些东西,务必要注意动手。在校园期间多参加写实践类的电子设计类的比赛多给自己一些实践的机会。

智能控制在汽车上应用的进展综述

智能控制在汽车上应用的进展综述 一、简介 1.1汽车智能化综述 从上个世纪的末期,全球的汽车以汽车的电动化、智能化、网联化为主题进入一个重大的历史时期。到本世纪初,随着ICT技术的发展,汽车的智能化和网联化系统随之诞生,由此产生了一种新型的交通系统。 “智能汽车”是在普通汽车的基础上增加了先进的传感器、控制器、执行器等装置,通过车载传感系统和信息终端实现与人、车、路等的智能信息交换,使汽车具备智能的环境感知能力,能够自动分析汽车行驶的安全及危险状态,并使汽车按照人的意愿到达目的地,最终实现替代人来操作的目的。 从汽车自身的智能化来讲,我们现在处于这种汽车的一种智能化的初级阶段,即智能驾驶辅助这个阶段,其终极目标就是无人驾驶。另外从智能汽车发展模式来讲是两种模式,一种是依靠自身车载传感决策和控制系统,来实现自动驾驶。另外一种是通过协同的方式,借助通信的技术,利用车联网和物联网的整合,来实现它的整个一种智能化的驾驶。 总之,汽车的智能化可以归结为两轴或者两个发展,一个是纵轴,就是由现在的部分功能的替代到以后完全的无人化驾驶,另外一个就是自身的提升,单车的智能化并不能解决交通的问题,所以必须通过网联化把汽车和交通系统,交通所有参与者在一个平台上一个系统下进行完全的可控可调,这样才能彻底地改变交通社会现在面临的诸如安全、拥堵、节能的问题。所以未来期望或者目标的实现是一个智能网联的汽车。 智能汽车它会带来对我们社会产业带来什么样的变化?首先我们关注的是安全,通过汽

车的智能化、网联化,交通事故可以降低到目前的1%。现在每年因为交通事故死亡人数大概130万,也就是说在不远的将来也许二十年三十年以后,全球交通事故死亡率会低于1万甚至更低,未来接近的目标是零死亡零事故。第二,对于交通拥堵、油耗,对于整个经济,还有对于人的生活方式的影响都有非常高的期待。 1.2国内外汽车智能化研究现状 就汽车智能化发展而言,从美国来讲,从本世纪初他们对于智能汽车提出了一个定义,把它分为五个等级,第一个等级就是没有智能化,第二个等级是具有特殊功能的一些驾驶辅助,第三个等级是一个部分的自动驾驶,然后是高度自动驾驶到完全自动驾驶,以及无人驾驶这样五个等级,它设计的目标是到2025年能够实现完全智能驾驶。所以基于此,美国专门成立了交通变革研究中心,另外其交通部将推动汽车智能化网联化的发展作为一个国家战略,在。对于欧盟来讲,它制定了详细的发展路径图,就是从当下现有的驾驶辅助到2030年实现无人驾驶,或者能够产生无人驾驶的这种技术和产品,这是它的愿景。从日本来讲,不光从车,还从车和路两端来进行协调的发展,日本这一个计划详细地定义了从汽车、道路到各种法规协调发展的一个庞大的技术。 发展汽车智能化一个强劲的动力是标准,汽车这个技术持续的迭代是依托于标准的,一个是排放的法规,一个是碰撞的法规,现在主动安全或智能安全的一些项目,已经纳入了汽车的法规评定体系DSRC里,这是对于技术持续进步的一个强大的推进力。 从欧美整个发展情况比较来看各有特色,美国主打推动IT企业,并在该领域独领风骚,另外它在程序还有法规方面也是领先一步,从日本来讲,它的信息化体系是全球做得最为完备的,它现在有一个VICS,交通系统信息,现在整个汽车是8千多万辆,有4千万辆已经入网,对于大数据信息化它有很强的一些设备支持。另外以丰田、日产这些汽车企业主导智

智能控制综述

智能控制综述 摘要:本文首先介绍了智能控制的发展和智能控制系统的结构和特点以及与传统控制的关系。然后,综述几种智能控制研究的主要内容。 关键词:智能控制、自动控制、研究内容 1、智能控制的发展 任何一种科学技术的发展都由当时人们的生产发展需求和知识水平所决定和限制,控制科学也不例外。1948年,美国著名的控制论创始人维纳(N.Wiener)在它的著作《控制论》中首次将动物与机器相联系。1954年钱学森博士在《工程控制论》中系统的阐明了控制论对航空航天和电子通讯等领域的意义及影响,1965年傅京孙(K.S.Fu)教授首先把人工智能的启发式推理规则用于学习控制系统,又于1971论述了人工智能与自动控制的交集关系,成为国际公认的智能控制的先行者和奠基人[1]。 20世纪60年代,随着航海技术,空间技术的发展,控制领域面临着人们对其性能要求愈来愈高和被控对象的复杂性和不确定性,被控对象的复杂性和不确定性主要表现在被控对象的非线性和不确定性,以及分散的传感元件与执行元件,复杂的信息网络和庞大的数据量。而传统控制在解决这些问题时存在三方面的问题:一、由于传统控制理论是建立在以微积分为工具的精确模型上,所以无法对高度复杂和不确定的被控对象进行描述;二、传统控制理论中的自适应控制和Robust控制虽可克服系统中所包含的的不确定性,达到优化控制的目的,但这些方法只适用于缓慢变化的情况。三、传统控制系统输入较单一,而面对海量信息(视觉的、听觉的、触觉的等)的复杂环境,智能控制应运而生。 智能控制是对传统控制的补充和发展,是自动控制发展的高级阶段,而传统控制是智能控制产生的基础。 国内对智能控制的研究今年来也十分活跃。从八十年代人工智能与系统科学相结合到863计划的实施,智能控制在我国的发展已有稳固的基础。 2、智能控制结构与特点 智能控制是自动控制发展的高级阶段,是人工智能、控制论、系统论、信息论、仿生学、和计算机等多种学科的高度结合,是一门新兴的边缘交叉学科。它不仅包含了自动控制、人工智能、系统理论和计算机科学,而且还涉及到生物学,正在成为自动化领域中最兴旺和发展最迅速的一个分支学科[2]。 (1)智能控制具有明显的跨学科、多元结构特点。至今,智能控制方面的专家已提出二元结构、三元结构、四元结构等三种结构,它们可分别以交集的形式表示如下: IC=AI∩AC (1) IC=AI∩CT∩OR (2) IC=AI∩CT∩ST∩OR (3) 上式中,各子集的含义为 AI——人工智能;AC——自动控制;CT——控制论; OR——运筹学;ST——系统论;IC——智能控制。 智能控制的二元交集结构、三元交集结构和四元交集结构分别由傅京孙、萨克迪斯(G.N.Saridis)和蔡自兴于1971,1977和1986年提出的[3],以上的交集表达式也可表示成如下图1、2、3的形式:

智能控制器使用手册

一概述 智能控制器是框架式空气断路器的核心部件,适用于50~60Hz电网,主要用作配电、馈电或发电保护,使线路和电源设备免受过载、短路、接地/漏电、电流不平衡、过压、欠压、电压不平衡、过频、欠频、逆功率等故障的危害;通过负载监控,需量保护,区域连锁等功能实现电网的合理运行。同时也用作电网节点的电流、电压、功率、频率、电能、需量、谐波等电网参量的测量;故障、报警、操作、电流历史最大值、开关触头磨损情况等运行维护参数的记录;当电力网络进行通讯组网时,智能控制器可用为电力自动化网络的远程终端实现遥测,遥信,遥控,遥调等,智能控制器支持多种协议以适用不同的组网要求。 二基本功能 对于M型无任何可选功能(加*的项目)时其功能配置为基本功能,如表1所示: 表1 基本功能配置 2.1.3 通讯功能 通讯功能为可选项,对于M型没有通讯功能,对于H型通讯协议可根据需要选择为Modbus,Profibus-DP,Device net.

2.1.4增选功能选择 增选功能为可选项,M型,H型都可以选择增选功能配置,不同增选功能代号与增选功能容如表2所示。 2.1.5 区域连锁及信号单元的选择 “区域连锁及信号单元”为可选项,M型、H型都可以选择信号单元的功能配置,当信号单元选择为S2,S3时,控制器具备区域连锁功能。 2.2 技术性能 2.2.1 适用环境 工作温度:-10℃~+70℃(24h?平均值不超过+35℃) 储存温度:-25℃~+85℃ 安装地点最湿月的月平均最大相对湿度不超过90%,同时该月的月平均最低温度不超过+25℃,允许由于温度变化产生在产品表面的凝露。 污染等级:3级。 (在和断路器装配在一起的情况下) 安装类别:Ⅲ。 (在和断路器装配在一起的情况下) 2.2.2工作电源 由辅助电源和电源互感器同时供电,保证负载很小和短路情况下控制都可以可靠工作。控制器的供电方式有下面3种方式:

2019级智能控制技术专业人才培养方案

(3+2)智能控制技术专业人才培养方案 一、专业名称及代码 专业名称:智能控制技术 专业代码:560304 二、招生对象、学制及学历 本专业招收普通初中毕业生,全日制五年,其中中职3年、高职2年。 三、人才培养目标与规格 1.人才培养目标 本专业主要针对锦州地区对智能控制技术技能型人才的需要,面向新型工业化的机电制造、新能源、电力和新型建材等行业,从事智能化电气元件的设计、制造、调试、维护和管理的高级技术应用性专门人才。能完成智能化设备及其生产线的安装调试、运行和维护;智能电气元件的自动化设计与改造、故障诊断、管理与售后;智能配电柜的设计制造等典型工作任务,具有较强的实践动手能力、拥护党的基本路线,德、智、体、美全面发展的高级技术应用型人才。 三、培养规格及课程体系: 能力、素质结构如下表:

六、专业核心课程简介

七、实践教学安排表 八、专业教学计划 1.教学执行计划

填写说明:打*号课时由讲座、班会、讨论、竞赛等形式完成, 2、教学环节综合分析 (1) 理论教学与实践教学比例分析 学时与学分分析 (2) 九、教学实施保障 1.师资队伍配备 (1)“双师型”专业教学团队 智能控制专业教学团队由专、兼职教师组成,本专业的专职专业教师为28人,兼职教师16其中,专业带头人1人,专业骨干教师4人;具有高级以上职称12人、具有中级职称10人;双师型教师24人;均为大学本科以上学历。教师队伍的职称、学历、专业能力满足教学要求。 (2)专业带头人 专业带头人具有本科学历,副高职称,具有双师能力;有较高的专业建设水平和企业实践能力;掌握国内外职业教育与专业发展动态,能够在专业规划、专业建设、科研与教研、教学改革和青年教师培养等方面发挥引领作用。 (3)专业骨干教师 专业骨干教师应具有本科以上学历,讲师以上职称,具有中高级职业资格证书,具有双师能力;独立承担一门以上工学结合专业主干课程,能够独立完成课程开发和教学改革项目,在专业建设中发挥骨干作用。 (4)企业兼职教师 兼职教师为锦州地区机电类相关企业和学校的能工巧匠,具有从事5年以上机电专业的

智能控制技术现状与发展

摘要:在此我综述智能控制技术的现状及发展,首先简述智能控制的性能特点及主要方法;然后介绍智能控制在各行各业中的应用现状;接着论述智能控制的发展。智能控制技术的主要方法,介绍了智能控制在各行各业中的应用。随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出犷新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。 关键词:智能控制应用自动化 浅谈智能控制技术现状及发展 在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。 一、智能控制的性能特点及主要方法 1.1根据智能控制的基本控制对象的开放性,复杂性,不确定性的特点,一个理想的智能控制系统具有如下性能: (1)系统对一个未知环境提供的信息进行识别、记忆、学习,并利用 积累的经验进一步改善自身性能的能力,即在经历某种变化后,变化后的

智能控制概论

内蒙古科技大学 智能控制概论结课报告 题目:一级倒立摆板模糊控制 学生姓名: 学号: 专业:测控技术与仪器 班级: 指导教师:刘慧博

目录 第1章概述 (3) 1.1 一阶倒立摆的概述 (3) 1.2 倒立摆系统的组成 (4) 1.3 倒立摆的控制方法 (4) 第二章倒立摆的建模 (5) 2.1 一级倒立摆的物理模型 (5) 2.2 数学模型的建立 (5) 2.3 模糊控制器的设计 (7) 第三章一级倒立摆系统的Simulink模型及系统仿真 (8) 3.1 MATLAB及Simulink (8) 3.2 一级倒立摆系统的Simulink的模型 (8) 3.3 仿真结果 (9) 第四章总结 (10) 参考文献 (11)

第1章概述 1.1 一阶倒立摆的概述 倒立摆系统是典型的自不稳定的非线性系统,由于倒立摆系统本身所具有的高阶次、不稳定、多变量、非线性和强耦合特性,许多抽象的控制概念如控制系统的稳定性、可控性、快速性和抗干扰能力,都可以通过倒立摆系统直观地表示出来。 早在20世纪60年代,人们就开始了对倒立摆系统的研究。1966年Schacfer 和Cannon应用Bang-Bang控制理论,将一个曲轴稳定于倒置位置。到了20世纪60年代后期,倒立摆作为一个典型不稳定、非线性的例证被提出。自此,对于倒立摆系统的研究便成了控制界关注的焦点。 倒立摆的种类很多,有悬挂式倒立摆、平行倒立摆、环形倒立摆、平面倒立摆;倒立摆的级数可以是一级、二级、三级、四级乃至多级;倒立摆的运动轨道可以是水平的,还可以是倾斜的(这对实际机器人的步行稳定控制研究更有意义);控制电机可以是单电机,也可以是多级电机。 目前有关倒立摆的研究主要集中在亚洲,如中国的北京师范大学、北京航空航天大学、中国科技大学;日本的东京工业大学、东京电机大学、东京大学;韩国的釜山大学、忠南大学,此外,俄罗斯的圣彼得堡大学、美国的东佛罗里达大学、俄罗斯科学院、波兰的波兹南技术大学、意大利的佛罗伦萨大学也对这个领域有持续的研究。近年来,虽然各种新型倒立摆不断问世,但是可自主研发并生产倒立摆装置的厂家并不多。目前,国内各高校基本上都采用香港固高公司和加拿大Quanser公司生产的系统;其它一些生产厂家还包括(韩国)奥格斯科技发展有限公司(FT-4820型倒立摆)、保定航空技术实业有限公司;最近,郑州微纳科技有限公司的微纳科技直线电机倒立摆的研制取得了成功。

学校智能控制技术专业可行性报告

江西师范高等专科学校开设智能制造相关 专业的可行性报告 一、智能制造产业现状分析 1.智能制造产业上升到国家战略 近年来,随着世界各国在智能制造产业投入和发展,新的科技革命和产业革命能正在兴起,各国纷纷出台啦以智能制造为核心的战略。美国大力推进“工业互联网”,德国提出工业4.0的概念都致力于发展制造业的“未来工厂”的项目。智能制造不仅是全球制造业的发展方向,也是我国战略性新兴产业的重要支柱。中国制造业已经进入了新的阶段,智能制造是我国制造业摆脱高损耗和低效率的困局、提高制造业竞争力、实现“制造强国”的必由之路。 2.人才需求旺盛 与之相适应的智能控制相关的工业机器人、3D打印、智能飞行器等方面的人才的需求急速增加,尤其是工业机器人的人才需求尤为突出。传统制造业的改造提升、人工成本快速提高促使企业用工业机器人来提高产业附加值、保证产品质量,使工业机器人及智能装备产业面临前所未有的发展时机。一台工业机器人(机械臂)能否投入到生产当中去,以及能发挥多大的作用,取决于生产工艺的复杂性,产品的多样性还有周边设施的配套程度。而解决这些问题却需要3到5名相关的操作维护和集成应用人才。目前在长三角地区使用工业机器人的企业六千多家,人才缺口达5000人左右。不仅企业需要工业机器人现场编程、机器人自动化线维护等方面的人才,还需要大量从事工业机器人安装调试和售后服务等工作的专门人才。随着我国制造业的发展,预计未来3-5年,工业机器人的增速有望达到25%,高技能人才缺口将逐年加大。 3.工业机器人技术人才短缺

目前,机器人在汽车制造以外的一般工业领域应用需求快速增长,而相应的人才储备数量和质量却捉襟见肘。工业机器人应用(系统集成)是典型的多学科交叉融合的行业,目前的当务之急,是大量培养掌握机器人系统知识并能与各行业工艺要求相结合的应用工程人才,帮助用户解决机器人的应用的实际问题,取得实效,以此开拓机器人市场。从一些招聘要求不难看出,操作机器人的技术人员,是目前企业中最缺的技术工人。企业把工业机器人买回来以后,想要把标准的机器人变成一台可以投入生产的专用自动化设备,这就需要机器人应用工程师结合生产工艺和工件的类型,通过手动示教编程并结合周边的辅助设施,才能使机器人完成特定的任务。目前国内高职院校尚无工业机器人应用方面的对口专业毕业生,从事工业机器人现场编程、机器人自动线维护、工业机器人安装调试等岗位的人员主要来自对电气自动化技术、机电一体化等专业毕业生的二次培训,而且短期培训难以达到岗位要求。 二、我校开设智能制造相关专业的必要性 1.具备开设智能制造(工业机器人方向)专业的办学基础。 我校现有机电一体化技术、电气自动化技术等高职专科专业,这些为我系工业机器人技术专业的申办提供了良好的基础。首先具备一支结构合理、素质优良的专业教学团队,我院机电一体化技术专业现有机械、电子电气类16位专任教师,具备开设专业的基础,其中2位从企业引进的企业能工巧匠作兼职教师,专任教师中硕士11人,副高职称以上4人,“双师型”教师16人;其次,实验实训条件良好,目前具备开设此专业所需的电工电子实验室、电气拖动、电工实训、液压与气动、机械制图、先进制造、CAD机房、单片机实验室等实训室12个,只需补充机器人、传感器检测实训室就能满足专业建

智能控制技术综述

网络高等教育 本科生毕业论文(设计)需要完整版请点击屏幕右上的“文档贡献者” 题目:智能控制技术综述

20世纪20年代,在建立了以频域法为主的经典控制理论的基础上,智能控制技术逐步发展。随着信息技术的进步,许多新方法和新技术进入工程化、产品化阶段。这对自动控制理论技术提出了新的挑战,促进了智能理论在控制技术中的应用。在智能控制技术比较的基础上,较详细地阐述了智能控制技术主要方式的特点及优化算法,并举例说明。智能控制技术将不断地发展和充实。 关键词:自动化;智能控制;应用

摘要............................................................. I 1 绪论.. (1) 1.1 智能控制技术简介 (1) 1.2 智能控制技术研究的领域及应用 (1) 1.2.1模糊逻辑控制 (1) 1.2.2神经网络控制 (1) 1.3 智能控制技术的应用现状 (1) 1.4 本论文的主要工作 (1) 2 智能控制理论概述 (2) 2.1 智能控制的基本概念 (2) 2.2 智能控制技术的主要方法 (2) 2.2.1 模糊控制 (2) 2.2.2 专家控制 (2) 2.2.3 神经网络控制 (3) 2.2.4 集成智能控制 (3) 2.3 智能控制技术常用的优化算法 (3) 2.3.1 遗传算法 (3) 2.3.2 蚁群算法 (3) 3 模糊控制及其应用 (4) 3.1 模糊控制理论提出 (4) 3.1.1 模糊控制理论的概念 (4) 3.1.2 模糊控制理论与传统控制相比的优势 (4) 3.2 模糊控制理论在制冷领域的应用情况 (4) 3.3 模糊控制理论在磨煤机控制系统领域的应用情况 (4) 4 神经网络控制及其应用 (5) 4.1 神经网络控制理论提出 (5) 4.1.1 神经网络控制理论的概念 (5) 4.1.2 神经网络控制理论与传统控制相比的优势 (5)

智能控制技术实验报告

《智能控制技术》实验报告书 学院: 专业: 学号: 姓名:

实验一:模糊控制与传统PID控制的性能比较 一、实验目的 通过本实验的学习,使学生了解传统PID控制、模糊控制等基本知识,掌握传统PID控制器设计、模糊控制器设计等知识,训练学生设计控制器的能力,培养他们利用MATLAB进行仿真的技能,为今后继续模糊控制理论研究以及控制仿真等学习奠定基础。 二、实验内容 本实验主要是设计一个典型环节的传统PID控制器以及模糊控制器,并对他们的控制性能进行比较。主要涉及自控原理、计算机仿真、智能控制、模糊控制等知识。 通常的工业过程可以等效成二阶系统加上一些典型的非线性环节,如死区、饱和、纯延迟等。这里,我们假设系统为:H(s)=20e0.02s/(1.6s2+4.4s+1) 控制执行机构具有0.07的死区和0.7的饱和区,取样时间间隔T=0.01。 设计系统的模糊控制,并与传统的PID控制的性能进行比较。 三、实验原理、方法和手段 1.实验原理: 1)对典型二阶环节,根据传统PID控制,设计PID控制器,选择合适的PID 控制器参数k p、k i、k d; 2)根据模糊控制规则,编写模糊控制器。 2.实验方法和手段:

1)在PID控制仿真中,经过仔细选择,我们取k p=5,k i=0.1,k d=0.001; 2)在模糊控制仿真中,我们取k e=60,k i=0.01,k d=2.5,k u=0.8; 3)模糊控制器的输出为:u= k u×fuzzy(k e×e, k d×e’)-k i×∫edt 其中积分项用于消除控制系统的稳态误差。 4)模糊控制规则如表1-1所示: 在MATLAB程序中,Nd用于表示系统的纯延迟(Nd=t d/T),umin用于表示控制的死区电平,umax用于表示饱和电平。当Nd=0时,表示系统不存在纯延迟。 5)根据上述给定内容,编写PID控制器、模糊控制器的MATLAB仿真程序,并记录仿真结果,对结果进行分析。 表1-1 FC的模糊推理规则表 四、实验组织运行要求 根据本实验的综合性、设计性特点以及要求学生自主设计MATLAB仿真程序的要求以及我们实验室的具体实验条件,本实验采用以学生自主训练为主的开

智能控制技术的发展现状及心得体会

智能控制技术的发展现状及心得体会 摘要: 在此综述了智能控制技术的现状及发展,首先简述智能控制的性能特点及主要方法,然后介绍智能控制在各行各业中的应用现状,接着论述智能控制的国内外发展和现状。随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出创新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。 关键词:智能控制模糊控制神经网络遗传算法 一、引言 智能控制作为当今的一种交叉前沿学科,其研究中心始终是解决传统控制理论、方法(包括经典控制、现代控制、自适应控制、鲁棒控制、大系统方法等)所难以解决的不确定性问题。自智能控制概念的提出,自动控制界纷纷仿效,主流是人工智能技术引入到自动控制系统中,寻求难以精确建模的复杂系统的自动控制(自治)。 在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。 二、智能控制的性能特点 智能控制是自动控制发展的新的阶段,主要用来解决那些用传统方法难以解决的复杂、非线性和不确定的系统控制问题。智能控制系统具有以下几个特点:(1)较强的学习能力: 能对未知环境提供的信息进行识别、记忆、学习、融合、分析、推理,并利用积累的知识和经验不断优化、改进和提高自身的控制能力; (2)较强的自适应能力: 具有适应受控对象动力学特性变化、环境特性变化和运行条件变化的能力; (3)较强的容错能力: 系统对各类故障具有自诊断、屏蔽和自恢复能力; (4)较强的鲁棒性: 系统性能对环境干扰和不确定性因素不敏感; (5)较强的组织功能: 对于复杂任务和分散的传感信息具有自组织和协调功能,使系统具有主动性和灵活性; (6)实时性好:

智能控制作业

1、已知某一炉温控制系统,要求温度保持在600度恒定。针对该控制系统有以下控制经验: (1)若炉温低于600度,则升压;低的越多升压越高。(2)若炉温高于600度,则降压;高的越多降压越低。(3)若炉温等于600度,则保持电压不变。 设模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。输入、输出变量的量化等级为7级,取5个模糊集。试设计隶属度函数误差变化划分表、控制电压变化划分表和模糊控制规则表。 解:1)确定变量 定义理想温度为600℃,实际温度为T,则温度误差为E=600-T。 将温度误差E作为输入变量 2)输入量和输出量的模糊化 将偏差E分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。将偏差E的变化分为7个等级:-3 -2 -1 0 1 2 3,从而得到温度模糊表如表1所示。

表1 温度变化E划分表 控制电压u也分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。将电压u的变化分为7个等级:-3 -2 -1 0 1 2 3,从而得到电压变化模糊表如表2所示。 表2 电压变化u划分表

表3 模糊控制规则表

2、利用MATLAB,为下列两个系统设计模糊控制器使其稳态误差为零,超调量不大于1%,输出上升时间≤0.3s 。假定被控对象的传递函数分别为: 2 55.01)1()(+= -s e s G s ) 456.864.1)(5.0(228 .4)(2+++= s s s s G 解: 在matlab 窗口命令中键入fuzzy ,得到如下键面: 设e 的论域范围为[-1 1],de 的论域范围为[-0.1 0.1],u 的论域范围为[0 2]。 将e 分为8个模糊集,分别为NB ,NM, NS, NZ, PZ, PS, PM, PB; de 分为7个模糊集,分别为NB ,NM ,NS, Z ,PS ,PM ,PB; u 分为7个模糊集,分别为 NB ,NM ,NS, Z ,PS ,PM ,PB;

智能控制文献综述

智能控制的发展,应用及展望 周杰 21225062 摘要:智能控制是当今控制学领域研究和发展的热点之一。本文论述了智能控制的发展过程,相比传统控制的优势,在低压电器中的应用,并对其未来发展做了展望。 关键词:发展历史;智能控制;低压电器技术;模糊控制;人工智能;展望 1.智能控制的发展历史 从20世纪60年代起,由于空间技术、计算机技术及人工智能技术的发展,控制界学者在研究自组织、自学习控制的基础上,为了提高控制系统的自学习能力,开始注意将人工智能技术与方法应用于控制系统。 1965年,美国著名控制论专家Zadeh 创立了模糊集合论,为解决复杂系统的控制问题提供了强有力的数学工具;同年,美国著名科学家Feigenbaum着手研制世界上第一个专家系统;就在同年,傅京孙首先提出把人工智能中的直觉推理方法用于学习控制系统。1996年,Mendl进一步在空间飞行器的学习控制系统中应用了人工智能技术,并提出了“人工智能控制”的概念。直到1967年,Leondes和Mendel才首先正式使用“智能控制”一词,并把记忆、目标分解等一些简单的人工智能技术用于学习控制系统、提高了系统处理不确定性问题的能力。 从20世纪70年代开始,傅京孙、Glorios 和Saridis等人从控制论角度进一步总结了人工智能技术与自适应、自组织、自学习控制的关系,正式提出了智能控制就是人工智能技术与控制理论的交叉,并创立了人—机交互式分级递阶智能控制的系统结构。在70年代中后期,以模糊集合论为基础,从模仿人的控制决策思想出发,智能控制在另一个方向—规则控制上也取得了重要的进展。进入80年代以来,由于微机的迅速发展以及人工智能的重要领域—专家系统技术的逐渐成熟,使得智能控制和决策的研究及应用领域逐步扩大,并取得了一批应用成果。80年代后期,神经网络的研究获得了重要进展,为智能控制的研究起到了重要的促进作用。 2.智能控制的分支 目前关于智能控制的研究和应用沿着几个主要的分支发展,主要有专家控制、模糊控制、神经网控制、学习控制、基于知识的控制、复合智能控制、基于进化机制的控制、自适应控制等等。有的已在现代工业生产过程与智能自动化方面投入应用。主要介绍如下:专家控制是由K.J.Astrom将人工智能中的专家系统技术引入到控制系统。组成的一种类型的智能控制。借助专家系统技术,将常规的RLS 控制、最小方差控制等不同方法有机结合起来P 能根据不同的情况分别采取不同的控制策略。 模糊控制自1965年Zadeh 教授创建模糊集理论和1974年英国的Mamdani成功地将模糊控制应用于蒸汽机控制以来,模糊控制得到了很大的发展和广泛的应用。模糊控制是基于模糊推理、模仿人的思维方式、对难以建立精确数学模型的对象实施的一种控制,成为处理推理系统和控制系统中不精确和不确定性的一种有效方法,构成了智能控制的重要组成部分。 神经网络控制是另一类智能控制的重要形式。神经网络模拟人的大脑神经结构和功能,

智能控制论文

智能控制论文 摘要:基于智能控制和常规控制的本质区别和内在联系,对智能控制的概念进行了研究,同时介绍了智能控制的学科基础和主要分支,并且总结了智能控制的基本分析方法,最后指出了智能控制的实现中存在的一些问题。 关键词智能控制,人工控制,控制论 1 引言 自1971年傅京孙教授提出“智能控制”概念以来,智能控制已经从二元论(人工智能和控制论)发展到四元论(人工智能、模糊集理论、运筹学和控制论),在取得丰硕研究和应用成果的同时,智能控制理论也得到不断的发展和完善。智能控制是多学科交叉的学科,它的发展得益于人工智能、认知科学、模糊集理论和生物控制论等许多学科的发展,同时也促进了相关学科的发展。智能控制也是发展较快的新兴学科,尽管其理论体系还远没有经典控制理论那样成熟和完善,但智能控制理论和应用研究所取得的成果显示出其旺盛的生命力,受到相关研究和工程技术人员的关注。随着科学技术的发展,智能控制的应用领域将不断拓展,理论和技术也必将得到不断的发展和完

善。 2 智能控制的概念 智能控制的定义一: 智能控制是由智能机器自主地实现其目标的过程.而智能机器则定义为,在结构化或非结构化的,熟悉的或陌生的环境中,自主地或与人交互地执行人类规定的任务的一种机器. 定义二: K.J.奥斯托罗姆则认为,把人类具有的直觉推理和试凑法等智能加以形式化或机器模拟,并用于控制系统的分析与设计中,以期在一定程度上实现控制系统的智能化定义三: 智能控制是一类无需人的干预就能够自主地驱动智能机器实现其目标的自动控制,也是用计算机模拟人类智能的一个重要领域.,这就是智能控制.他还认为自调节控制,自适应控制就是智能控制的低级体现. 定义四: 智能控制实际只是研究与模拟人类智能活动及其控制与信息传递过程的规律,研制具有仿人智能的工程控制与信息处理系统的一个新兴分支学科。 3 智能控制系统的类型 1)集成或者(复合)混合控制几种方法和机制往往结合在一起,用于一个实际的智能控制系统或装置,从而建立起混合或集成的智能控制系统. 2)分级递阶控制系统分级递阶智能控制是在自适应控制和自组织控制基础上,由美国普渡大学Saridis提出的

智能控制技术(第三章) 答案

3-1 模糊逻辑控制器由哪几部分组成?各完成什么功能? 答:模糊控制系统的主要部件是模糊化过程、知识库(数据库和规则库)、推理决策和精确化计算。 1、模糊化过程 模糊化过程主要完成:测量输入变量的值,并将数字表示形式的输入量转化为通常用语言值表示的某一限定码的序数。 2、知识库 知识库包括数据库和规则库。 1)、数据库 数据库提供必要的定义,包含了语言控制规则论域的离散化、量化和正规化以及输入空间的分区、隶属度函数的定义等。 2)、规则库 规则库根据控制目的和控制策略给出了一套由语言变量描述的并由专家或自学习产生的控制规则的集合。它包括:过程状态输入变量和控制输出变量的选择,模糊控制系统的建立。 3、推理决策逻辑 推理决策逻辑是利用知识库的信息模拟人类的推理决策过程,给出适合的控制量。(它是模糊控制的核心)。 4、精确化过程 在推理得到的模糊集合中取一个能最佳代表这个模糊推理结果可能性的精确值的过程称为精确化过程。 {模糊控制器采用数字计算机。它具有三个重要功能: 1) 把系统的偏差从数字量转化为模糊量(模糊化过程、数据库两块); 2) 对模糊量由给定的规则进行模糊推理(规则库、推理决策完成); 3)把推理结果的模糊输出量转化为实际系统能够接受的精确数字量或模拟量(精确化接口)。 3-2 模糊逻辑控制器常规设计的步骤怎样?应该注意哪些问题? 答:常规设计方法设计步骤如下: 1、 确定模糊控制器的输入、输出变量 2、 确定各输入、输出变量的变化范围、量化等级和量化因子 3、 在各输入和输出语言变量的量化域内定义模糊子集。 4、 模糊控制规则的确定 5、 求模糊控制表 3-3 已知由极大极小推理法得到输出模糊集为: 0.30.810.50.1 12345 C =++++-----.试用重心法计算出此推理结果的精确值z 。 重心法 重心法 是取模糊隶属度函数的曲线与横坐标围城面积的重心为模糊推理最终输出值。 连续:0()()v V v V v v dv v v dv μμ= ?? 离散:101 () () m k v k k m v k k v v v v μμ=== ∑∑ 采用离散重心法: 101 () () 0.3(1)0.8(2)1(3)0.5(4)0.1(5)0.30.810.50.1 0.3(1)0.8(2)1(3)0.5(4)0.1(5)2.7 =-2.7407 m k v k k m v k k v v v v μμ=== ?-+?-+?-+?-+?-= ++++?-+?-+?-+?-+?-= ∑∑

智能控制技术专业申报材料

附件1-1: 关于开设“智能控制技术”专业的论证报告 一、专业设置的必要性 1、在我院设置智能控制技术专业,是贯彻落实《重庆市中长期城乡教育改革和发展规划纲要(2010—2020)》的需要。 《重庆市中长期城乡教育改革和发展规划纲要》提出:到2020年,实现城乡教育一体化、教育现代化和教育国际化,形成学习型社会,建成西部地区教育高地和长江上游地区教育中心,成为全国教育强市和人力资源强市。高等教育进入普及阶段,毛入学率达到50%。建成比较完善的终身教育体系,主要劳动年龄人口平均受教育年限达到14年,新增劳动力平均受教育年限达到15年。 我院设置智能控制技术专业,必将对提升劳动力平均受教育年限和普及高等教育具有积极的意义,是贯彻落实《重庆市中长期城乡教育改革和发展规划纲要》的需要。 2、在我院设置智能控制技术专业,是适应重庆市及万州区产业发展的需要。 智能制造代表着现代制造业的发展方向,智能制造产业在中国工业版图中占据着越来越重要的地位。近年来,重庆按照中央要求大力推动智能制造产业发展,通过着力构建“五低成本”投资环境、充分发挥“三个三合一”开放平台优势、采用产业链上中下游集聚等集群化发展方式,构建起以笔记本电脑、智能手机为代表的智能终端产业集群,已成为全国重要的智能终端产品制造基地。伟创力作为世界一流的电子制造服务供应商,长期致力于为全球领先的通讯、电脑、医疗及消费电子企业提供创新性设计与制造服务,此次计划在渝打造的生态智能制造科技城,是重庆目前最大的智能制造项目,具有独立完整的生态链和生态圈,与重庆“十三五”时期加快工业转型升级的发展战略高度契合,将让重庆着力发展的十大战略性新兴产业如虎添翼,为重庆建设全国现代制造业基地和西部创新中心再添助力。 鉴此,开办智能控制技术专业,培养熟悉现代智能化设备原理,掌握现代智能制造技术,以智能制造、电气设备的运行、调试、技术管理为主要就业范围,具有一定职业生涯发展基础的技术技能型人才,是重庆市及万州区产业发展的需要。 3、在我院设置智能控制技术专业,是重庆高等教育发展的需要。 从近5年的普通高校报名录取情况来看(表一所示):重庆市高等教育持续

智能控制技术专业简介

智能控制技术专业简介 专业代码560304 专业名称智能控制技术 基本修业年限三年 培养目标 本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握现代电子技术、单片机与接口技术、虚拟仪器技术、传感及测控技术、电气控制技术、PLC 应用技术等基本知识,具备智能控制系统安装、调试、维护和技术服务等能力,从事智能产品及系统的生产、维护、营销、技术管理等工作的高素质技术技能人才。 就业面向 主要面向智能产品生产、应用和集成类企业,从事智能控制产品的生产、装配、测试,智能控制系统的软硬件实现、现场安装、调试、维护和智能控制系统的规划与管理等工作。 主要职业能力 1.具备对新知识、新技能的学习能力和创新创业能力; 2.具备电子电气原理图及接线图识读能力; 3.具备计算机软件和硬件技术应用能力; 4.具备对常见智能控制设备和系统的分析能力; 5.具备常见智能控制系统的安装、调试和维护能力; 6.具备对相关设备产品进行检测、性能分析的能力; 7.具备数据采集与监控系统组态与编程能力; 8.具备智能控制设备选型、构建及系统集成能力; 9.具备对智能成套电气总装等典型生产线岗位操作和生产管理能力。

核心课程与实习实训 1.核心课程 电工基础、工程制图、自动检测与转换技术、虚拟仪器技术、电气控制技术、PLC 应用技术、单片机与接口技术、C 语言编程技术、电气 CAD、电子CAD、自动控制系统应用、变频器应用技术、工控组态及现场总线技术、计算机控制技术等。 2.实习实训 在校内进行电工、电子、电子智能产品制作与调试、单片机与接口技术、组态与现场总线技术、PLC 应用技术、电气控制技术、智能控制系统集成综合等实训。 在智能产品生产、用应和集成企业进行实习。 职业资格证书举例 维修电工可编程序控制系统设计师无线电装接工 衔接中职专业举例 计算机应用计算机网络技术 接续本科专业举例 自动化电子信息工程

智能PID控制综述

密 封 线 智能PID 控制综述 摘要 传统的PID 控制应用于复杂的实际系统时存在一定的局限性,因而智能PID 控制器是 当今研究的热点。融合了先进智能控制思想和传统PID 构成的智能PID 控制器则具有更加良 好的特性。文中对几种常见的智能PID 控制器,包括模糊PID 、神经网络PID 、专家PID 控制 器及基于遗传算法的PID 控制器等进行了综述。 关键词 PID 控制器 智能控制 智能PID 一、引言 PID 控制[1-10,51-52]作为经典控制算法中的典型代表,是一种传统的控制方式。1922年 N.Minorsky 提出PID 控制方法,1942年美国Taylor 仪器公司的 J.g.ziegler 和 N.B.Nichols 提出PID 参数[1]的最佳调整法至今,其在工业控制中的应用已十分广泛 [2-4]。PID 控制具有结构简单、参数物理意义明确和鲁棒性强等特点。PID 控制器[5-9]对系统给定值()r t 同系统输出值 ()y t 的偏差()e t 分别进行比例、积分、微分运算,并由此得到其输出值()u t ,计算公式为: 0()()()()()t P L D de t u t K e t K e t d t K dt =++? 式中P K 为比例系数;L K 为积分系数;D K 为微分系数。P K 、L K 、D K 可对系统的稳定性、稳态精度、响应速度和超调量等性能产生影响,它们的作用分别为:(1)比例系数P K 可以加快系统的响应速度,提高系统的调节精度。系统的响应速度和调节精度同P K 呈正相关,但P K 过大则会产生超调,使系统不稳定,P K 过小则会使响应速度变慢,使系统静、动态特性变坏。 (2)积分作用系数L K 可以消除系统的稳态误差。L K 越大,系统静差就会越快消除。但L K 过大会在响应过程产生较大超调,产生积分饱和现象。L K 过小则会使系统稳态误差不易消除,影响调节精度。(3)微分作用系数D K 可以改善系统的动态性能。但D K 过大会使系统的调节时间延长,抗干扰性能降低。 PID 控制具有结构简单、稳定性能好、可靠性高等优点,尤其适用于可建立精确数学模型的确定性控制系统。在控制理论和技术飞速发展的今天,工业过程控制领域仍有近90%的回路在应用PID 控制策略。PID 控制中一个关键的问题便是PID 参数的整定。但是在实际的应用中,许多被控过程机理复杂,具有高度非线性、时变不确定性和纯滞后等特点。在噪声、负载扰

智能控制及其应用综述

第18卷第3期重庆邮电学院学报(自然科学版)Vol.18No.3 2006年6月Journal of C hongqing University of Posts and Telecom munications(Natural Science)Jun.2006 文章编号:1004-5694(2006)03-0376-06 智能控制及其应用综述* 李文,欧青立,沈洪远,伍铁斌 (湖南科技大学信息与电气工程学院,湖南湘潭411201) 摘要:介绍了智能控制的产生背景以及智能控制的概念、性能和特点,分析了几种典型的智能控制技术及当前的工程应用现状。最后,对今后智能控制的发展前景进行了展望。 关键词:智能控制;专家控制;神经网络控制;模糊控制;混沌控制;智能优化 中图分类号:T P18文献标识码:A 0引言 智能控制是近年来控制界新兴的研究领域,是一门边缘交叉学科。自1985年在纽约召开第一届智能控制学术会议至今,智能控制已经被广泛应用于工业、农业、服务业、军事航空等众多领域。智能控制是自动控制发展的高级阶段,为解决那些用传统方法难以解决的复杂系统的控制问题提供了有效的理论和方法。它处于控制科学的前沿领域,代表着自动控制科学发展的最新进程。 1智能控制产生的背景 科学技术的产生和发展主要由生产发展需求和知识水平所决定,控制科学也不例外。20世纪以来,特别是二战以来,控制科学与技术得到了迅速发展,由研究单输入单输出被控对象的经典控制理论,发展形成了研究多输入多输出被控对象的现代控制理论。经典控制理论主要是采用频域法对控制系统进行描述、分析和设计,现代控制主要采用时域的状态空间方法。20世纪60年代,由于空间技术、海洋工程和机器人技术发展的需要[1],控制领域面临着被控对象的高度复杂性和不确定性,以及人们对控制性能要求越来越高的挑战。被控对象的高度复杂性和不确定性主要表现为对象的高维、高度非线性和不确定性[2],高噪声干扰、强耦合,系统工作点动态突变性,以及分散的传感元件与执行元件,分层和分散的决策机构,复杂的信息模式和庞大的数据量。面对复杂的对象,复杂的任务和复杂的环境,用传统控制(即经典控制和现代控制)的理论和方法去解决是不可能的。其原因[3]:1传统的控制理论都是建立在以微分和积分为工具的精确数学模型之上的,而复杂系统的复杂性和不确定性都难以用精确的数学模型描述,否则就会使原问题丢失很多信息,例如:骑自行车沿一条曲线行走这套看似简单的动作,如果我们要把这一系列的动作和环境建立出精确的数学模型,然后再一步一步按模型去操作,可以想象其过程是多复杂而又难以实现;o传统的控制理论虽然也有办法对付控制对象的不确定性和复杂性,如自适应控制和Robust控制可以克服系统中所包含的不确定性,保证控制系统的控制质量不变,达到优化控制的目的。但他们仅适用于系统参数在一定范围内缓慢变化的情况,其优化控制的范围是很有限的。?传统的控制系统要求输入的信息比较单一,而现代的控制系统要面对复杂系统以各种形式(视觉的、听觉的、触觉的和直接操作的方式)将周围环境信息作为输入的状况,并将各种信息进行融合、分析和推理,再随环境与条件的变化,相应地采取对策或行动。传统的控制策略单一,不能适合高层决策问题,所以智能控制应运而生。 2智能控制的发展概况 智能控制的概念最早是由美国普渡大学的美籍华人傅京孙教授提出的,他在1965年发表的论文中首先提出把人工智能的启发式推理规则用于学习系统[4],为控制技术迈向智能化揭开了崭新的一页。接着,M endel于1966年提出了/人工智能控制0的新概念[5]。1967年,Leo ndes和M endel首次使用了/智能控制(Intellig ent Control)0一词[6],并把记忆、目标分解等技术应用于学习控制系统[7]。1974年,英国的E.H.Mamdani教授首次成功地将模糊逻辑用于蒸汽机控制[8]。1977年,Saridis全面地论述了从反馈控制到最优控制、随机控制及至自适应控制、自组织控制、学习控制,最终向智能控制发展的过 *收稿日期:2005-09-262005-12-26 基金项目:国家自然科学基金(50274060);湖南省自然科学基金(04JJ40041);湖南省教育厅科研项目(04C198) 作者简介:李文(1982-),男,湖南永州人,硕士研究生,研究方向为计算机控制与应用,E-mail:liwhnust@163.co m;欧青立,男,教授。

相关主题
文本预览
相关文档 最新文档