当前位置:文档之家› 第十四章 流变学和粉体学简介解析

第十四章 流变学和粉体学简介解析

第十四章 流变学和粉体学简介解析
第十四章 流变学和粉体学简介解析

第十四章流变学和粉体学简介

一、概述

流变学(rheology)系指研究物体变形和流动的科学,1929年由Bengham和Crawford提出。

物体的二重性:物体在外力作用下可观察到变形和流动现象。

流变性:物体在外力作用下表现出来的变形性和流动性。

二、弹性形变和粘性流动

弹性变形(elastic deformation)

弹性变形:给固体施加外力时,固体就变形,外力解除时,固体就恢复到原有的形状,这种可逆的形状变化称为弹性变形。

应变:弹性变形时,与原形状相比变形的比率称为应变(strain),应变分为常规应变(normal strain)和剪切应变(shear strain)。

延伸应变时,S=γE;剪切应变时,S=γG。

S为应力,γ为应变,E为延伸弹性率,G为剪切刚性率。

对药剂学弹性率比刚性率更有实际意义,弹性率大,弹性界限就小,表现为硬度大,有脆性,容易破坏;弹性率小,表现柔软有韧性,不宜破坏。

粘性流动

液体受应力作用变形,即流动,是不可逆过程。

粘性(viscosity)是液体内部所在的阻碍液体流动的摩擦力,称内摩擦。

D=dv/dy=dγ/dt

D(s-1)为切变速度或剪切速度(rate of shear), dγ/dt为单位时间应变的增加。

三、牛顿流动

理想的液体服从牛顿粘度法则(1687年,牛顿定律,Newtonian equation),即切变速度D与切应力S成正比:

S=F/A=ηD

D为切变速度,S为切应力,F为A面积上施加的力,η为粘度系数[单位Pa·s,1Pa·s=10P(泊)],或称动力粘度,简称粘度。

流度(fluidity):?=1/η,即粘度的倒数。

运动粘度:粘度η与同温度的密度ρ之比值(η/ρ),再乘以106,单位mm/s。

四、非牛顿流动

非牛顿液体(nonNewtonian fluid):不符合牛顿定律的液体,如乳剂、混悬剂、高分子溶液、胶体溶液等。

粘度曲线(viscosty curve)或流动曲线(flow curve):把切变速度D随切应力S而变化的规律绘制成的曲线。

流动方程式(rheological equation):表示流动曲线形状的数学关系式。

按非牛顿液体流动曲线为类型可将非牛顿液分为塑性流动、假塑性流动、胀性流动、触变流动。

塑性流动(plastic flow)

塑性流动:不过原点;有屈伏值S0;当切应力S< S0时,形成向上弯曲的曲线;当切应力S> S0时,切变速度D和切应力呈直线关系。

塑性(plastisity)

屈伏值(yield value):引起塑性液体流动的最低切应力S0 。

塑性粘度(plastic viscosity):塑性液体的粘度ηpl。

塑性液体的流动公式:D=(S- S0)/ηpl

D为切变速度,S为切应力, S0 为屈伏值,ηpl 为塑性粘度。

在制剂中表现为塑性流动的剂型有浓度较高的乳剂和混悬剂。

A-牛顿流体; B-塑性流体; C-假塑性流体;D-胀性流体; E-触变性流体. 塑性流体的结构变化示意图

塑性流体的结构变化示意图

意图塑性流体的结构变化示

假塑性流动(pseudoplastic flow)

假塑性流动:没屈伏值;过原点;切应速度增大,形成向下弯的上升曲线,粘度下降,液体变稀。

切变稀化;切变稀化流动(shearthinning flow)。

假塑性液体的流动公式:D=Sn/ηa 或 log D=log 1/ηa +nlog S

D为切变速度;S为切应力;ηa 为表观粘度(随切变速度的不同而不同);n>1,ηa 随S增加而增加。

在制剂中表现为假塑性流动的剂型有某些亲水性高分子溶液及微粒分散体系

处于絮凝状态的液体。

假塑性流体的结构变化示意图

胀性流动(dilatant flow)

胀性流动:没屈伏值;过原点;切应速度很小时,液体流动速度较大,当切应速度逐渐增加时,液体流动速度逐渐减小,液体对流动的阻力增加,表观粘度增加,流动曲线向上弯曲。

切变稠化;切变稠化流动(shear thickening flow)。

胀性液体的流动公式:D= Sn /ηa 或 log D=log 1/ηa +n log S

(D为切变速度;S为切应力;ηa 为表观粘度(随切变速度的不同而不同);n<1,当n接近1时,流动接近牛顿流动)。

在制剂中表现为胀性流动的剂型为含有大量固体微粒的高浓度混悬剂如50%淀粉混悬剂、糊剂等。

胀性流体的结构变化示意图

触变流动(thixotropic flow)

在非牛顿流动中特别是塑性流动、假塑性流动中,当切变速度增加时形成向上的流动曲线,称上行线;当切变速度减少时形成向下的流动曲线,称下行线。上行线和下行线不重合而包围成一定的面积,此现象称滞后现象,此性质称触变性(thixotropy),所围成的面积称滞后面积(area of hysteresis),滞后面积的大小是由切变时间和切变速度两因素决定。

滞后面积是衡量触变性大小的定量指标,触变性大小可用时间触变性系数B和拆散触变性系M来定量表示。

B表示在恒定的切变速度下,触变性液体内部结构拆散的速率随时间变化为数值。

M表示增加单位切变速度时单位面积切应力减少值。

对于有塑性流动的触变性液体,可用旋转粘度计测定:

B=(ηpl1- ηpl2)/(lnt2-lnt1); M=2(ηpl1- ηpl2)/(lnω2-lnω1)

ηpl为塑性粘度,由下行线斜率求得,t为时间ω为旋转粘度计的角速度。

产生触变的原因:对流体施加切应力后,破坏了液体内部的网状结构,当切应力减小时,液体又重新恢复原有结构,恢复过程所需时间较长,因而上行线和下行线就不重合。

触变流动的特点:等温的溶胶和凝胶的可逆转换。

塑性流体、假塑性

流体、胀性流体中多数具有触变性,它们分别称为触变性塑性液体、触变性假塑性液体、触变性胀性液体。

粘弹性(viscoelasticity)

高分子物质或分散体系具有粘性(viscosity)和弹性(elasticity)双重特性,称之为粘弹性。

应力缓和(stress relaxation):物质被施加一定的压力而变形,并使其保持一定应力时,应力随时间而减少,此现象称为应力缓和。

蠕变性(creep):对物质附加一定的重量时,表现为一定的伸展性或形变,而且随时间变化,此现象称为蠕变性。

1、粘弹性可用将弹性模型的弹簧和粘性模型的缓冲器加以组合的各种模型表示:(1)麦克斯韦(Maxwell)模型(弹簧和缓冲器为串联)(2)福格特(Voigt)模型(弹簧和缓冲器为并联) (3)双重粘弹性模型(几个模型

2、蠕变性质的测定方法

五、流变学在药剂学中的应用和发展

流变学在药剂学中广泛应用,特别是在混悬剂、乳剂、胶体溶液、软膏剂和栓剂中。

例如:①具有触变性的助悬剂对混悬剂的稳定性十分有利;使用混合助悬剂时应选择具有塑性和假塑性流动的高分子化合物混合使用为佳。②乳剂具有触变性有利于乳剂的稳定。

精神(生理)流变学(psychorheology)

血液流变学(haemorheology)

粉体学简介

一、概述

粉体学(micromeritics)是研究具有各种形状的粒子集合体性质的科学。

粉体中粒子大小范围一般在0.1~100μm之间,有些粒子大小可达1000μm,小者可至0.001μm。

通常<100 μm的粒子叫“粉”,> 100 μm的粒子叫“粒”。

粉体属于固体分散在空气中形成的粗分散体系。

粉体学是药剂学的基础理论,对制剂的处方设计、制剂的制备、质量控制、包装等都有重要指导意义。

二、粒子大小

粒子大小(粒子径)

粉体的粒子大小也称粒度,含有粒子大小和粒子分布双重含义,是粉体的基础性质。

粒径的表示方法:

1、几何学径在光学显微镜或电子显微镜下观察粒子几何形状所确定的粒子径。

长径:粒子最长两点间距离。

短径:粒子最短两点间距离。

定向径:全部粒子按同一方向测得的粒子径。

等价径:与粒子投影面积相等的圆的直径。

外接圆等价径:粒子投影外接圆的直径。

2、比表面积径用吸附法或透过法测定粉体的比表面积后推算出的粒子径。

3、有效径又称stokes径,用沉降法求得的粒子径,是指与被测粒子有相同沉降速度的球形粒子的直径。常用以测定混悬剂的粒子径。

4、平均粒径

个数平均径dln=∑(nd)/∑n

长度平均径dsl=∑(nd2)/∑(nd)

面积平均径dvs=∑(nd3)/∑(nd2)

平均面积径dsn=[∑(nd2)/∑(n)]1/2

平均体积径dvn=[∑(nd3)/∑(n)]1/3

粒子径的测定方法

光学显微镜法:n=300~600,?=0.2~100μm,可用于混悬剂、乳剂、混悬软膏剂、散剂等。

筛分法:重量百分比;相邻筛的孔径平均值;误差大(载重量、时间、振动强度);?>45μm;而微孔筛可筛分?<10μm。

库尔特计数法(coulter counter): 通过细孔的速度4000个/秒;可用于混悬剂、乳剂、脂质体、粉末药物等。

沉降法:可分Andreasen吸管法、离心法、比浊法、沉降天平法、光扫描快速粒度测定法等。 Stokes定律t=h/v=18ηh/[(ρ-ρ0)gd2]

比表面积法:气体吸附法和透过法。

粒度分布

三、粉体粒子的比表面积

比表面积

粒子比表面积是指单位重量或体积所具有的粒子表面积。

Sw=6/ρdvs; Sv=6/dvs

Sw ,Sv分别为重量和体积比表面积,ρ为粒子真密度,dvs体积面积平均数径。

比表面积测定

吸附法(BET法)

Sw=ANVm

BET公式:P/V(P0-P)=1/VmC+(C-1)P/VmP0)

Sw 为比表面积,Vm为在低压下粉体表面吸附氮气形成单分子层的吸附量(mol/g), A为被吸附氮体分子的截面积, N为阿伏伽德罗常数(Avogadro constant), V为在P压力下粉体对气体的吸附量(mol/g), P0为实验温度下氮气饱和蒸气压, C为常数。

透过法

Kozeny-carman公式:

Sv=ρ Sw=14[A?Ptε3/LηQ(1-ε)2]1/2

A为粉体层面积,L为粉体层长度,?P为粉体层两侧流体的压力差,η为流体的粘度,ε为粉体的孔隙率,Q为t时间通过粉体层的流量。

折射法

第十章_热力学定律 知识点全面

第十章热力学定律 知识网络: 一、 功、热与内能 ●绝热过程:不从外界吸热,也不向外界传热的热力学过程称为绝热过程。 ●内能:内能是物体或若干物体构成的系统内部一切微观粒子的一切运动形式所具有的能量的总和,用字母U 表示。 ●热传递:两个温度不同的物体相互接触时温度高的物体要降温,温度低的物体要升温,这个过程称之为热传递。 ●热传递的方式:热传导、对流热、热辐射。 二、 热力学第一定律、第二定律 第一定律表述:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所作的功的和。表达式u W Q ?=+ 第二定律的表述:一种表述:热量不能自发的从低温物体传到高温物体。另一种表述:(开尔文表述)不可能从单一热库吸收热量,将其全部用来转化成功,而不引起其他的影响。 应用热力学第一定律解题的思路与步骤: 一、明确研究对象是哪个物体或者是哪个热力学系统。 二、别列出物体或系统(吸收或放出的热量)外界对物体或系统。 三、据热力学第一定律列出方程进行求解,应用热力学第一定律计算时,要依照符号法则代入数据,对结果的正负也同样依照规则来解释其意义。 四、几种特殊情况: 若过程是绝热的,即Q=0,则:W=ΔU ,外界对物体做的功等于物体内能的增加。 若过程中不做功,即W=0,则:Q=ΔU ,物体吸收的热量等于物体内能的增加。 若过程的始末状态物体的内能不变,即ΔU=0,则:W+Q=0,外界对物体做的功等于物体放出的热量。

对热力学第一定律的理解: 热力学第一定律不仅反映了做功和热传递这两种改变内能的方式是等效的,而且给出了内能的变化量和做功与热传递之间的定量关系,此定律是标量式,应用时热量的单位应统一为国际单位制中的焦耳。 对热力学第二定律的理解: ①在热力学第二定律的表述中,自发和不产生其他影响的涵义,自发是指热量从高温物体自发地传给低温物体的方向性,在传递过程中不会对其他物体产生影响或需要借助其他物体提供能量等的帮助。不产生其他影响的涵义是使热量从低温物体传递到高温物体或从单一热源吸收热量全部用来做功,必须通过第三者的帮助,这里的帮助是指提供能量等,否则是不可能实现的。 ②热力学第二定律的实质热力学第二定律的每一种表述,揭示了大量分子参与宏观过程的方向性,使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性。 对能量守恒定律的理解: ③在自然界中不同的能量形式与不同的运动形式相对应,如物体做机械运动具有机械能,分子运动具有内能等。 ④某种形式的能减少,一定有其他形式的能增加,且减少量和增加量一定相等。 ③某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等。 三、能量守恒定律 ●能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一物体,在转化和转移的过程中其总量不变 ●第一类永动机不可制成是因为其违背了热力学第一定律 ●第二类永动机不可制成是因为其违背热力学第二定律(一切自然过程总是沿着分子热运动的无序性增大的方向进行)●熵:是分子热运动无序程度的定量量度,在绝热过程或孤立系统中,熵是增加的。 ①熵是反映系统无序程度的物理量,正如温度反映物体内分子平均动能大小一样。 ②系统越混乱,无序程度越大,就称这个系统的熵越大。系统自发变化时,总是向着无序程度增加的方向发展,至少无序程度不会减少,也就是说,系统自发变化时,总是由热力学概率小的状态向热力学概率大的状态进行。从熵的意义上说,系统自发变化时总是向着熵增加的方向发展,不会使熵减少。 ③任何宏观物质系统都有一定量的熵,熵也可以在系统的变化过程中产生或传递。 ④一切自然过程的发生和发展中,总熵必定不会减少。 ●能量耗散:系统的内能流散到周围的环境中,没有办法把这些内能收集起来加以利用。 四、能源和可持续发展: ●能源的重要性:能源是社会存在与发展永远不可或缺的必需品,是国民经济运动的物质基础,它与材料、信息构成现代社会的三大支柱。 ●化石能源:人们把煤、石油叫做化石能源。 ●生物质能:生物质能指绿色植物通过光合作用储存在生物体内的太阳能,储存形式是生物分子的化学能。 ●风能:为了增加风力发电的功率,通常把很多风车建在一起,我国新疆、内蒙古等地已经开始大规模利用风力发电。

几何学基础简介

几何学基础简介 Lex Li 几何原本简介 古希腊大数学家欧几里德是与他的巨著——《几何原本》一起名垂千古的。这本书是世界上最著名、最完整而且流传最广的数学著作,也是欧几里德最有价值的一部著作。欧几里德把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理得几何学论证方法,形成了一个严密的逻辑体系——几何学。而这本书,也就成了欧式几何的奠基之作。 作为基础的五条公理和公设 五条公理 1.等于同量的量彼此相等; 2.等量加等量,其和相等; 3.等量减等量,其差相等; 4.彼此能重合的物体是全等的; 5.整体大于部分。 五条公设 1.过两点能作且只能作一直线; 2.线段(有限直线)可以无限地延长; 3.以任一点为圆心,任意长为半径,可作一圆; 4.凡是直角都相等; 5.同平面内一条直线和另外两条直线相交,若在直线同侧的两个内角之和小于180°,则这两条直线经无限延长后在这一侧一定相交。 《几何原本》的主要内容 欧几里得的《几何原本》共有十三卷。 目录 第一卷几何基础 第二卷几何与代数 第三卷圆与角 第四卷圆与正多边形 第五卷比例

第六卷相似 第七卷数论(一) 第八卷数论(二) 第九卷数论(三) 第十卷无理量 第十一卷立体几何 第十二卷立体的测量 第十三卷建正多面体 各卷简介 第一卷:几何基础。重点内容有三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形等积(面积相等)的条件,第一卷最后两个命题是毕达哥拉斯定理的正逆定理; 第二卷:几何与代数。讲如何把三角形变成等积的正方形;其中12、13命题相当于余弦定理。 第三卷:本卷阐述圆,弦,切线,割线,圆心角,圆周角的一些定理。 第四卷:讨论圆内接和外切多边形的做法和性质; 第五卷:讨论比例理论,多数是继承自欧多克斯的比例理论,被认为是"最重要的数学杰作之一" 第六卷:讲相似多边形理论,并以此阐述了比例的性质。 第五、第七、第八、第九、第十卷:讲述比例和算术的理论;第十卷是篇幅最大的一卷,主要讨论无理量(与给定的量不可通约的量),其中第一命题是极限思想的雏形。 第十一卷、十二、十三卷:最后讲述立体几何的内容. 从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在《几何原本》里了。因此长期以来,人们都认为《几何原本》是两千多年来传播几何知识的标准教科书。 《几何原本》的意义和影响 在几何学发展的历史中,欧几里得的《几何原本》起了重大的历史作用。这种作用归结到一点,就是提出了几何学的“根据”和它的逻辑结构的问题。在他写的《几何原本》中,就是用逻辑的链子由此及彼的展开全部几何学,这项工作,前人未曾作到。《几何原本》的诞生,标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。 论证方法上的影响 关于几何论证的方法,欧几里得提出了分析法、综合法和归谬法。所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明的步骤;综合法是从以前证明过的事实开始,逐步的导出要证明的事项;归谬法是在保留命题的假设下,否定结论,从结论的反面出发,由此导出和已证明过的事实相矛盾或和已知条件相矛盾的结果,从而证实原来命题的结论是正确的,也称作反证法。

第7章 热力学基础

第7章 热力学基础 7.16 一摩尔单原子理想气体从270C 开始加热至770C (1)容积保持不变;(2)压强保持不变; 问这两过程中各吸收了多少热量?增加了多少内能?对外做了多少功?(摩尔热容 11,11,78.20,46.12----?=?=K mol J C K mol J C m P m V ) 解(1)是等体过程,对外做功A =0。J T C U Q m V 623)2777(46.12,=-?=?=?= (2)是等压过程,吸收的热量J T C Q m p 1039)2777(78.20,=-?=?= J T C U m V 623)2777(46.12,=-?=?=? J U Q A 4166231039=-=?-= 7.17 一系统由如图所示的a 状态沿acb 到达状态b ,有334J 热量传入系统,而系统做功126J 。 (1)若沿adb 时系统做功42J ,问有多少热量传入系统? (2)当系统由状态b 沿曲线ba 返回态a 时,外界对系统做功84J , 试问系统是吸热还是放热?传递热量是多少? (3)若态d 与态a 内能之差为167J ,试问沿ad 及db 各自吸收的热量是多少? 解:已知J A J Q acb acb 126.334== 据热力学第一定律得内能 增量为 J A Q U acb acb ab 208126334=-=-=? (1) 沿曲线adb 过程,系统吸收的热量 J A U Q adb ab adb 25042208=+=+?= (2) 沿曲线ba J A U A U Q ba ab ba ba ba 292)84(208-=-+-=+?-=+?=, 即系统放热292J (3) J A A A adb ad db 420 === J A U Q ad ad ad 20942167=+=+?= J U U A U Q ad ab db db db 41167208=-=?-?=+?=,即在db 过程中吸热41J. 7.18 8g 氧在温度为270C 时体积为34101.4m -?,试计算下列各情形中气体所做的功。 (1)气体绝热地膨胀到33101.4m -?; (2)气体等温地膨胀到33101.4m -?; 再等容地冷却到温度等于绝热膨胀最后所达到的温 7.17题示图

中学考试数学常见几何模型简介

初中几何常见模型解析 ?模型一:手拉手模型-旋转型全等 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。(2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②; ?③平分。 (3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②; ?③平分。 ?模型二:手拉手模型-旋转型相似 (1)一般情况 ?条件:,将旋转至右图位置 ?结论: ?右图中①; ?②延长AC交BD于点E,必有

(2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有; ③; ④; ⑤连接AD、BC,必有; ⑥(对角线互相垂直的四边形) ?模型三:对角互补模型 (1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE; ②;③ ?证明提示: ①作垂直,如图,证明; ②过点C作,如上图(右),证明 ; ?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变);② ;③ 此结论证明方法与前一种情况一致,可自行尝试。

(2)全等型-120° ?条件:①; ?②平分; ?结论:①;②; ?③ ?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明为等边三角形。 ?当的一边交AO的延长线于点D时(如上图右): 原结论变成:①;②; ③; 可参考上述第②种方法进行证明。 (3)全等型-任意角 ?条件:①;②; ?结论:①平分;②; ?③. ?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①;②; ③; 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。

第10章热力学基础

第10章热力学基础 学习指导 、基本要求 1.理解准静态过程功、热量、内能及摩尔热容的概念,并掌握其运算。 2.理解热力学第一定律,并熟练掌握热力学第一定律在理想气体等值过程、绝热过程中的应用。 3.理解循环过程的意义。掌握循环过程中能量传递和转化的特点,会熟练计算热机效率、制冷机的制冷系数。 4.理解热力学第二定律的两种表述及统计意义。理解可逆过程和不可逆过程的概念, 理解卡诺定理及熵增原理。 、知识框架

、重点和难点 1 .重点 (1) 掌握热力学第一定律及其应用,尤其是在几个等值过程中的应用。 (2) 熟练掌握热力学系统循环过程中,各阶段的特性及其相关物理量的运算。 2. 难点 (1) 掌握热力学第一定律的应用。 (2) 掌握等值、绝热过程在系统循环过程中的运算。 (3) 对热力学第二定律及其有关概念的理解。 四、基本概念及规律 1?准静态过程 若热力学过程中,任一中间状态都可看作平衡态,该过程叫作准静态过程。 2.理想气体在准静态过程中对外做的功 pdV 对于微小过程 dW = pdV 3. 理想气体在准静态过程中吸收的热量 式中,C 为摩尔热容。 4. 摩尔热容 摩尔热容表示1摩尔质量的物质温度升高 5. 理想气体的内能 M C V,m T 理想气体的内能只是温度的单值函数。 理想气体内能的变化量 m C v,m T 2 M 理想气体的内能改变量仅取决于始末状态的温度,与所经历的过程无关。 6. 热力学第一定律 1K 所吸收的热量。 (1) 定体摩尔热容 C v,m 一 dQ v M 4R (2) 定压摩尔热容 C P,m dQ p —dT M (3) 迈耶公式 C P,m = C V,m ' R (4) 比热容比 -C p,m ; C v,m E 2 -巳

几何学的本质

《几何学的本质》--- 几何学是人们在长期的生活实践中逐渐发展起来的理论思维成果之一。在它的启蒙阶段,现实中的物体形状和理论上的几何形状,一般是被混为一体或不加区分的,直到柏拉图时代,人们才开始注意到几何形状对于理论和现实的不同。人们所画在物体表面上的线都是有一定宽度的,它并非是几何学理论所意味的那种没有宽度的线;画在沙面上的三角形诸角,实际上是一些小块的面积,因此也不是理想的尖角。几何学概念的意义与体现它的现实事物的不相吻合,使柏拉图相信在超越现实事物的表面,一定有着“理念”事物存在,它们以十全十美的完善方式,显示出理想的几何属性。因而可靠的几何学知识,不是由现实事物来直接提供的,它需要人们对“理念”事物的一种“洞见”行为才能获得。 柏拉图的观点,代表了对几何学本质的早期见解,它使人们清楚地认识到,理想化的几何形状并不存在于人们生活的现实空间中。由于人们普遍认为欧几里德几何学中的每一条公理或公设,都不能从更为基本的前提中推导出来,而且每一条公理或公设对于处理现实事物都是有效的,所以,康德紧紧抓住几何学公理的不证自明性,认为几何学知识一定是通过逻辑以外的其它方式才能获得,并且是先天的和综合的。人们对现实事物所具有的几何特征

的认识,实际上是把现实事物置于几何学先天公理的构架上使之呈现的结果。同柏拉图一样,康德也把确定性的几何形状,同现实空间中的事物形状区分开来,但是他没有用理想的事物来解释几何学的本质,而是认为几何学知识是先于人类认识的,它们不能从人们的认识中得到解释和说明。 随着实验科学的发展,以及面对一系列通过实验所取得的丰硕成果,人们对科学理论的鉴别,逐渐倾向于依赖客观实验的检验。人们开始放弃柏拉图和康德的神秘主义几何学观点,并力图使几何学知识在现实空间中,能够得到客观实验的证明。高斯曾经测量过以三座山峰的顶端为顶点的三角形诸角,以试图验证这个三角形的内角和是否等于1800。后来爱因斯坦对此解释说,三角形内角和不等于1800,只有在很大的空间范围上才会明显,所以,对于我们附近的现实空间,欧几里得几何学是近似有用的。但是,高斯未能说明他所测量的三角形,为什么等同于理论意义上的几何三角形,爱因斯坦也没有区分三角形对于理论和现实的不同,他们回避了几何学中绝对理想化的几何形状,不存在于现实空间这一根本性的前提。理想化的直线和平面,在现实中没有与它们相对应的客观对象,研究直线平面几何形关系,应当只能针对理论意义上的直线和平面所构成的几何形及其几何关系。只有将几何学的研究

高分子材料流变学

课程编号:0301106 高分子材料流变学 Polymer Rheology 总学时:32 总学分:2 课程性质:专业基础课 开设学期及周学时分配:第六学期,4或3学时/周 适用专业及层次:高分子材料专业,本科 相关课程:物理化学、高分子物理、橡胶工艺学、聚合反应工程学、塑料成型工艺学 教材:《高分子材料流变学》,吴其晔编著,高等教育出版社,2002年 推荐参考书:《聚合物加工流变学》,C. D. Han著,徐僖、吴大诚译,科学出版社,1985年 一、课程目的及要求 《高分子材料流变学》是高分子材料与工程专业本科生的必修课,课程设置的目的是: 1. 使学生对高分子材料加工过程的基本原理,主要包括高分子材料在成型加工过程中的基本流变学原理有比较全面的认识。结合高分子物理学、材料加工工艺学、加工机械及模具设计,理解高分子材料的流变性质与材料的结构、性能、制品配方、加工工艺条件、加工机械及模具的设计和应用之间的关系。 2. 掌握高分子材料的基本流变学性质;了解研究高分子材料流变性质的基本数学、力学方法;掌握测量、研究高分子材料流变性质、传热性能的基本实验方法和手段。为进一步学习《聚合反应工程学》、《材料成型加工工艺学》、《材料成型加工机械》、《模具设计》等课程打下基础。 3. 讨论典型高分子材料成型加工过程的流变学原理,讨论多相聚合物体系(复合材料)的流变性质,为分析和改进生产工艺、指导配方设计、开发和应用高分子材料提供一定的理论基础。 本大纲遵循基本理论与生产实践相结合,既有一定广度,又有一定深度、新度,材料宏观性质与微观结构分析相结合,唯象性讨论与建立数学模型相结合的特点,按照少而精的原则,设置了七章二十节内容,教学时数为32学时。 二、课程内容及学时分配 (一)课程内容 第一章绪论 §1-1 流变学概念 §1-2 高分子流变学研究的内容和意义 §1-3 高分子液体的奇异流变现象 高粘度与剪切变稀;Weissenberg效应;挤出胀大现象;不稳定流动和熔体破裂现象§1-4 高聚物粘流态特征和流动机理 粘流态特征;流动单元;流动机理,简介“高分子构象改变理论”及“力化学流动图象” 参考书:《高分子材料流变学》第一章,第1,2,3,4节 第二章基本物理量和高分子液体的基本流变性质 §2-1 粘度与法向应力差函数 形变(剪切形变、拉伸形变); 形变率和速度梯度(剪切速率、拉伸速率);

第十四章流变学基础

第十四章流变学基础 一、概念与名词解释 1、流变学 2、变形 3、内应力 4、弹性 5、弹性变形 6、塑性变形 7、剪切速度 8、剪切力和剪切应力 9、牛顿流体 10、非牛顿流体 11、塑性流动 12、假塑性流动 13、胀性流动 14、触变性 15、黏弹性 二、填空题 1、___________是研究物质在外力作用下的变形和流动的一门科学。 2、对于外力而产生的固体变形,当去除其应力时恢复原状的形变称为_________,而非可逆性的形变称为____________。 3、影响乳剂流动性的处方因素包括_________、___________和______________等。 4、根据流动和变形的形式不同,将物质分为_________和____________。后者的流动曲线可分为__________,______________和_________________三种。 5、假塑性流动的特点是液体黏度随着剪切力的增大而______________,而具有胀性流动特点的液体黏度随着剪切力的增大而______________。 三、选择题 (一)单项选择题 1、假塑性流体的流动公式是()。 A.D=S/η B D=S/ηa C. D=S n /η a (n>1) D.D=S-S0/η E. D=S n /η a (n<1) 2、甘油属于何种流体()。 A.胀性流体 B.触变流体 C.牛顿流体 D.假塑性流体 E.塑性流体 3、对黏弹体施加一定的作用力而变形,使其保持一定的形变时,应力随时间而减小,这种现象称为()。

A.应力缓和 B.蠕变性 C.触变性 D.假塑性流动 E.塑性流动 (二)多项选择题 1、有关流变学的正确表述有:() A.牛顿流动是切变应力S与切变速度D成正比(D=S/η)、黏度η保持不变的流动现象 B.塑性流动的流动曲线具有屈服值(或称为致流值)、不经过原点 C.假塑性流体具有切稀性质,即黏度随着切变应力的增加而下降 D.胀性流体具有切稠性质,即黏度随着切变应力的增加而增加 E.触变流体的上行线与下行线不重合,所包围成的面积越小,其触变性越大 2、以下关于乳剂流变学的描述正确的是()。 A.分散相体积比较低时,体系表现为非牛顿流动 B.随着分散体体积比增加,系统流动性下降,转变成假塑性流动或塑性流动 C.乳化剂浓度越高,制剂黏度越大,流动性越差 D.平均粒度相同的条件下,粒度分布宽的系统比粒度分布窄的系统黏度低 3、非牛顿流体的流动曲线类型有()。 A.塑性流动 B.假塑性流动 C.层流 D.胀性流动 4、测定牛顿流体的黏度常用仪器为()。 A.落球黏度计 B.双重圆筒型黏度计 C.毛细管黏度计 D.平行圆板型黏度计 E.圆锥平板黏度计 四、问答题 1、什么是牛顿流动和非牛顿流动,有何特征? 牛顿流体、非牛顿流动面包括塑性、假塑性、胀性 2、分别以混悬液、乳剂、软膏为例说明流变学在药剂中的应用。 3、什么是黏弹性?常见的理论模型有哪些?

粉体流变学-分析粉体流与不流行为

粉体流变学-分析粉体流与不流行为 1). 内摩擦角-横坐标和屈服轨迹的切线之间的角。 2 ).有效内摩擦角--由Jenike 定义的有效屈服轨迹的倾斜角(EYL )。 有效屈服轨迹与横坐标之间的夹角称为有效内摩擦角δ。它与粉体物料的内摩擦角有关,是衡量处于流动状态粉体流动阻力的一个参数。当δ增加时,颗粒的流动性就降低。 对于给定的物体粉料,这个值常常随密实应力的降低而增大,但密实应力很低时,甚至可达900。对于大多数物料, δ值在250到700之间。 流动时,最大主应力和最小主应力之比可以用有效屈服轨迹函数来表示: 则 3).莫尔应力圆-图形表示正应力和剪切应力坐标系中的应力状态,即正应力, t-平面。 4).正应力-通常作用于要求平面的应力。也叫固结应力或压实应力. 5).剪切应力T-平行作用于平面表面的应力。 6).屈服轨迹-失效时剪切应力与正应力的关系曲线。屈服轨迹(YL)有时被称为瞬时屈服轨迹来区分于时间屈服轨迹。 屈服轨迹由粉体的剪切试验确定:一组粉体样品在同样的垂直应力条件下密实,然后在不同的垂直压力下,对每一个粉体样品进行剪切破坏试验。在这种特殊的密实状态中,得到的粉体破坏包络线称为该粉体的屈服轨迹。 7).有效屈服轨迹(EYL )-直线通过正应力的原点,t-平面,并与稳定状态的莫尔圆相切,符合给定堆积密度的散装固体的稳态流动条件. 8).失败(散装固体的)-过度固结的散装固体塑性变形受到剪切,导致膨胀和强度降低。 131sin 1sin σδσδ+=-1 313 sin σσδσσ-=+

9).流、稳态-临界状态时散装固体的连续塑性变形。 10).流动函数FF -特定散装固体的无侧限屈服强度和主要固结应力的关系曲线。 有时也称做开裂函数,是由Jenike 提出的,用来表示松散颗粒粉体的流动性能。 松散颗粒粉体的流动取决于由密实而形成的强度。 当f c =0时,FF=∞,即粉体完全自由流动 流动性的标准分级如下: FF <1 不流动,凝结 1< FF <2 很粘结,附着性强,流不动 2< FF <4 粘结,有附着性 4< FF <10 容易流动 10< FF 自由流动 影响粉体流动性的因素 ? 粉体加料时的冲击:冲击处的物料应力可以高于流动时产生的应力; ? 温度和化学变化:高温时颗粒可能结块或软化,而冷却时可能产生相变,这些都可 能影响粉体的流动性; ? 湿度:湿料可以影响屈服轨迹和壁摩擦系数,而且还能引起料壁黏附; ? 粒度:当颗粒变细时,流动性常常降低,而壁摩擦系数却趋于增加; ? 振动:细颗粒的物料在振动时趋于密实,引起流动中断。 11).料斗-料仓结构的融合部分。 12).主要固结应力 -由稳态流的莫尔应力圆产生的大主应力。莫尔应力圆相切于有效 屈服轨迹。 1 c FF=f σ

geometry(几何学)

Geometry Geometry is all about shapes and their properties. If you like playing with objects, or like drawing, then geometry is for you! Geometry can be divided into: Plane Geometry is about flat shapes like lines, circles and triangles ... shapes that can be drawn on a piece of paper Solid Geometry is about three dimensional objects like cubes, prisms, cylinders and spheres. Hint: Try drawing some of the shapes and angles as you learn ... it helps. Point, Line, Plane and Solid A Point has no dimensions, only position A Line is one-dimensional A Plane is two dimensional (2D) A Solid is three-dimensional (3D)

Why? Why do we do Geometry? To discover patterns, find areas, volumes, lengths and angles, and better understand the world around us. Plane Geometry Plane Geometry is all about shapes on a flat surface (like on an endless piece of paper). 2D Shapes Activity: Sorting Shapes Triangles Right Angled Triangles Interactive Triangles Quadrilaterals (Rhombus, Parallelogram, etc) Rectangle, Rhombus, Square, Parallelogram, Trapezoid and Kite Interactive Quadrilaterals Shapes Freeplay Perimeter

几何学发展史简介

“几何”一词,拉丁文是geometric,其源于希腊文ycouerpua(土地测量术)。我国明末科学家徐光启(1562-1637)与意大利传教士利玛窦(R.Matteo,1553- 1610)1607年合译《几何原本》时首次采用。几何学是一门古老而崭新的数学分支,其产生可追溯到距今8000年前的新石器时代。最早始于人类生存及生产的需要,在长期生活、生产实践中,人们逐渐对图形有了一定的认识,形成了一些粗略的几何概念,归纳出一些有关图形的知识和经验,产生了初步的几何。再经历代数学家的提炼和加工,逐渐形成了一门研究现实世界空间形式,即物体形状、大小和位置关系的数学分支,进而发展成为研究一般空间结构的数学分支。 几何学的发展大致经历了4个基本阶段。 1.实验几何的形成与发展 几何学最早的产生可以用“积累几何事实,并企图建立起各个事实间的某种联系”来概括和描述。源于人们观察天体位置、丈量土地、测量容积、制造生产工具等实践活动。据考古资料记载,出土的十万年前的一些器皿上已出现的简略几何图案。相传公元前2000年前大禹治水时,就已经能够使用规和矩等绘图工具进行测量和设计工作。另外,从现存的古埃及、古巴比伦等国的史料可看出,在天文、测量中也大量地反映了几何图形与计算的知识。 然而,这一历史时期,尽管人们在观察实验的基础上积累了丰富的几何经验。 但在现存的史料中,未见这一时期总结出几何知识真实性的推理证明;某些计算公式仅是粗略和近似的;直至公元前7世纪以前,可以说是单纯地由经验积累,通过归纳而产生几何知识的阶段,被称为实验(归纳)几何阶段。 2.理论几何的形成与发展 到了公元前7世纪,随着古埃及、古希腊之间贸易与文化的交流,埃及的几何知识逐渐传入希腊并得到巨大的发展。这一时期,人们对几何知识开始了逻辑推理与论证,古希腊的泰勒斯(Thales,约公元前625一前547)首先证明了“对顶角相等”、“等腰三角形两底角相等”、“半圆上的圆周角是直角”等,因而被人们称为第一位几何学家;毕达哥拉斯(Pythagoras,公元前580一前501)学派首先证明了“三角形内角和等于二直角”、“勾股定理”、“只有五种正多面体”等。特别是柏拉图(Plato,公元前427-前347)学派把形式逻辑的思想方法引入几何学,确立了缜密的定义和明晰的公理作为几何学基础。后来古希腊大数学家欧几里得(Euclid,约公元前330一前275)在前人研究的基础上,按照严密地逻辑公理系统编写成了不朽的巨著《几何原本》13卷,至此理论几何已基本形成。 尽管《几何原本》存在公理不够完善、论证有时借助于直观等不足,但它集古代数学之大成,论证严密,影响深远,所运用的公理化方法为以后的数学发展指出了方向,以至成为整个人类文明发展史上的里程碑、人类文化遗产中的瑰宝。 3.解析几何的产生与发展 公元前3世纪,《几何原本》的出现,为理论几何奠定了基础。与此同时,人们对圆锥曲线也作了一定的研究,发现了圆锥曲线的许多性质。在后来较长时间里,由于封建社会中神学占有统治地位,科学得不到应有的重视,几何学也一直没有得到突破性的进展。直到16世纪随着欧洲文艺复兴运动的发展,生产实际的需要,自然科学才得到迅速发展。法国数学家笛卡儿(R.Descartes,1596-1650)在研究中发现,欧氏几何过分依赖于图形,而代数又完全受公式、法则所左右,他竭力主张几何、代数结合起来取长补短,认为这是促进数学发展的一个新的途径。笛卡儿把以往对立着的两个研究对象“数”与“形”统一起来了,并在数学中引入了变量的概念,从而完成了数学史上一项划时代的变革——解析几何产生

流变学在聚合物研究中的应用

流变学在聚合物研究中的应用 概述 高分子熔体的流变行为是由其长链分子的拓扑结构决定的。当高分子主链上引入一定数量和长度的支链后,其粘弹性质与线形高分子会有明显不同。长链支化聚合物剪切条件下会表现出与线形高分子类似的应变软化,但由于支链的限制将有更长的末端松弛时间,并在拉伸条件下表现出与线形高分子完全不同的应变硬化松弛过程。支化对聚合物粘弹性质的影响,无论对工业界还是科学研究都是一个十分重要和基础的课题。近年来的一系列研究表明:一方面通过引入相同或相似结构单元的长支链可以明显提高聚合物的熔体强度(这对于熔融纺丝、吹膜等熔体拉伸加工过程是十分有利的);另一方面也可以通过含有特征官能团支链的引入对聚合物进行改性,提高其光学、热学和力学性能。目前,随着控制聚合反应和机理研究的进一步深入,人们已能够直接得到各种具有明确拓扑结构的支化聚合物,如梳形[1]、星形、H形聚合物[2]等,这对支化聚合物流变学的深入研究与探索起了极大的推动作用。 与线形高分子不同,支化高分子熔体是热流变复杂的,其流变学特性主要表现在: (1)支化减小了高分子的流体力学体积,降低了零切粘度,支链松弛过程的加入使得整个高分子的末端松弛时间延长; (2)长链支化聚合物在拉伸过程中会表现出明显的应变硬化,并使得时- 温叠加原理不再有效; (3)支化高分子的拓扑结构对其整个松弛过程有显著的影响,支化密度和支链长度存在临界值,超过此临界值,支链松弛过程将会清晰地反映在动态粘弹谱上; (4)支化聚合物流变行为的温度依赖性是复杂的,多数支化聚合物的流变行为比相应线形聚合物有更强的温度依赖性,但也有一些支化聚合物和其相应线形高分子具有同样的温度依赖性,如聚异丁烯。 本文简介流变学在不同聚合物研究中的应用,并对流变学的发展方向做了展望。 1、流变学在聚乙烯研究中的应用 聚乙烯基本分为三大类,即低密度聚乙烯(LDPE)!高密度聚乙烯(HDPE)和线型低密度聚乙烯(LLDPE),三种聚乙烯分子结构见图如下

第13章-热力学基础习题及答案

第十三章习题 热力学第一定律及其应用1、关于可逆过程和不可逆过程的判断: (1) 可逆热力学过程一定是准静态过程. (2) 准静态过程一定是可逆过程. (3) 不可逆过程就是不能向相反方向进行的过程. (4) 凡有摩擦的过程,一定是不可逆过程. 以上四种判断,其中正确的是。 2、如图所示,一定量理想气体从体积V1,膨胀到体积V2分别经历的过程是:A→B等压过程,A→C等温过程;A→D绝热过程,其中吸热量最多的过程。 3、一定量的理想气体,分别经历如图(1) 所示 的abc过程,(图中虚线ac为等温线),和图(2) 所 示的def过程(图中虚线df为绝热线).判断这两 种过程是吸热还是放热. abc过程 热,def过程热. 4、如图所示,一绝热密闭的容器,用隔板分成相等的两部 分,左边盛有一定量的理想气体,压强为p0,右边为真空.今 将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压 强是。(= γC p/C V) 5、一定量理想气体,从同一状态开始使其体积由V1膨胀到2V1,分别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3)绝热过程.其中:__________过程气体对外作功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多.V V

答案 1、(1)(4)是正确的。 2、是A-B 吸热最多。 3、abc 过程吸热,def 过程放热。 4、P 0/2。 5、等压, 等压, 等压 理想气体的功、内能、热量 1、有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氨气传递热量是 。 2、 一定量的理想气体经历acb 过程时吸热500 J .则 经历acbda 过程时,吸热为 。 3、一气缸内贮有10 mol 的单原子分子理想气体,在压 缩过程中外界作功209J , 气体升温1 K ,此过程中气体内能增量为 _____ ,外界传给气体的热量为___________________. (普适气体常量 R = 8.31 J/mol· K) 4、一定量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单 原子分子气体,则该过程中需吸热_____________ J ;若为双原子分子气体,则 需吸热______________ J. p (×105 Pa) 3 m 3)

高分子材料流变学

高分子材料流变学 Polymer rheology 一、课内学时:40学时;学分:2学分 二、使用专业:高分子化学与物理、材料学、材料加工工程、高分子机械设计 三、预修课程:高分子化学、高分子物理学、高分子结构与性能、高分子加工原理、场论 四、教学目的: 《高分子材料加工原理》是高分子材料与工程专业本科生的必修课,课程设置的目的是: 1.使学生对高分子材料加工过程的基本原理,主要包括高分子材料在成型加工过程中的基本流变学原理和传热学原理有比较全面的认识。结合高分子物理学、材料加工工艺学、加工机械及模具设计,理解高分子材料的流变性质、传热性能与材料的结构、性能、制品配方、加工工艺条件、加工机械及模具的设计和应用之间的关系。 2.掌握高分子材料的基本流变学性质和传热学性能;了解研究高分子材料流变性质、传热性能的基本数学、力学方法;掌握测量、研究高分子材料流变性质、传热性能的基本实验方法和手段。为进一步学习《聚合反应工程学》、《材料成型加工工艺学》、《材料成型加工机械》、《模具设计》等课程打下基础。 3.讨论典型高分子材料成型加工过程的流变学、传热学原理,讨论多相聚合物体系(复合材料)的流变性质和传热性能,为分析和改进生产工艺、指导配方设计、开发和应用高分子材料提供一定的理论基础。 本课程属一门多学科交叉,理论性与实践性均很强的新兴学科,国内目前尚无统一大纲和教材。鉴于目前介绍关于高分子材料传热性能的书籍比较混乱,本大纲暂时先拟定讲授高分子材料流变学的基本内容和要求。以后条件成熟时,再补充高分子材料传热学方面的内容。高分子流变学要求的教学时数为32学时,高分子传热学要求的教学时数为16学时,总计教学时数为48学时。 关于高分子材料流变学部分,本大纲遵循基本理论与生产实践相结合,既有一定广度,又有一定深度、新度,材料宏观性质与微观结构分析相结合,唯象性讨论与建立数学模型相结合的特点,按照少而精的原则,设置了七章二十节内容,教学时数为32学时。 各章节的基本教学要求如下: 第一、二、三章: 1.前三章为本课程学习的重点和基础。 2.要求掌握流变学研究中的基本物理量及基本流变函数。理解高聚物液体的流动机理,理解高聚物

第10章热力学基础

第10章 热力学基础 一、选择题 1. 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体)开始时它们的压强和温度都相同,现将3 J 热量传给氨气,使之升高到一定的温度。若使氢气也升高同样的温度,则应向氢气传递热量为 (A)6 J (B)3 J (C)5 J (D )l0 J [ ] 2. 对于物体的热力学过程, 下列说法中正确的是 (A) 内能的改变只决定于初、末两个状态, 与所经历的过程无关 (B) 摩尔热容量的大小与所经历的过程无关 (C) 在物体内, 若单位体积内所含热量越多, 则其温度越高 (D) 以上说法都不对 [ ] 3. 有关热量, 下列说法中正确的是 (A) 热是一种物质 (B) 热能是物质系统的状态参量 (C) 热量是表征物质系统固有属性的物理量 (D) 热传递是改变物质系统内能的一种形式 [ ] 4. 关于功的下列各说法中, 错误的是 (A) 功是能量变化的一种量度 (B) 功是描写系统与外界相互作用的物理量 (C) 气体从一个状态到另一个状态, 经历的过程不同, 则对外做的功也不一样 (D) 系统具有的能量等于系统对外做的功 [ ] 5. 1mol 理想气体从初态(T 1, p 1, V 1 )等温压缩到体积V 2, 外界对气体所做的功为 (A) 121ln V V RT (B) 2 11ln V V RT (C) )(121V V p - (D) 1122V p V p - [ ] 6. 物质的量相内能同的两种理想气体, 一种是单原子分子气体, 另一种是双原子分子气体, 从同一状态开始经等体升压到原来压强的两倍.在此过程中, 两气体 (A) 从外界吸热和内能的增量均相同 (B) 从外界吸热和内能的增量均不相同 (C) 从外界吸热相同, 内能的增量不相同 (D) 从外界吸热不同,的增量相同 [ ] 7. 理想气体由初状态( p 1, V 1, T 1)绝热膨胀到末状态( p 2, V 2, T 2),对外做的功为

第十四章 流变学和粉体学简介解析

第十四章流变学和粉体学简介 一、概述 流变学(rheology)系指研究物体变形和流动的科学,1929年由Bengham和Crawford提出。 物体的二重性:物体在外力作用下可观察到变形和流动现象。 流变性:物体在外力作用下表现出来的变形性和流动性。 二、弹性形变和粘性流动 弹性变形(elastic deformation) 弹性变形:给固体施加外力时,固体就变形,外力解除时,固体就恢复到原有的形状,这种可逆的形状变化称为弹性变形。 应变:弹性变形时,与原形状相比变形的比率称为应变(strain),应变分为常规应变(normal strain)和剪切应变(shear strain)。 延伸应变时,S=γE;剪切应变时,S=γG。 S为应力,γ为应变,E为延伸弹性率,G为剪切刚性率。 对药剂学弹性率比刚性率更有实际意义,弹性率大,弹性界限就小,表现为硬度大,有脆性,容易破坏;弹性率小,表现柔软有韧性,不宜破坏。 粘性流动 液体受应力作用变形,即流动,是不可逆过程。 粘性(viscosity)是液体内部所在的阻碍液体流动的摩擦力,称内摩擦。 D=dv/dy=dγ/dt D(s-1)为切变速度或剪切速度(rate of shear), dγ/dt为单位时间应变的增加。

三、牛顿流动 理想的液体服从牛顿粘度法则(1687年,牛顿定律,Newtonian equation),即切变速度D与切应力S成正比: S=F/A=ηD D为切变速度,S为切应力,F为A面积上施加的力,η为粘度系数[单位Pa·s,1Pa·s=10P(泊)],或称动力粘度,简称粘度。 流度(fluidity):?=1/η,即粘度的倒数。 运动粘度:粘度η与同温度的密度ρ之比值(η/ρ),再乘以106,单位mm/s。 四、非牛顿流动 非牛顿液体(nonNewtonian fluid):不符合牛顿定律的液体,如乳剂、混悬剂、高分子溶液、胶体溶液等。 粘度曲线(viscosty curve)或流动曲线(flow curve):把切变速度D随切应力S而变化的规律绘制成的曲线。 流动方程式(rheological equation):表示流动曲线形状的数学关系式。 按非牛顿液体流动曲线为类型可将非牛顿液分为塑性流动、假塑性流动、胀性流动、触变流动。 塑性流动(plastic flow) 塑性流动:不过原点;有屈伏值S0;当切应力S< S0时,形成向上弯曲的曲线;当切应力S> S0时,切变速度D和切应力呈直线关系。 塑性(plastisity) 屈伏值(yield value):引起塑性液体流动的最低切应力S0 。 塑性粘度(plastic viscosity):塑性液体的粘度ηpl。 塑性液体的流动公式:D=(S- S0)/ηpl D为切变速度,S为切应力, S0 为屈伏值,ηpl 为塑性粘度。 在制剂中表现为塑性流动的剂型有浓度较高的乳剂和混悬剂。

物理选修3---3第十章热力学定律知识点汇总

物理选修3---3第十章热力学定律知识点汇总 (填空训练版) 知识点一、功和内能 1、绝热过程: 热力学系统只由于外界对它做功而与外界交换能量,它不从外界吸热,也不向外界传热的热力学过程,称为绝热过程。 2、内能: 内能是一种与热运动有关的能量。在物理学中,我们把物体内所有分子作无规则运动的动能和分子势能的总和叫做物体的内能。内能用字母U 表示。在宏观上,热力学系统的内能U 是状态量的函数,由系统的分子数、温度、体积决定。 3、绝热过程功和能的关系 功是过程量,能量是状态量,功是能量变化的量度。某热力学系统从状态1经过绝热过程达到状态2时,内能的增加量U U U 1 2-= ?就等于外界对系统所做的功W ,即 W U =? 可见,这一过程实现了其它形式的能与内能之间的转化。 知识点二、热和内能 1、热传递:两个温度不同的物体相互接触时温度高的物体要降温,温度低的物体要升温,这个过程称之为热传递。 2、热传递的方式:热传导、对流热、热辐射。 3、热传递过程热和能的关系 某热力学系统从状态1经过单纯的传热过程达到状态2时,内能的增加量U U U 1 2-= ?就等于外界对系统传递的热量Q ,即 Q U =? 可见,这一过程只是实现了内能与内能之间的转移。 知识点三、热力学第一定律、能量守恒定律 1、热力学第一定律

①热力学第一定律表述: 一个热力学系统的内能增量等于外界向它传递的热量与外界对它所作的功的和。 ②热力学第一定律表达式 ? U+ = Q W ③应用热力学第一定律解题的思路与步骤: 1)、明确研究对象是哪个物体或者是哪个热力学系统。 2)、分别列出物体或系统(吸收或放出的热量)和外界对物体或系统所做的功。 3)、据热力学第一定律列出方程进行求解,应用热力学第一定律计算时,要依照符号法则代入数据,对结果的正负也同样依照规则来解释其意义。 4)、几种特殊情况: 若过程是绝热的,即Q=0,则:W=ΔU,外界对物体做的功等于物体内能的增加。 若过程中不做功,即W=0,则:Q=ΔU,物体吸收的热量等于物体内能的增加。 若过程的始末状态物体的内能不变,即ΔU=0,则:W+Q=0,外界对物体做的功等于物体放出的热量。 ④对热力学第一定律的理解: 热力学第一定律不仅反映了做功和热传递这两种改变内能的方式是等效的,而且给出了内能的变化量和做功与热传递之间的定量关系,此定律是标量式,应用时热量的单位应统一为国际单位制中的焦耳。 2、能量守恒定律 ①能量守恒定律内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一物体,在转化和转移的过程中其总量不变。 ②对能量守恒定律的理解:

相关主题
文本预览
相关文档 最新文档