当前位置:文档之家› 开关弹簧操作机构

开关弹簧操作机构

开关弹簧操作机构
开关弹簧操作机构

一、弹簧操动机构

弹簧操动机构是一种以弹簧作为储能元件的机械式操动机构。弹簧的储能借助电动机通过减速装置来完成,并经过锁扣系统保持在储能状态。开断时,锁扣借助磁力脱扣,弹簧释放能量,经过机械传递单元使触头运动。

弹簧操动机构结构简单,可靠性高,分合闸操作采用两个螺旋压缩弹簧实现。储能电机给合闸弹簧储能,合闸时合闸弹簧的能量一部分用来合闸,另一部分用来给分闸弹簧储能。合闸弹簧一释放,储能电机立刻给其储能,储能时间不超过15s(储能电机采用交直流两用电机)。运行时分合闸弹簧均处于压缩状态,而分闸弹簧的释放有一独立的系统,与合闸弹簧没有关系。这样设计的弹簧操动机构具有高度的可靠性和稳定性,既可满足 sec -CO-180 sec -CO操作循环,又可满足CO-15sec-CO操作循环,机械稳定性试验达10000次。

CT20弹簧操动机构动作原理

CT20型弹簧操动机构(图1、图2、图3)利用电动机给合闸弹簧储能,断路器在合闸弹簧的作用下合闸,同时使分闸弹簧储能。储存在分闸弹簧的能量使断路器分闸。

1.1.1分闸动作过程

图1所示状态为开关处于合闸位置,合闸弹簧已储能(同时分闸弹簧也已储能完毕)。此时储能的分闸弹簧使主拐臂受到偏向分闸位置的力,但在分闸触发器和分闸保持掣子的作用下将其锁住,开关保持在合闸位置。

分闸操作(图1、2)

分闸信号使分闸线圈带电并使分闸撞杆撞击分闸触发器,分闸触发器以顺时针方向旋转并释放分闸保持掣子,分闸保持掣子也以顺时针方向旋转释放主拐臂上的轴销A,分闸弹簧力使主拐臂逆时针旋转,断路器分闸。

1.1.2合闸操作过程

图2所示状态为开关处于分闸位置,此时合闸弹簧为储能(分

闸弹簧已释放)状态,凸轮通过凸轮轴与棘轮相连,棘轮受到已储能的合闸弹簧力的作用存在顺时针方向的力矩,但合闸触发器和合闸弹簧储能保持掣子的作用下使其锁住,开关保持在分闸位置。

合闸操作(图2、3)

合闸信号使合闸线圈带电,并使合闸撞杆撞击合闸触发器。合闸触发器以顺时针方向旋转,并释放合闸弹簧储能保持掣子,合闸弹簧储能保持掣子逆时针方向旋转,释放棘轮上的轴销B。合闸弹簧力使棘轮带动凸轮轴以逆时针方向旋转,使主拐臂以顺时针旋转,断路器完成合闸。并同时压缩分闸弹簧,使分闸弹簧储能。当主拐臂转到行

程末端时,分闸触发器和合闸保持掣子将轴销A锁住,开关保持在合闸位置。

1.1.3 合闸弹簧储能过程

图3所示状态为开关处于合闸位置,合闸弹簧释放(分闸弹簧已储能)。断路器合闸操作后,与棘轮相连的凸轮板使限位开关33HB闭合,磁力开关88M带电,接通电动机回路,使储能电机启动,通过一对锥齿轮传动至与一对棘爪相连的偏心轮上,偏心轮的转动使这一对棘爪交替蹬踏棘轮,使棘轮逆时针转动,带动合闸弹簧储能,合闸弹簧储能到位后由合闸弹簧储能保持掣子将其锁定。同时凸轮板使限位开关33HB切断电动机回路。合闸弹簧储能过程结束。

来实现。图4介绍了机械防跳装置的原理,其动作过程如下: 1). 图a所示状态为开关处于分闸位置,此时合闸弹簧为储能

(分闸弹簧已释放)状态,凸轮通过凸轮轴与棘轮相连,棘轮受到已储能的合闸弹簧力的作用存在顺时针方向的力矩,但合闸触发器和合闸弹簧储能保持掣子的作用下使其锁住,开关保持在分闸位置。

2). 当合闸电磁铁被合闸信号励磁时,铁心杆带动合闸撞杆先压下防跳销钉后撞击合闸触发器。.合闸触发器以顺时针方向旋转,并释放合闸弹簧储能保持掣子,合闸弹簧储能保持掣子逆时针方向旋转,释放棘轮上的轴销B。合闸弹簧力使棘轮带动凸轮轴以逆时针方向旋转,使主拐臂以顺时针旋转,断路器完成合闸。

3).滚轮推动脱扣器的回转面,使其进一步逆时针转动。从而,脱扣器使脱扣杆顺时针转动(见图4b),从防跳销钉上滑脱,而防跳销钉使脱扣杆保持倾斜状态(见图4c).

4).断路器合闸结束,合闸信号消失电磁铁复位(见图4d).

5) .如果断路器此时得到了意外的分闸信号开始分闸,在分闸在这一过程中,只要合闸信号一直保持,脱扣杆由于防跳销钉的作用始终是倾斜的,从而铁心杆便不能撞击脱扣器,因此,断路器不能重复合闸操作(见图4e)实现防跳功能。

当合闸信号解除时,合闸电磁铁失磁,铁心杆通过电磁铁内弹簧返回,则铁心杆和脱扣杆均处于图4a状态,为下次合闸操作作好了准备。

弹簧操作机构的组成

弹簧操作机构主要由箱体、二次控制部分、机构芯架组成。

图 6

)弹簧机构的技术参数

1.4.1机构的参数见表2

表2

控制回路与辅助回路参数表 3

1.4.3 SF6气体压力参数

SF6气体压力参数随所配的产品,表4以LW25-126为例

表 4 (20℃)

配弹簧机构的断路器在运行中的故障处理见表5

表5

)现场使用中几个问题

1.6.1)弹簧操作机构润滑脂的使用

弹簧操作机构的传动零件较多,而其本身又对传动摩擦等反力特别敏感,所以出厂时对诸如轴销,轴承,齿轮,弹簧筒等转动和直动产生相互摩擦的地方涂敷低温2#润滑脂。在运行了六年后,一些润滑脂需重新涂敷。注意棘轮齿面部和大小棘爪与棘轮接触处一定不要涂抹低温2#润滑脂,以防影响机构动作的准确性。具体涂敷见图7。

图7

1.6.2)机构行程的检查和凸轮间隙的确认

手动慢分,慢合机构可以测量机构行程和本体行程见图8,测量值应符合表2的技术要求。行程不够时,首先测量凸轮间隙,凸轮间隙越大,行程越小。

1.6.5 合闸弹簧手动储能的方法

当电机回路失去电源时,合闸弹簧可手动储能其方法见图12

将套杆12-1和套板手12-3插入棘爪轴的六角头内,顺时针方向旋

承;

12-11拐臂; 12-12合闸弹簧储能示意

弹簧操作机构

浅谈断路器弹簧操作机构 摘要本文主要论述了断路器弹簧操作机构的构成和动作原理,并以LW8型断路器操作机构为例,介绍了弹簧机构在维护中的注意事项以及事故分析与处理方法。可供有关运行维护人员参考。 关键词弹簧操作机构动作原理维护故障分析与处理 0 引言 断路器由本体和操作机构组成,操作机构是用来使断路器合闸、并使断路器维持在稳定的合闸状态,且能迅速使断路器分闸的装置,它对断路器的动作特性有着至关重要的影响。它由合闸、维持合闸及分闸等部分构成。 1 弹簧机构的特点与结构 按合闸所用能源的不同,操作机构可划分为电磁机构、弹簧机构、液压机构和气动机构,目前10KV和35KV断路器主要使用的是弹簧机构。 弹簧操作机构主要有以下特点: 优点:速度快,能快速自动重合闸,操作电源容量小且交直流均可使用,暂时失去电源仍可操作一次。缺点:结构较为复杂,强度要求高,输出力特性和本体反力特性配合较差。 从功能上可以分为以下几部分:1)合闸机构。即能量转换部分。对于弹簧机构它是指储能弹簧和相应的储能机构以及合闸脱扣装置等元件。合闸过程:给合闸电磁铁通电或手按合闸按钮,合闸挚子被解脱,储能轴在合闸弹簧力的作用下转动,杠杆上的连杆将力传给开关主轴,主轴带动绝缘拉杆、动导电杆、导电杆向上运动,直到被分闸挚子锁住,断路器处于合闸位置。合闸的同时,分闸弹簧被储能。 2)分闸机构。它是使断路器能快速脱扣分闸的机构。对于机械式操作机构,它是指分闸脱扣装置及相应的连杆系统。分闸过程:给分闸电磁铁通电或手按分闸按钮,分闸挚子解脱,主轴在分闸弹簧作用下旋转至主轴上的拐臂压死缓冲器,断路器处于分闸位置。 3)辅助设备。它是指辅助开关、中间继电器、接触器等辅助元件组成的信号和保护回路。 2 运行及维护中检查项目 弹簧机构日常运行及维护中着重检查如下项目:

弹簧操动机构在真空断路器应用

前言 随着真空断路器的迅速发展,对配套用的操动机构提出了更高的要求。最早用 的电磁操动机构,因合闸电源功率大,投资大,断路器合分速度偏低,逐渐被合闸电源 功率小,输出特性与真空断路器相匹配,机械寿命长的弹簧操动机构所代替。 最早设计的CT8弹簧操动机构专门为少油断路器而设计。经完善改进的 CT10、CT12机构,原理上与CT8相同,结构相似,仍然存在着与真空断路器不相匹配 的缺点。 为了满足真空断路器的需要,提高运行可靠性,根据真空断路器的机械特性要 求,相应研制开发了CT17、CT19类型的弹簧操动机构。CT17和CT19储能原理相同,驱动和脱扣系统相近,只是结构布置两样。现以CT17为例,对真空断路器应用中出 现的问题进行分析,提出解决方案。 二 CT17与CT10弹操机构在真空断路器应用中性能的比较。 CT10是最早期经完善改进用于35kV真空断路器的弹簧操动机构。由于它储 能方式为棘轮结构,运转时承受冲击负荷,这样要求机械强度高,运行噪声大,使用寿 命短。CT17机构吸收了CT10的优点,再储能原理上实现了突破。采用了机械传动 系统中最简捷,性能可靠的齿轮传动方式,已根本上改变了原有的不足。使其传动平稳、噪声低、寿命长、输出特性与真空断路器相匹配。现将二者性能列序比较如下: 1 合闸功 CT10为400J;CT17-35为350~500J,连续可调,能满足不同的断路器对输出功 的要求。 2 机械寿命 CT10为2000次;CT17-35为10000次

3 安装方式 CT10合分电磁铁可自动复位,机械输出轴偏后,机构可以朝任意方向安装。常用的有正装、倒装,适应不同断路器的要求,方便灵活。 4 储能系统 CT10储能系统为棘轮棘爪形式,储能时棘轮棘爪受冲击负荷,振动大,噪声大,易打齿,易磨损。系统效率低,要求功率大,一般为600W。经常储不上能,容易烧损电机。 CT17-35采用齿轮传动,性能平稳,效应提高。储能可靠,噪声低。使用由机动率小,为200W。 5 驱动系统 CT10的驱动系统为单边铰链,受力不对称,不均匀;CT17-35采用对称铰链,受力均匀,效果好,磨损小。 6 脱扣系统 CT10分闸脱扣系统采用半轴搭扣解锁形式。而合闸脱扣系统为圆弧B锁门,合闸脱扣系统环节多,需用的合闸电磁铁能量大,合闸电流不小于9A。合闸控制必须采用接触器。运行用拒合、误合现象时又发生。 CT17-35合分脱扣系统全部采用半轴搭扣解锁形式,合分闸所需功率低,合分闸电磁铁能量小,电流小。合分脱扣系统直接用辅助开关实现,不必另加接触器。合分扣结牢靠,解锁方便,不易发生拒动或误动。 7 辅助开关

CT19型操作机构

CT19型操作机构动作原理及常见故障处理 杜乾刚 (广东电网公司东莞供电局,广东,东莞,523120) [摘要]:目前,大部分国产的真空断路器多选用CT19型弹簧操作机构作为牵引机构,其中以ZN28型系列高压真空断路器最为典型,该类型机构以其卓越的性能越来越受到各地供电局的喜爱,东莞从90年代初开始引进该类型机构,至今已拓展至上百台,产品覆盖了东莞的各个镇区,但近几年发现,其在东莞地区的故障率越来越高,其中危害最大的就是出现“拒分”现象,容易引发电网事故越级跳闸,据调查显示,发生故障的主要原因一方面与产品的质量有关,另一方面与操作人员不熟悉操作有关,本文重点介绍该类型操作机构的结构、动作原理及操作要领,并通过常见故障说明其处理方法,为广大的电力一线工作者提供宝贵的经验。 [关键词]:弹簧机构; ZN28 ;工作原理;故障处理 一、前言 CT19型弹簧操作机构由于其自身的优越性越来越多的应用于我局所管辖的各等级变电站中,生产的厂家也多有不同,其中应用最多的主要为余姚舜利开关厂、珠江开关厂及汕头正超厂等,下面就以余姚舜利开关厂生产的ZN28-10系列户内高压真空断路器及操作机构为例具体说明一下断路器的结构及动作原理。 二、提出问题 该弹簧操作机构是采用事先储存在弹簧内的势能作为驱动断路

器合闸的能量。其优点在于 1、不需要大功率的储能源,紧急情况下也可手动储能,所以可在各种场合使用; 2、根据需要可构成不同合闸功能的操作机构,用于10~220kV 各电压等级的断路器中; 3、动作时间比电磁机构的快,因此可以缩短断路器的合闸时间。 但同时它也不可避免的具有自身的缺陷,结构比较复杂,机械加工工艺要求比较高,其合闸力输出特性为下降曲线,与断路器所需要的呈上升的合闸力特性不易配合好,合闸操作时冲击力较大,要求有较好的缓冲装置,具体而言,目前我们发现较常见的故障为“拒合”和“拒分”。 而要解决这两个故障首先就必须了解设备的结构及动作原理。 CT19型弹簧操作机构结构及其动作原理―― 该类型的机构合闸弹簧的储能方式有电动机储能和手动储能两种;分闸操作有分闸电磁铁、过电流脱扣电磁铁及手动按钮操作三种;合闸操作有合闸电磁铁及手动按钮操作两种。 机构主要由五个单元组成,它们分别是:驱动单元、储能单元、脱扣器单元(合闸单元和分闸单元)、电气控制单元(辅助接点和行程开关)和框架。 其中,驱动单元位于右侧板和中间隔板之间,为一匹配真空断路器运动的负载特性的凸轮连杆式机构,它的输出轴位于机构的最上端。

永磁操作机构与弹簧操作机构的区别!民熔电工!小白福利!必看!

永磁操作机构与弹簧操作机构的区别!民熔电工!小白福利!必看! 民熔永磁操动机构是一种用于高压真空断路器永磁保持,民熔电磁控制的操作机构,是一种全新的工作原理和结构。与传统操动机构相比较,具有主要部件少,是传统断路器操作机构零部件的7%,无需机械脱扣锁扣装置,故障点少,高可靠性,使用寿命长,其中民熔永磁操作机构寿命可达10万次以上,适于频繁操作及高可靠变电站等场所的应用。民熔永磁机构克服了传统弹簧机构和电磁机构的不足,同时通过永磁材料实现真空断路器分、合闸位置的保持及操作过程,从而达到高可靠性和频繁操作以及恶劣环境场所的稳定的操作。 主要性能特点: 1、提高真空断路器整体机械性能,使之能适应频繁开断和长寿命使用的要求,真空断路器的机械寿命高于10万次。 2、相比传统操动机构,无须机械脱、锁扣装置,零部件数量大为减少,工作时仅有一个运动部件,故障率极低,可实现少维护。 3、操动机构的性能与灭弧室开断、关合特性相吻合,延长真空灭弧室的使用寿命 4、采用高可靠的双稳态操作机构设计。通过分、合闸控制线圈产生的电磁力控制分、合闸操作,合闸和分闸位置均采用永磁保持。 5、永久磁材料与分闸、合闸控制线圈结合,解决了合闸时需要大功率能量的问题。手动分闸与电动分闸速度相同,能够可靠开断短路电流。

6、具有防跳功能,设计软连接和触头辅助压簧,解决了合闸弹跳问题。 7、采用智能化控制和液晶显示,能直观显示断路器各种工作状态。同时具有低电压拒合报警功能。 8、交直流储能操作,停电2后小时内可做一次分、合、分操作。 9、具有可靠的操作控制电路模块,可耐受雷击、电涌等严酷条件。永磁材料采用钕铁硼材料,其每一百年退磁为千分之0.510、该断路器具有免检修、少维护、无污染、无爆炸危险、噪音低等特点,并且适应频繁操作等苛刻的工作条件。

开关弹簧操作机构

一、弹簧操动机构 弹簧操动机构是一种以弹簧作为储能元件的机械式操动机构。弹簧的储能借助电动机通过减速装置来完成,并经过锁扣系统保持在储能状态。开断时,锁扣借助磁力脱扣,弹簧释放能量,经过机械传递单元使触头运动。 弹簧操动机构结构简单,可靠性高,分合闸操作采用两个螺旋压缩弹簧实现。储能电机给合闸弹簧储能,合闸时合闸弹簧的能量一部分用来合闸,另一部分用来给分闸弹簧储能。合闸弹簧一释放,储能电机立刻给其储能,储能时间不超过15s(储能电机采用交直流两用电机)。运行时分合闸弹簧均处于压缩状态,而分闸弹簧的释放有一独立的系统,与合闸弹簧没有关系。这样设计的弹簧操动机构具有高度的可靠性和稳定性,既可满足O-0.3 sec -CO-180 sec -CO操作循环,又可满足CO-15sec-CO操作循环,机械稳定性试验达10000次。 1.1 CT20弹簧操动机构动作原理 CT20型弹簧操动机构(图1、图2、图3)利用电动机给合闸弹簧储能,断路器在合闸弹簧的作用下合闸,同时使分闸弹簧储能。储存在分闸弹簧的能量使断路器分闸。 1.1.1分闸动作过程 图1所示状态为开关处于合闸位置,合闸弹簧已储能(同时分闸弹簧也已储能完毕)。此时储能的分闸弹簧使主拐臂受到偏向分闸位置的力,但在分闸触发器和分闸保持掣子的作用下将其锁住,开关保持在合闸位置。

分闸操作(图1、2) 分闸信号使分闸线圈带电并使分闸撞杆撞击分闸触发器,分闸触发器以顺时针方向旋转并释放分闸保持掣子,分闸保持掣子也以顺时针方向旋转释放主拐臂上的轴销A,分闸弹簧力使主拐臂逆时针旋转,断路器分闸。 1.1.2合闸操作过程 图2所示状态为开关处于分闸位置,此时合闸弹簧为储能(分

35kV断路器弹簧操作机构常见故障原因分析及处理 杨伟

35kV断路器弹簧操作机构常见故障原因分析及处理杨伟 发表时间:2019-07-05T11:56:24.650Z 来源:《电力设备》2019年第4期作者:杨伟[导读] 摘要:在生产运行中,由于检修维护工作不到位,出现了一些故障,如:机构各部件油泥过多,造成分闸半轴不能正常复位,储能弹簧螺栓自备锁母松动或弹性不足造成合闸拒动,行程开关接点粘连、烧毁等。这些故障甚至影响到了设备的安全稳定运行。 (昆明供电局变电运行一所云南省昆明市 650000)摘要:在生产运行中,由于检修维护工作不到位,出现了一些故障,如:机构各部件油泥过多,造成分闸半轴不能正常复位,储能弹簧螺栓自备锁母松动或弹性不足造成合闸拒动,行程开关接点粘连、烧毁等。这些故障甚至影响到了设备的安全稳定运行。 关键词:35kV;断路器;弹簧操作;故障;对策;分析引言: 断路器在系统中起接通和切断电路的作用,由于操作频繁,因此经常出现一些故障。弹簧操作机构故障是造成断路器故障的主要因素,因此,降低弹簧操作机构故障率可提高断路器运行可靠性,缩短线路停电时间。 1.弹簧操作机构故障概述 为了确认造成弹簧操作机构故障的主要原因,对发生过此类故障的断路器进行机械特性试验和机构分解检查。经查,此类故障集中发生在ZN12-10/630型号的户内高压断路器上。将故障原因按性质分为5大类11个因素,并进行逐个分析,分析方法及操作过程如下。 1.1操作机构延时分闸 分闸线圈电磁力小、传动部件摩擦力大、铁芯空程不够都可能造成断路器操作机构延时分闸。各因素的测试标准为:分闸线圈电磁力应保证分闸迅速、无延迟,分闸声清脆;传动轴销润滑良好,活动灵活;分闸铁芯运行空程符合(20±3)mm,且运动灵活,与铜套之间无卡涩。在分闸时间试验中,加入80%的额定电压,出现延时动作的次数约占总试验次数的20%,断路器的实际分闸时间为3.1s左右,明显超出标准值65 ms。在试验中发现,分闸线圈动铁芯虽动作,但不能立即撞开脱扣件进行“清脆分闸”,而是动铁芯吸附一段时间后才解脱分闸半轴进行分闸。由此确认,分闸线圈电磁力小是要因。试验中,实测分闸铁芯运行空程全部符合标准(20±3)mm,且铁芯运动灵活,与铜套之间无卡涩,因此铁芯空程小为非要因。机构解体检查中发现,整个分闸过程,分闸弹簧从作用于主轴至传动到开关导电杆共需经过5个轴销传动,经检查,各轴销润滑良好,活动灵活,因此传动部件摩擦力大为非要因。 1.2合闸过程中脱扣 扇形板与分闸半轴扣接面不够,将造成合闸过程中脱扣,不能合闸。对故障率高的4台35kV断路器进行检查,发现这些弹簧机构扇形板与半轴扣接面不够,扣接量小于2mm。而工艺标准值为2-4 mm,由此确认,扇形板与半轴扣接面不够是要因。 1.3合闸线圈烧损 合闸回路未接入弹簧连锁接点、中间继电器接点黏结、操作电压不合格都可能造成合闸线圈烧损。现场检查合闸回路接入弹簧连锁接点,弹簧未储能时接点应可靠闭锁合闸回路,因此合闸回路未接入弹簧连锁接点为非要因。通过分析中间继电器接点黏结故障次数,发现中间继电器接点粘连引起合闸线圈烧坏共8次,占操作机构故障数的57%,因此中间继电器接点黏结为要因。 1.4操作机构箱凝露 温度控制器动作不可靠、电热管质量不合格都可能造成操作机构箱凝露。分析断路器冬季温控器动作记录及机构箱内各部件凝露情况,发现室外断路器机构箱温控器正确动作的台数为24台,不正确动作的台数为10台,正确率仅为29%.温度控制器不能自动动作,冬季温度低时会导致机构箱内部件凝露,动作受阻;温度高时又会导致机构箱内轴承及转动轴润滑脂受热熔化流失,摩擦阻力增大,且可能由于机构箱内温度过高危及运行安全。对2017年冬季断路器机构箱凝露情况进行统计。由此可见,温度控制器动作不可靠为要因。现场对电热管进行导通测试。经测试,各断路器电热管完好,工作正常。同时,分析2017年电热管损坏情况记录,可见电热管的损坏率较低,可以满足运行要求,因此电热管质量不合格为非要因。 1.5断路器检修质量差 检修人员数量、技术水平都会影响断路器检修质量。例如某供电公司检修专业定员人数为6人,满足定员要求。对修试班工作人员的技能资格进行调查,有83%的检修人员为高级工及以下职称,技能水平明显不足。对现场作业人员进行弹簧机构检修工艺考问,发现部分人员存在概念理解不清、操作要求不明确的现象。由此可见,人员技术水平不足为要因。通过以上试验,并结合分析论证,得出5条要因:分闸线圈电磁力小、扇形板与半轴扣接面不够、中间继电器接点黏结、温度控制器动作不可靠、检修人员技术水平低。 2.故障二 2.1现场情况 在进行断路器远方操作时,发现断路器无法有效合闸,合闸指示红灯灭。现场有焦糊味道,之后发现线圈烧毁。测量合闸线圈,电阻开路,拆卸后发现合闸线圈已经烧毁。进行手动合闸试验,断路器不能合闸,可判断造成线圈烧毁的原因是断路器机械故障拒合。重新更换合闸线圈后,合上操作电源,进行就地电动操作,合闸铁心动作,但断路器仍未合闸。为保护合闸线圈,立即切断断路器操作电源,随即对断路器机构进行详细检查。 2.2原因分析 由于断路器多次分合闸振动,两侧储能弹簧中一侧的螺栓自备锁母发生松动,导致该侧弹簧储能不到位,出力不足。而另一侧储能弹簧出力正常,储能后行程开关常开接点仍正常闭合,因此断路器合闸控制回路仍然正常,造成合闸时电动命令发出,线圈动作,但自备锁母发生松动的一侧弹簧出力不足,断路器拒动,辅助开关不能及时切换,合闸线圈一直带电,从而烧毁。另外,有些机构储能弹簧螺栓自备锁母虽然正常,但因运行年久,机械疲劳,出力不足,仍能造成合闸能量不足,断路器拒合。 2.3措施 一是修正螺栓,使用锁紧螺母保证其不能自动松动。二是保证断路器储能弹簧拉伸情况处于正常状态,最好定期检查其预拉力,必要时对其进行更换。 3.故障三 3.1现场情况

高压开关柜操作机构和操作电源

高压开关柜操作机构和操作电源 (成都贝锐智能电气有限公司) 1、开关柜分合闸的执行机构—电磁操作机构与弹簧操作机构 电磁操作机构:早先的开关柜,普遍采用电磁操作机构进行分合闸操作,这种机构需要较大的合闸电流,动作速度低,结构笨重,耗材较多,现已逐渐淘汰。 弹簧操作机构:弹簧操作机构是利用储存在弹簧中的能量完成分合闸的过程,弹簧的储能由储能电机完成。弹簧操作机构的优点是:需要的分合闸电流小,即可远方电动合、分闸,电机储能,也可就地手动合、分闸和电机储能。 对于弹簧操作机构,大多数的储能电机功率在100W~300W之间,分合闸线圈的功率在200W~400W之间。 2、直流操作电源-直流屏 直流屏的原理框图如下: 直流屏采用2V规格的电池,串成220V,需要110只,但2V规格的电池,其电压一般都高于2V,在2.2V甚至更高,所以电池组正负两端的电压会达到或超过240V。 直流屏的输出有二路,一路240V(左右),一路220V。240V输出直接来自于电池组的正负两端。这样高的电压,如果直接提供给开关柜的其他直流负载,如微机保护装置等,会使其无法承受,因此需要用降压硅链降压到220V,这一路输出就是控制母线电压(KM)。 而早先的电磁操作机构,刚好需要比较大的驱动电流,也能承受较高的直流电压,因此就把电池组两端的电压直接输出供分合闸使用,这一路输出就是合母电压(HM)。 3、分布式直流电源作为开关柜操作电源的使用 分布式直流电源具有体积小,造价低,方便使用的特点,其连续功率在100W~200W之间,短时功率(供储能电机)在350W左右(20S),短时功率(供分合闸线圈)能达到600W~100W之间,能完全满足1~2面弹簧操作机构的开关柜使用。 考虑到弹簧操作机构的分合闸线圈功率并不大,对于分布式直流电源,只安排一路输出,电压为220V,不在区分控母输出和合母输出。 4、早先采用两路电源的设计,现改用分布式单路电源时,设计图子的调整方法 使用弹簧操作机构的断路器,已无需再分控母(HM)与合母(HM),只需将分布式电源的直流输出直接连接到原来的合母与控母线端即可。

弹簧储能操作机构的工作原理

背景: 阅读内容 弹簧储能操作机构的工作原理 [日期:2012-01-05] 来源:作者:杨德印[字体:大中小] EasyEDA,史上最强大的电路设计工具 弹簧储能操作机构是一种较新的断路器操作机构,这种操作机构的出现,对提高断路器的整体性能起到了较大作用。因为传统电磁操作机构在提高合闸速度上受到一定限制,它的合闸功率也较大,对电源要求较高。而弹簧储能操作机构采用的手动或电动操作,既有较高的合闸速度,又能实现自动重合闸。 CT19是弹簧储能操作机构的一个系列号。 其型号组成及含义见下图。它可供操作高压开关柜中ZN28型高压真空断路器合闸及与之相当的其他类型的真空断路器之用,其性能符合GB1984《交流高压断路器》的要求,主要指标均达到和超过IEC标准。操作机构合闸弹簧有电动机储能和手动储能两种;分闸操作有分闸电磁铁、过流脱扣电磁铁及手动按钮操作三种;合闸操作有合闸电磁铁及手动按钮两种。

1.机械部分原理简介 CT19、CT19B(A)型弹簧储能操作机构由电动机提供储能动力,经两级齿轮减速,带动储能轴转动,实现给储能弹簧储能。弹簧储能到位时,摇臂推动行程开关.切断电动机电源。 人力储能时,将人力储能操作手柄插入储能摇臂插孔中,然后上下摆动,通过摇臂上的棘爪驱动棘轮,并带动储能轴转动实现对合闸弹簧储能。 操作机构储能完成后即保持在储能状态,若准备合闸,可使合闸线圈通电,继而电磁铁动作,储能保持状态被解除,合闸弹簧快速释放能量,完成合闸动作。 分闸时,分闸线圈通电使电磁铁动作,连杆机构的平衡状态被解除,在断路器负载力作

用下,完成分闸操作。 CT19、CT19B(A)型弹簧储能操作机构外形见下图。 2.电气控制原理 下图是CT19弹簧储能操作机构的电气控制原理图,图中两侧的两条竖线KM是控制电源线,它可以是AV220V或DC220V等电源电压。当机构处于分闸未储能状态时,行程开关CK常闭触点闭合。此时按下储能按钮SB.中间继电器KA1的线圈得电,其常开触点KAl-1闭合,中间继电器KA2随之动作.KA2的常闭触点KA2-2打开.常开触点KA2-1闭合,电动机M与电源接通开始运转,带动合闸弹簧开始储能,直至储能完成松开储能按钮SB。

110kV断路器弹簧操动机构储能回路故障分析与处理示范文本

110kV断路器弹簧操动机构储能回路故障分析与处理示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

110kV断路器弹簧操动机构储能回路故障分析与处理示范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 弹簧操动机构是利用已储能的弹簧为动力,来实现断 路器的分合闸操作。弹簧储能靠电动机。弹簧操动机构因 使用的弹簧类型不同有各种形式,有压缩弹簧操动机构、 拉伸弹簧操动机构、扭簧储能弹簧操动机构、盘簧储能弹 簧操动机构等。由于不需要专门的操作电源.储能电动机 功率小,交直流两用,使用方便等优势,伴随着自能式(热 膨胀式)灭弧技术的实现,减小了断路器所需的操作功,弹 簧操动机构被广泛地应用于高压断路器,但由于弹簧操动 机构结构比较复杂,零件数量较多,加工要求较高,传动 环节较多,有时可能会出现故障。本文以LW25-126高 压SF6断路器为例,分析了110kV断路器弹簧操动机构储

断路器弹簧操作机构动作过程及问题处理

断路器弹簧操作机构动作过程及问题处理 标准化管理部编码-[99968T-6889628-J68568-1689N]

断路器弹簧操作机构动作过程及问题处理 断路器的操作机构有:机架、棘轮、凸轮、棘爪分装和挚止、拐臂、主拐臂、拉杆、分闸电磁铁、分闸锁闩、分闸挚止、合闸电磁铁、合闸锁闩、合闸挚止、保持挚止、防跳装置、缓冲器等。其核心部件是弹簧。 从分闸未储能到分闸储能的过程。电机带动减速器,从而达到减速的效果,间接带动棘爪分装和挚止,再带动棘轮和凸轮转动。因为棘轮和凸轮、拉杆是一体的,所以它们在转动中,回带动拉杆逆时针转动,从而拉动储能弹簧。合闸锁闩一直顶住挚止,分闸挚止顶住棘轮内部的圆环,棘轮内环成了分闸挚止的轨迹。当分闸挚止顶入棘轮内环凹进去的部分,弹簧和合闸锁闩会将分闸挚止顶到棘轮内环凹进去的部分限位轴,使储能过程结束。 分闸未储能状态分闸储能状态 从分闸已储能状态到合闸未储能状态的过程。合闸电磁铁带电,吸合铁心,从而拉动合闸锁闩。合闸锁闩撤掉给分闸挚止的作用力,弹簧就会将分闸挚止拉开。限位轴将会失去挚止给它的支持力。限位轴是棘轮的一部分,因此棘轮也失去一个支持力。此时,棘轮只剩下弹簧给它的拉力。因此,弹簧会将棘轮往下拉,使棘轮逆时针转动。凸轮与棘轮同轴连接。因此,凸轮也跟着转动。进过一定行程后,凸轮会打到主拐臂,给主拐臂一个冲击力。由于杠杆作用,主拐臂靠近棘轮的一端将向棘轮外运动,最终甩到合闸挚止;主拐臂靠近开关连接杆测的部分将靠连接杆测运动,最终推动机构连杆,使开关合闸。主拐臂靠近棘轮的一端成为了合闸挚止的轨道。最终合闸挚止通过保持挚止、分闸锁闩支撑,将主拐臂给顶住。因为拐臂与主拐臂同轴连接,所以在凸轮会打到主拐臂时,拐臂会随着凸轮给主拐臂的冲击力向分闸弹簧方向运动,从而给分闸弹簧储能。最终,依然是通过合闸挚止将主拐臂顶住,再将拐臂顶住。 分闸已储能状态合闸未储能状态(分闸弹簧已储能)从合闸未储能状态到合闸已储能状态的过程。此过程与从分闸未储能到分闸储能的过程一致。电机带动减速器,从而达到减速的效果,间接带动棘爪分装和挚止,再带动棘轮和凸轮转动。因为棘轮和凸轮、拉杆是一体的,所以它们在转动中,回带动拉杆逆时针转动,从而拉动储能弹簧。合闸锁闩一直顶住挚止,分闸挚止顶住棘轮内部的圆环,棘轮内环成了分闸挚止的轨迹。当分闸挚止顶入棘轮内环凹进去的部分,弹簧和合闸锁闩会将分闸挚止顶到棘轮内环凹进去的部分限位轴,使储能过程结束。

断路器的各种操作机构的区别

我们在现场碰到的开关一般分为多油(比较老的型号,现在几乎见不到了)、少油(一些用户站还有)、SF6、真空、GIS(组合电器)等类型。这些讲的都是开关的灭弧介质,对我们二次来说,密切相关的是开关的操作机构。机构类型可分为电磁操作机构(比较老,一般在多油或少油断路器配的是这种);弹簧操作机构(目前最常见的,SF6、真空、GIS一般配有这种机构);最近ABB又推出一种最新的永磁操作机构(比如VM1真空断路器)。 6.2 电磁操作机构 电磁操作机构完全依靠合闸电流流过合闸线圈产生的电磁吸力来合闸同时压紧跳闸弹簧,跳闸时主要依靠跳闸弹簧来提供能量。所以该类型操作机构跳闸电流较小,但合闸电流非常大,瞬间能达到一百多个安培。这也是为什么变电站直流系统要分合闸母线控制母线的缘故。合母提供合闸电源,控母给控制回路供电。合闸母线是直接挂在电池组上,合母电压即电池组电压(一般240V左右),合闸时利用电池放电效应瞬间提供大电流,同时合闸时电压瞬间下降的很厉害。而控制母线是通过硅链降压和合母连在一起(一般控制在220V),合闸时不会影响到控制母线电压的稳定。 因为电磁操作机构合闸电流非常大,所以保护合闸回路不是直接接通合闸线圈,而是接通合闸接触器。跳闸回路直接接通跳闸线圈。合闸接触器线圈一般是电压型的,阻值较大(一般几K)。保护同这种回路配合时,应注意合闸保持一般启动不了。但这问题也不大,跳闸保持TBJ一般能启动,所以防跳功能还存在。该类型机构合闸时间较长(120ms~200ms),分闸时间较短(60~80ms)。 6.3 弹簧操作机构 该类型机构是目前最常用的机构,其合闸分闸都依靠弹簧来提供能量,跳合闸线圈只是提供能量来拔出弹簧的定位卡销,所以跳合闸电流一般都不大。弹簧储能通过储能电机压紧弹簧储能。对弹操机构,合闸母线主要给储能电机供电,电流也不大,所以合母控母区别不太大。保护同其配合,一般没什么特别需要注意的地方。 合闸弹簧和跳闸弹簧是独立的,储能机构一般只给合闸弹簧储能,而跳闸弹簧一般是靠断路器合闸动作储能.在合闸回路中串联有开关储能接点,也就是说开关未储能就不能进行合闸。但分闸回路中没有串联有开关未储能接点。所以就算开关未储能,也可以跳开。(注意:这里的开关未储能指的是合闸弹簧未储能,而分闸弹簧未储能是没有接点出来的)。 在断路器断开时,分闸弹簧是还没储能的,而合闸弹簧已储能。合闸时,合闸弹簧释放能量,合闸同时给分闸弹簧储能。以确保开关在合上的时候能跳开。合闸弹簧释放完能量时(开关刚合上),电机开始给合闸弹簧储能,这个大概需要十秒钟,此时就算合于故障,因为分闸弹簧已储能,所以能跳开。这也说明在手合于故障时,开关能马上跳开,但这种跳开之后不能马上再次重合(需要区别于重合闸),因为合闸还没储能,要等储能结束后才能再次送电。而如果是开关本来是合上的,此时开关的合闸弹簧和分闸弹簧都已储能。 有故障时,分闸弹簧释放能量分闸。再过1秒左右,(由于合闸弹簧已储能)合闸弹簧释放能量进行合闸。而在合闸结束的时候,分闸弹簧已储能结束,但合闸弹簧还没有储能好。如果这次合闸于故障,由于分闸弹簧以储能结束,所以开关

一文知晓弹簧操作机构基本动作原理

一文知晓弹簧操作机构基本动作原理 弹簧操作机构的基本动作原理合闸弹簧和跳闸弹簧是独立的,储能机构一般只给合闸弹簧储能,而跳闸弹簧一般是靠断路器合闸动作储能。在合闸回路中串联有开关储能接点,也就是说开关未储能就不能进行合闸。但分闸回路中没有串联有开关未储能接点。所以就算开关未储能,也可以跳开。(注意:这里的开关未储能指的是合闸弹簧未储能,而分闸弹簧未储能是没有接点出来的)。 在断路器断开时,分闸弹簧是还没储能的,而合闸弹簧已储能。合闸时,合闸弹簧释放能量,合闸同时给分闸弹簧储能。以确保开关在合上的时候能跳开。合闸弹簧释放完能量时(开关刚合上),电机开始给合闸弹簧储能,这个大概需要十秒钟,此时就算合于故障,因为分闸弹簧已储能,所以能跳开。 这也说明在手合于故障时,开关能马上跳开,但这种跳开之后不能马上再次重合(需要区别于重合闸),因为合闸还没储能,要等储能结束后才能再次送电。而如果是开关本来是合上的,此时开关的合闸弹簧和分闸弹簧都已储能。有故障时,分闸弹簧释放能量分闸。再过1秒左右,(由于合闸弹簧已储能)合闸弹簧释放能量进行合闸。而在合闸结束的时候,分闸弹簧已储能结束,但合闸弹簧还没有储能好。 如果这次合闸于故障,由于分闸弹簧以储能结束,所以开关能马上跳开。但跳开之后就不能再次马上合上了,需要等到合闸弹簧储能结束以后才行(一般开关需要30秒后才行,但我们实际情况就要等事故处理完毕后,才能重新再次试合) CT19B弹簧操作机构CT19B弹簧操作机构可以操作各类10KV固定柜上之ZN28型户内高压真空断路器及其合闸功与之相当的其他各类高压断路器之用。有过电流及失压脱扣保护功能,其寿机械寿命为2000次。由于该构宽宽比CT19A型有缩小,宽度仅300mm,不仅增加了机构整体的稳定性,更适宜于老柜上的无油化改造用。(该机构输出转换为50~55)。 主要技术参数:

弹簧操作机构的基本动作原理

弹簧操作机构的基本动作原理 合闸弹簧和跳闸弹簧是独立的,储能机构一般只给合闸弹簧储能,而跳闸弹簧一般是靠断路器合闸动作储能.在合闸回路中串联有开关储能接点,也就是说开关未储能就不能进行合闸。但分闸回路中没有串联有开关未储能接点。所以就算开关未储能,也可以跳开。(注意:这里的开关未储能指的是合闸弹簧未储能,而分闸弹簧未储能是没有接点出来的)。 在断路器断开时,分闸弹簧是还没储能的,而合闸弹簧已储能。合闸时,合闸弹簧释放能量,合闸同时给分闸弹簧储能。以确保开关在合上的时候能跳开。合闸弹簧释放完能量时(开关刚合上),电机开始给合闸弹簧储能,这个大概需要十秒钟,此时就算合于故障,因为分闸弹簧已储能,所以能跳开。这也说明在手合于故障时,开关能马上跳开,但这种跳开之后不能马上再次重合(需要区别于重合闸),因为合闸还没储能,要等储能结束后才能再次送电。而如果是开关本来是合上的,此时开关的合闸弹簧和分闸弹簧都已储能。有故障时,分闸弹簧释放能量分闸。再过1秒左右,(由于合闸弹簧已储能)合闸弹簧释放能量进行合闸。而在合闸结束的时候,分闸弹簧已储能结束,但合闸弹簧还没有储能好。如果这次合闸于故障,由于分闸弹簧以储能结束,所以开关能马上跳开。但跳开之后就不能再次马上合上了,需要等到合闸弹簧储能结束以后才行(一般开关需要30秒后才行,但我们实际情况就要等事故处理完毕后,才能重新再次试合)

ZN63—12(VS1)型户内交流真空断路器,是三相交流50HZ 、额定电压为12 kV的户内高压配电装置. 可作接通线路,切断故障电流和保护功能.尤其适合于频繁操作,如投、切电容器组、控制电炉变压器和高压电机等,也可作为联络使用. VS1真空断路器的详细说明 1、概述: ZN63—12(VS1)型户内交流真空断路器,是三相交流50HZ 、额定电压为12 kV的户内高压配电装置. 可作接通线路,切断故障电流和保护功能.尤其适合于频繁操作,如投、切电容器组、控制电炉变压器和高压电机等,也可作为联络使用. 2、结构特点: 断路器主体部分设置在由环氧树脂采用APG工艺浇注而成的绝缘桶内,这种结构能有效防止外力冲击,因环境污秽等外部因素对真空灭弧室的影响. 断路器配用ZMD1410系列中封式陶瓷或玻璃真空灭弧室,其铜铬触头具有环状纵磁场触头结构,开断能力强,截流水平低,电寿命长. 真空灭弧室置与绝缘捅内,使断路器具有免维护,无污染,无爆炸危险,噪音低, 绝缘水平高. 操动机构为弹簧储能操作机构,机构箱内装有合闸单元,前方面板上设有分、合按钮,手储能操作孔、弹簧储能状态指示牌等.机构与本体前后布置成一体,传动效率高,操作性能好,适用于 频繁操作,可装于移开式或固定式开关柜. 3、工作原理: 断路器合闸所需能量由弹簧储能机构供给, 储能机构可以由外部电源驱动电机 完成,也可以由手动储能把手储能. 储能完成后, 储能指示牌显示

110kV断路器弹簧操动机构储能回路故障分析与处理

编号:SM-ZD-36279 110kV断路器弹簧操动机构储能回路故障分析与 处理 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

110kV断路器弹簧操动机构储能回 路故障分析与处理 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 弹簧操动机构是利用已储能的弹簧为动力,来实现断路器的分合闸操作。弹簧储能靠电动机。弹簧操动机构因使用的弹簧类型不同有各种形式,有压缩弹簧操动机构、拉伸弹簧操动机构、扭簧储能弹簧操动机构、盘簧储能弹簧操动机构等。由于不需要专门的操作电源.储能电动机功率小,交直流两用,使用方便等优势,伴随着自能式(热膨胀式)灭弧技术的实现,减小了断路器所需的操作功,弹簧操动机构被广泛地应用于高压断路器,但由于弹簧操动机构结构比较复杂,零件数量较多,加工要求较高,传动环节较多,有时可能会出现故障。本文以LW25-126高压SF6断路器为例,分析了110kV断路器弹簧操动机构储能回路故障,并提出了处理方法。

高压断路器中的弹簧操动机构

高压断路器中的弹簧操动机构 刘唯2015.4 摘要:本文讨论了断路器操动机构的功能,总结并比对了目前主流弹簧操动机构的实现方式,也介绍了各种结构的优缺点。列举了断路器上弹簧机构的各种布局方式,从控制,安全,维护及发展的角度谈了个人看法。 关键词: 高压断路器弹簧操动机构 目录 0引言 (1) 1操动机构的种类 (1) 2弹簧操动机构的功能 (2) 3断路器弹簧操动机构结构 (3) 3.1储能结构的分类 (4) 3.1.1储能操作的能量只用于合闸过程4 3.1.2储能操作的能量分别用于合闸或分闸过程4 3.2储能到位离合及状态保持结构 (5) 3.3合闸驱动结构 (5) 3.3.1不具备自由脱扣的结构6 3.3.2具备自由脱扣功能的结构6 3.4合闸状态保持结构 (6) 3.4.1过冲复位保持结构6 3.4.2复位保持结构7 3.4.3就绪保持结构7 3.5储能电机的减速机构 (7) 3.5.1齿轮箱结构7 3.5.2蜗轮蜗杆结构7 3.5.3棘轮结构7 3.6弹簧机构的联锁装置 (8) 3.6.1硬联锁8 3.6.2软联锁8 3.6.3PF接点9 4断路器弹簧操动机构的布局 (9) 5断路器的控制与保护 (10) 6断路器操动机构的安全锁 (11) 7断路器弹簧操动机构的维护 (11) 8断路器弹簧操动机构的发展 (5) 0引言 笔者最近几年,接触了一些弹簧操动机构,有些认识,愿与大家分享。文中没有计算,没有公式,略显没有深度,请高手一笑而过。文中试图将千差万别的机械结构进行分类,会有遗漏,但终归是一次尝试。也试图将其优缺点做一比较,必不完全,但肯定会有些说法。有些机构,并不能完全理解其博大精深,不正之处,也还望请指正。请到新浪微博《高压断路器中的弹簧操动机构》交流贴留言。链接如下:https://www.doczj.com/doc/7b16881295.html,/u/2437510622。原文下载请搜百度文库。 文中涉及到一些机构名称,如ABB公司的EL弹簧操动机构,以下简称EL机构,主要用于VD4断路器;Schneider公司的P2弹簧操动机构,以下简称P2机构,主要用于Evolis断路器和Masterpact断路器;Schneider公司的RI弹簧操动机构,以下简称RI机构,主要用于Ev12S断路器上;Schneider公司的RT弹簧操动机构,以下简称RT机构,主要用于Premset 开关柜上;Schneider公司的FK2-01弹簧操动机构,以下简称FK2机构,主要用于HVX断路器上;三菱的BH2弹簧操动机构,以下简称BH2机构,主要用于VPR 断路器上;天水长城开关厂的GSL01弹簧操动机构,以下简称GSL01机构,主要用于EVH1断路器;以下断路器上用的弹簧操动机构不知道名字,只能用断路器名字称呼,VS1断路器上的弹簧操动机构,以下简称VS1机构;厦门华电开关有限公司的VEP断路器上的机构,以下简称VEP机构;Siemens公司的Sion断路器上采用的机构,以下简称Sion机构;东芝公司的VK断路器上采用的机构,以下简称VK机构。还有一些国内有有影响的机构如CT14,CT17,CT19,CT20等弹簧机构。 1操动机构的种类 高压开关设备中的弹簧操动机构,相关标准中有明确的定义。 《GBT 2900.20 电工术语》中

各种二次回路图及其讲解(精)

直流母线电压监视装置原理图-------------------------------------------1 直流绝缘监视装置----------------------------------------------------------1 不同点接地危害图----------------------------------------------------------2 带有灯光监视的断路器控制回路(电磁操动机构--------------------3 带有灯光监视的断路器控制回路(弹簧操动机构--------------------5 带有灯光监视的断路器控制回路(液压操动机构-------- -----------6 闪光装置接线图(由两个中间继电器构成-----------------------------8 闪光装置接线图(由闪光继电器构成-----------------------------------9 中央复归能重复动作的事故信号装置原理图-------------------------9 预告信号装置原理图------------------------------------------------------11 线路定时限过电流保护原理图------------------------------------------12 线路方向过电流保护原理图---------------------------------------------13 线路三段式电流保护原理图---------------------------------------------14 线路三段式零序电流保护原理图---------------------------------------15 双回线的横联差动保护原理图------------------------------------------16 双回线电流平衡保护原理图---------------------------------------------18 变压器瓦斯保护原理图---------------------------------------------------19 双绕组变压器纵差保护原理图------------------------------------------20 三绕组变压器差动保护原理图------------------------------------------21 变压器复合电压启动的过电流保护原理图---------------------------22 单电源三绕组变压器过电流保护原理图------------------------------23 变压器过零序电流保护原理图------------------------------------------24 变压器中性点直接接地零序电流保护和中性点间隙接地保------24 线路三相一次重合闸装置原理图---------------------------------------26 自动按频率减负荷装置(LALF原理图--------------------------------29 储能电容器组接线图------------------------------------------------------29 小电流接地系统交流绝缘监视原理接线图---------------------------29 变压器强油循环风冷却器工作和备用电源自动切换回路图------30 变电站事故照明原理接线图---------------------------------------------31

永磁操作机构与弹簧操作机构的区别

永磁操动机构是一种用于高压真空断路器永磁保持,电磁控制的操作机构,是一种全新的工作原理和结构。与传统操动机构相比较,具有主要部件少,是传统断路器操作机构零部件的7%,无需机械脱扣锁扣装置,故障点少,高可靠性,使用寿命长,其中永磁操作机构寿命可达10万次以上,适于频繁操作及高可靠变电站等场所的应用。永磁机构克服了传统弹簧机构和电磁机构的不足,同时通过永磁材料实现真空断路器分、合闸位置的保持及操作过程,从而达到高可靠性和频繁操作以及恶劣环境场所的稳定的操作。 主要性能特点: 1、提高真空断路器整体机械性能,使之能适应频繁开断和长寿命使用的要求,真空断路器的机械寿命高于10万次。 2、相比传统操动机构,无须机械脱、锁扣装置,零部件数量大为减少,工作时仅有一个运动部 件,故障率极低,可实现少维护。 3、操动机构的性能与灭弧室开断、关合特性相吻合,延长真空灭弧室的使用寿命。 4、采用高可靠的双稳态操作机构设计。通过分、合闸控制线圈产生的电磁力控制分、合闸操作,合闸和分闸位置均采用永磁保持。 5、永久磁材料与分闸、合闸控制线圈结合,解决了合闸时需要大功率能量的问题。手动分闸与电动分闸速度相同,能够可靠开断短路电流。 6、具有防跳功能,设计软连接和触头辅助压簧,解决了合闸弹跳问题。 7、采用智能化控制和液晶显示,能直观显示断路器各种工作状态。同时具有低电压拒合报警功 能。 8、交直流储能操作,停电2后小时内可做一次分、合、分操作。 9、具有可靠的操作控制电路模块,可耐受雷击、电涌等严酷条件。永磁材料采用钕铁硼材料,其每一百年退磁为千分之0.5。 10、该断路器具有免检修、少维护、无污染、无爆炸危险、噪音低等特点,并且适应频繁操作等 苛刻的工作条件。

相关主题
文本预览
相关文档 最新文档