当前位置:文档之家› 非结构化数据提取方案.pdf

非结构化数据提取方案.pdf

非结构化数据提取方案.pdf
非结构化数据提取方案.pdf

金融行业非结构化数据存储方案

金融行业非结构化数据存储方案

传统的银行、保险行业的人工柜台、信贷申请、承保和理赔等业务除了在数据库中记录交易信息,往往也会产生大量的非结构化数据:身份证照片、纸质文件扫描件、取证文件扫描件、现场照片等,依据金融行业相关法规要求,这些文件需长期保存,以便于后督审计和避免可能存在的法律风险。 随着互联网金融的迅猛发展,金融行业的竞争日趋白热化,越来越多的金融公司希望金融科技能够帮助企业降低揽客成本和客户服务成本,提升办公效率和风险评估效率。为此,各大金融机构竞相实施金融科技项目,如:智能化柜台,降低营业网点业务开通成本;无纸化柜台,提升柜台工作和服务效率;理赔智能手机客户端,提升用户理赔效率;智能化信贷审核,提升风险评估效率,降低人力投入成本;基础架构云化、容器化,提升基础资源的利用和管理效率等。 这些新型金融科技的背后,显而易见地会产生海量的图片、文档、音频和视频等非结构化数据,其文件个数和数据量都呈现爆发性增长,对原有的存储系统架构带来了更多的新挑战。 海量非结构化数据带来的挑战

对业务部门来说,海量小文件的访问性能至关重要,直接关系到终端用户的体验,而一个股份制银行省分行的柜台系统、信贷系统每年会新增上亿个文件,大量小文件对文件存储是一大挑战,而很多银行已经在考虑如何实现文件大集中。 而随着VTM(远程虚拟银行服务系统)、双录系统的上线,存储容量需求高速增长,如保险公司银保的双录数据半年即可增加数百TB数据,存储是否能够提供高吞吐能力,来保障音视频文件的读写性能是重要的关注点。 大多数金融机构已经采用分布式数据库、大数据技术,来实现历史数据的在线统一存储和查询,而非结构化数据的存储规模可能会达到PB级甚至EB级,在这种情况下如何实现数据的统一存储和管理、历史数据的实时查询、未来的大数据分析,对存储高度智能化的管理能力提出了更高的要求。 当前IaaS层云化是大趋势,私有云实现了计算和存储资源的云化,分布式数据库实现了结构化数据的云化,云化后的资源可按需分配、弹性扩展。而非结构化数据存储的云化却缺乏很好的解决方案,尤其是随着音视频数据的加入,占用的存储空间越来越大,而这些数据的单位价值不高,如何降低单位存储成本也需重点考量。

非结构化存储方案

非结构化数据存储方案 一、存储类型体系: 1.1 存储类型体系结构图 1.2 存储类型体系描述 (1)块存储:将存储区域划分为固定大小的小块,是传统裸存设备的存储空间对外暴露方式。块存储系统将大量磁盘设备通过SCSI/SAS或FC SAN与存储服务器连接,服务器直接通过SCSI/SAS或FC协议控制和 访问数据。主要包括DAS和SAN两种存储方式。对比如下图:

(2) 分布式文件存储:文件存储以标准文件系统接口形式向应用系统提供 海量非结构化数据存储空间。分布式文件系统把分布在局域网内各个计算机上的共享文件夹集合成一个虚拟共享文件夹,将整个分布式文件资源以统一的视图呈现给用户。它对用户和应用程序屏蔽各个节点计算机底层文件系统的差异,提供用户方便的管理资源的手段和统一 的访问接口。主要包括NAS 和HDFS 两种存储方式。 a) 网络附加存储NAS 结构如图:

b)HDFS分布式文件系统存储结构如图: (3)对象存储:对象存储为海量非结构化数据提供Key-Value这种通过键-值查找数据文件的存储模式,提供了基于对象的访问接口,有效地合并了NAS和SAN的存储结构优势,通过高层次的抽象具有NAS的跨平台共享数据优点,支持直接访问具有SAN的高性能和交换网络结 构的可伸缩性。主要包括swift和ceph两种实现形式。 a)Swift,OpenStack Object Storage(Swift)是OpenStack项目的子项目 之一,被称为对象存储。它构建在比较便宜的标准硬件存储基础设 施之上,无需采用RAID(磁盘冗余阵列),通过在软件层面引入一致性散列技术和数据冗余性,牺牲一定程度的数据一致性来达到高可 用性和可伸缩性,支持多租户模式、容器和对象读写操作,适合解 决非结构化数据存储问题。 b)ceph,Linux下PB级分布式文件系统,可轻松扩展PB容量,提供了 对多种工作负载的高性能和高可靠性。它大致分为四部分:客户端 (数据用户),元数据服务器(缓存和同步分布式元数据),一个对 象存储集群(包括数据和元数据),以及最后的集群监视器(执行监 视功能)。

Oracle非结构化数据解决方案

Oracle数据库11g管理非结构化数据 (2) 一、引言 (2) 二、在ORACLE 中管理非结构化数据的优势 (3) 三、打破了原来处理非结构化数据的“性能障碍” (4) 3.1 Oracle SecureFiles (4) 3.2 SecureFiles 中的存储优化 (5) 四、专用数据类型和数据结构 (6) 4.1 Oracle XML DB (6) 4.2 Oracle Text (7) 4.3 Oracle Spatial (8) 4.4 RDF、OWL 和语义数据库管理 (9) 4.5 Oracle Multimedia (9) 4.6 Oracle DICOM 医学内容管理 (9) 五结论 (10)

Oracle数据库11g管理非结构化数据 一、引言 公司、企业以及其他机构使用的绝大部分信息都可归类为非结构化数据。 非结构化数据是计算机或人生成的信息,其中的数据并不一定遵循标准的数据结构(如模式定义规范的行和列),若没有人或计算机的翻译,则很难理解这些数据。常见的非结构化数据有文档、多媒体内容、地图和地理信息、人造卫星和医学影像,还有Web 内容,如HTML。 根据数据的创建方式和使用方式的不同,非结构化数据的管理方法大不相同。 1.大量数据分布于桌面办公系统(如文档、电子表格和演示文稿)、专门的工作站和设备 (如地理空间分析系统和医学捕获和分析系统)上。 2.政府、学术界和企业中数TB 的文档存档和数字库。 3.生命科学和制药研究中使用的影像数据银行和库。 4.公共部门、国防、电信、公用事业和能源地理空间数据仓库应用程序。 5.集成的运营系统,包括零售、保险、卫生保健、政府和公共安全系统中的业务或健康记 录、位置和项目数据以及相关音频、视频和图像信息。 6.学术、制药以及智能研究和发现等应用领域中使用的语义 数据(三元组)。 自数据库管理系统引入后,数据库技术就一直用于解决管理大量非结构化数据时所遇到的特有问题。通常通过“基于指针的”方法使用数据库对存储在文件中的文档、影像和媒体内容进行编目和引用。为了在数据库表内存储非结构化数据,二进制大对象(或简称为BLOB)作为容器使用已经数十年了。除了简单的BLOB 外,多年以来,Oracle 数据库一直通过运算符合并智能数据类型和优化数据结构,以分析和操作XML 文档、多媒体内容、文本和地理空间信息。由于有了Oracle 数据库11g,Oracle 再次在非结构化数据管理领域开辟出一片新天地:大幅提升了通过数据库管理系统原生支持的非结构化数据的性能、安全性以及类型。

视频结构化数据的查询及信息挖掘

视频结构化数据的查询及信息挖掘 领域的大数据应用,主要体现在两方面:视频录像的集群和视频结构化数据的查询及信息挖掘。 1.视频录像的集群存储 在面向大数据的架构中,可根据实际现场的部署需要,设立一个或多个集群组成,采集的流数据会被划分成段,并分布于数据集群节点,因为集群节点有内部进行多副本备份等机制,可以由软件技术来保证整体系统的高可靠性和高稳定性。这些数据节点可以采用廉价通用型的硬件,避免采用传统高端硬件的模式,能极大地降低投资成本。 录像文件的集群存储,国内云储存厂家多采用CEPH技术和HDFS技术的方式。以HDFS 的方式举例,思路为:通过HADOOP提供的API结构,实现将接收到的视频流文件从本地上传到HDFS中。在这一过程中,把接收到的视频文件不断地存储到一个指定的本地临时文件夹中,而这个本地文件夹是在不断动态变换的,可以将该文件夹当成是一个缓冲区,把缓冲区中的文件以流的方式将上传到HDFS中。 2.视频结构化数据的查询及信息挖掘 原始的视频图像是一种非结构化数据,它不能直接被计算机和上层应用软件读取和识别,为了让视频图像更好的应用,就必须对视频图像进行结构化的处理,提取出关键信息,并进行文本的语义描述,也就是视频结构化。 一段视频里面,需要提取的关键信息主要有两类:第一类是运动目标的识别,也就是画面中运动对象的识别,是人还是机动车或者非机动车;第二类是运动目标特征的识别,也就是画面中运动的人、车、物有什么特征,行人特征主要有:是否带眼镜、围巾、上衣、裤子、是否带口罩、是否背包,性别分类等;机动车主要特征有:车牌号码、车身颜色、车型等;物体特征主要有:大小尺寸、颜色、方向等。 一个案件的审看需要更为广泛地查看相关的摄像机视频,所审看的视频量时常达到数百上千小时。视频结构化提取技术对视频中运动的物体等进行提取,再通过软件进行检索和排

非结构化数据存储解决方案

1.非结构化数据存储 在上图中,描述了非结构化数据存储架构的基本组成部分,其中: 1. 文件存取统一接口,封装了对数据中心所以非结构化数据的读写操作接口。 2. Hadoop HDFS 负责对大文件的存储,以HDFS:为文件协议标准 3. HBase 通过维护一张文件表完成对小文件的存储,以HBase:为文件协议标识1.1文件存取统一接口 1.1.1 文件存储接口 对文件进行存储前,接口根据文件的大小和HDFS文件分块的配置大小进行比较,当文件超过设定大小时,接口认为该文件是大文件,直接分配到HDFS文件存储接口进行写入;否则当文件小与块大小时,根据系统维护的Hbase小文件存储通用存储表进行存储管理。

1. 对直接存储到HDFS的文件,则文件路径以HDFS为中心存储文件协议头,文件路径则根据该文件的业务属性做完文件的路径,文件名称保留原有名称,例如:HDFS://aaa/bbb.zip 2. 对通过Hbase管理的小文件,则文件路径以HBASE为中心存储文件协议头,文件路径不需要分文件夹,直接以文件的唯一标识标识即可,例如:HBASE://uuid 1.1.2 文件读取接口 文件读取时,通过识别URL,确定文件的存储方式,然后找到对应的存储接口获取文件。

1.1H adoop HDFS存储接口 完成大文件的存储与读取接口操作。 1.2H base存储接口 文件通用存储表结构: 表存在两个列簇,default列簇负责存储基础属性信息,用一个单独的列簇存储图片内容。 HBase是采用面向列的存储模型,按列簇来存储和处理数据,即同一列簇的数据会连续存储。HBase在存储每个列簇时,会以Key-Value的方式来存储每行单元格(Cell)中的数据,形成若干数据块,然后把数据块保存到HFile中,最后把HFile保存到后台的HDFS 上。由于用单元格 (Cell)存储图片小文件的内容,上述存储数据的过程实际上隐含了把图片小文件打包的过程。默认情况下,HBase数据块限制为64KB。由于图片内容作为单元格(Cell)的值保存,其大小受制于数据块的大小。在应用中需根据最大图片大小对HBase数据

海量结构化数据分析平台解决方案

曙光海量结构化数据分析平台解决方案 曙光信息产业(北京)有限公司 2012-05

导言 在数据爆炸的今天,从海量结构化数据中提取并挖掘出有用的信息逐渐成为众多行业的新的应用热点。而海量数据的分析中呈现出的高并发加载数据,海量存储,低并发查询,但每次查询的规模都非常高的特点。使得如何将数据库操作有效并行化成为海量数据分析首要需要解决的问题。虽然目前流行的Hadoop的map-reduce并行计算框架在很多互联网企业中得到了广泛的应用,但却由于其不支持SQL语句,使得难以与现有的基于SQL的关系型数据库的应用场景进行结合。 曙光在海量数据分析和挖掘领域积累了多年的经验,和计算所智能中心合作研发出专门针对海量关系型数据库应用特点的关系型数据库系统DRAC,为海量数据分析系统提供高性能,高可扩展性的并行数据库系统,并且已成功部署在多个国家大型项目中。其底层采用无共享(shared-nothing)的oracle数据库节点作为数据节点,具有较好的扩展性和系统可靠性。DRAC软件将用户的操作透明地转化成对底层数据库的操作,而对用户呈现为单一的数据库系统。DRAC系统可根据数据的访问频度和重要性实施多级存储的方案,以降低整个系统的成本,提高系统的性价比。 技术特点 曙光集群并行数据库DRAC(Dawning’s Real Application Cluster)是一种无共享(shared- nothing)结构的并行数据库管理系统。DRAC原是专为分析网络监控数据设计的并行数据库系统,现已部署在国家某大型项目、某市大型项目等多个系统中。它具有如下技术特点: DRAC采取目前主流的集群设计方法,具有性价比高、扩展性好等诸多优点。 它直接将任意查询分解成操作于分区数据的子查询和汇总中间结果的后处理查询,用成熟的DBMS来实现两种查询的执行,从而避免了一般的分布式查询处理器为了 通用而引入的复杂性。配合针对特定应用的分区策略,DRAC的方法能保证查询执 行的效率。 大任务全并行处理。DRAC采用单机数据库作为基本数据处理单元,将数据并行地写入这些单元数据库,查询时并行地从各个数据库中读取和处理这些数据。这种完 全并行的处理极大地提高了系统存储数据的能力并缩短单个查询的完成时间。DDL 操作也在各数据库节点上并行地执行。 DRAC对外提供单一系统映像,用户使用类似ODBC或JDBC的接口提交SQL语句。 这些操作被服务节点自动地并行执行。 DRAC采取了功能分离的设计思路,像加载、查询等功能均可按需要配置,满足在线扩展的高可用要求。 和Oracle RAC等并行数据库不同,DRAC不需要光纤交换机和较高端的盘阵,硬件成本低。配合灵活部署和简易管理的工具,DRAC在大规模部署时有较高的性能价 格比。

简述结构化数据、非结构化数据、半结构化数据

在数据分析中,我们会接触到很多的数据,而这些数据都是有类别之分的。这些数据根据结构分类被划分为三种,它们分别是结构化数据、非结构化数据、半结构化数据。在这篇文章中我们就简单地给大家介绍一下这三种数据的相关知识。 首先我们说一下结构化数据,结构化的数据是指可以使用关系型数据库表示和存储,表现为二维形式的数据。一般特点是:数据以行为单位,一行数据表示一个实体的信息,每一行数据的属性是相同的。能够用数据或统一的结构加以表示,我们称之为结构化数据,如数字、符号。传统的关系数据模型、行数据,存储于数据库,可用二维表结构表示。而结构化的数据的存储和排列是很有规律的,这对查询和修改等操作很有帮助。 然后我们说一下半结构化数据,半结构化数据是结构化数据的一种形式,它并不符合关系型数据库或其他数据表的形式关联起来的数据模型结构,但包含相关标记,用来分隔语义元素以及对记录和字段进行分层。因此,它也被称为自描述的结构。半结构化数据,属于同一类实体可以有不同的属性,即使他们被组合在一起,这些属性的顺序并不重要。所谓半结构化数据,就是介于完全结构化数据和完全无结构的数据之间的数据,XML、HTML文档就属于半结构化数据。它一般是自描述的,数据的结构和内容混在一起,没有明显的区分。而不同的半结构化数据的属性的个数是不一定一样的。有些人说半结构化数据是以树或者图的数据结构存储的数据,怎么理解呢?

最后我们给大家介绍一下非结构化数据,非结构化数据顾名思义,就是没有固定结构的数据。各种文档、图片、视频、音频等都属于非结构化数据。对于这类数据,我们一般直接整体进 行存储,而且一般存储为二进制的数据格式。非结构化数据库是指其字段长度可变,并且每 个字段的记录又可以由可重复或不可重复的子字段构成的数据库,用它不仅可以处理结构化 数据而且更适合处理非结构化数据。 在这篇文章中我们简单地给大家介绍了结构化数据、非结构化数据以及半结构化数据的知识,其实现在很多的数据分析师都开始加大对非结构化数据的研究。由此可见,非结构化数据的 前景还是十分明朗的。

非结构化数据存储解决方案

非结构化数据存储解决 方案 Revised as of 23 November 2020

1.非结构化数据存储 在上图中,描述了非结构化数据存储架构的基本组成部分,其中: 1. 文件存取统一接口,封装了对数据中心所以非结构化数据的读写操作接口。 2. Hadoop HDFS 负责对大文件的存储,以HDFS:为文件协议标准 3. HBase 通过维护一张文件表完成对小文件的存储,以HBase:为文件协议标识 文件存取统一接口 文件存储接口 对文件进行存储前,接口根据文件的大小和HDFS文件分块的配置大小进行比较,当文件超过设定大小时,接口认为该文件是大文件,直接分配到HDFS文件存储接口进行写入;否则当文件小与块大小时,根据系统维护的Hbase小文件存储通用存储表进行存储管理。

1. 对直接存储到HDFS的文件,则文件路径以HDFS为中心存储文件协议头,文件路径则根据该文件的业务属性做完文件的路径,文件名称保留原有名称,例如:对通过Hbase管理的小文件,则文件路径以HBASE为中心存储文件协议头,文件路径不需要分文件夹,直接以文件的唯一标识标识即可,例如:文件读取接口 文件读取时,通过识别URL,确定文件的存储方式,然后找到对应的存储接口获取文件。

1.1Had oop HDFS存储接口 完成大文件的存储与读取接口操作。 1.2Hbase存储接口 文件通用存储表结构: 表存在两个列簇,default列簇负责存储基础属性信息,用一个单独的列簇存储图片内容。 HBase是采用面向列的存储模型,按列簇来存储和处理数据,即同一列簇的数据会连续存储。HBase在存储每个列簇时,会以Key-Value的方式来存储每行单元格(Cell)中的数

相关主题
文本预览
相关文档 最新文档