当前位置:文档之家› 最新高考数学第一轮复习 定积分汇总

最新高考数学第一轮复习 定积分汇总

最新高考数学第一轮复习 定积分汇总
最新高考数学第一轮复习 定积分汇总

2014高考数学第一轮复习定积分

第4讲 定积分的概念与微积分基本定理

【2014年高考会这样考】

1.考查定积分的概念,定积分的几何意义,微积分基本定理.

2.利用定积分求曲边形面积、变力做功、变速运动的质点的运动路程.

【复习指导】

定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等.

基础梳理

1.定积分

(1)定积分的定义及相关概念

如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0

b -a n f (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作??a

b f (x )d x . 在??a

b f (x )d x 中,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.

(2)定积分的性质

①??a b kf (x )d x =k ??a b f (x )d x (k 为常数). ②??a b [f 1(x )±f 2(x )]d x =??a b f 1(x )d x ±??a b f 2(x )d x . ③??a b f (x )d x =??a c f (x )d x +??c

b f (x )d x (其中a <

c

如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么??a

b f (x )d x =F (b )-F (a ),这个结论叫微积分基本定理,又叫牛顿—莱布尼兹公式.

3.定积分的应用

(1)定积分与曲边梯形的面积

定积分的概念是从曲边梯形面积引入的,但是定积分并不一定就是曲边梯形的面积.这要结合具体图形来定:

一种思想

定积分基本思想的核心是“以直代曲”,用“有限”的步骤解决“无限”过程的问题,其方法是“分割求近似,求和取极限”,利用这种方法可推导球的表面积和体积公式等.恩格斯曾经把对数的发明、解析几何的创始以及微积分的建立并称为17世纪数学的三大成就.

设阴影部分面积为S . ①S =????a b f (x )d x ; ②S =-????a b f (x )d x ; ③S =????a c f (x )d x -????c b f (x )d x ; ④S =????a b f (x )d x -????a b g (x )d x = ????a

b [f (x )-g (x )]d x . (2)匀变速运动的路程公式

作变速直线运动的物体所经过的路程s ,等于其速度函数v =

v (t )(v (t )≥0)在时间区间[a ,b ]上的定积分,即 s =????a b v(t)d t .

几种定积分的数值计算方法

几种定积分的数值计算方法 摘要:本文归纳了定积分近似计算中的几种常用方法,并着重分析了各种数值方法的计 算思想,结合实例,对其优劣性作了简要说明. 关键词:数值方法;矩形法;梯形法;抛物线法;类矩形;类梯形 Several Numerical Methods for Solving Definite Integrals Abstract:Several common methods for solving definite integrals are summarized in this paper. Meantime, the idea for each method is emphatically analyzed. Afterwards, a numerical example is illustrated to show that the advantages and disadvantages of these methods. Keywords:Numerical methods, Rectangle method, Trapezoidal method, Parabolic method, Class rectangle, Class trapezoid

1. 引言 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数 )(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用. 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用.另外,对于求导数也有一系列的求导公式和求导法则.但是,在实际问题中遇到求积分的计算,经常会有这样的情况: (1)函数)(x f 的原函数无法用初等函数给出.例如积分 dx e x ?-1 02 , ? 1 sin dx x x 等,从而无法用牛顿-莱布尼茨公式计算出积分。 (2)函数)(x f 使用表格形式或图形给出,因而无法直接用积分公式或导数公式。 (3)函数)(x f 的原函数或导数值虽然能够求出,但形式过于复杂,不便使用. 由此可见,利用原函数求积分或利用求导法则求导数有它的局限性,所以就有了求解数值积分的很多方法,目前有牛顿—柯特斯公式法,矩形法,梯形法,抛物线法,随机投点法,平均值法,高斯型求积法,龙贝格积分法,李查逊外推算法等等,本文对其中部分方法作一个比较. 2.几何意义上的数值算法 s 在几何上表示以],[b a 为底,以曲线)(x f y =为曲边的曲边梯形的面积A ,因此,计 算s 的近似值也就是A 的近似值,如图1所示.沿着积分区间],[b a ,可以把大的曲边梯形分割成许多小的曲边梯形面积之和.常采用均匀分割,假设],[b a 上等分n 的小区间 ,x 1-i h x i +=b x a x n ==,0,其中n a b h -= 表示小区间的长度. 2.1矩形法

最新高考-高考数学定积分 精品

§6.3定积分 【复习目标】 (1)通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背 景;借助几何直观体会定积分的基本思想,了解定积分的概念;会求简单的定积分。 (2)通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基 本定理的含义。 【重点难点】 定积分的几何意义;利用定积分性质化简被积函数;求定积分值。 【知识梳理】 (1)概念 设函数f (x )在区间[a ,b ]上连续,用分点a =x 0

定积分高考试题

定积分与微积分 一、知识回顾: 1.用定义求定积分的一般方法是: ①分割:n 等分区间[],a b ; ②近似代替:取点[]1,i i i x x ξ-∈; ③求和: 1 ()n i i b a f n ξ=-∑; ④取极限: () 1 ()lim n b i a n i b a f x dx f n ξ→∞ =-=∑? 2.曲边图形面积:()b a S f x dx =?; 变速运动路程2 1 ()t t S v t dt =? ; 变力做功 ()b a W F r dr = ? . 3.定积分有如下性质: 性质1 =?b a dx 1 性质2 =? b a dx x kf )( (其中k 是不为0的常数) (定积分的线性性质) 性质3 ?=±b a dx x f x f )]()([2 1 (定积分的线性性质) 性质4 ??? +=c a b c b a dx x f dx x f dx x f )()()( 其中(b c a <<) 4.定积分的计算(微积分基本定理) (1)(牛顿——莱布尼兹公式)若)(x f 是区间],[b a 上的连续函数,并且)()(x f x F =',那么有 二、常考题型: 一选择题 1.由直线与曲线y=cosx 所围成的封闭图形的面积为( ) A 、 B 、1 C 、 D 、 2.由曲线y=x 2 ,y=x 3 围成的封闭图形面积为( ) A 、 B 、 C 、 D 、 ? -==b a b a a F b F x F dx x f ) ()()()(

3.由曲线y=,直线y=x ﹣2及y 轴所围成的图形的面积为( ) A 、 B 、4 C 、 D 、6 4. ? +1 )2(dx x e x 等于( ) A 、1 B 、e ﹣1 C 、e D 、e 2 +1 5. ? 4 2 1 dx x dx 等于( ) A 、﹣2ln2 B 、2ln2 C 、﹣ln2 D 、ln2 6. dx x ?--2 2 )cos 1(π π等于( ) A 、π B 、2 C 、π﹣2 D 、π+2 7. 已知则? -= a a xdx 2 1 cos (a >0),则?a xdx 0cos =( ) A 、2 B 、1 C 、 D 、 8. 下列计算错误的是( ) A 、 ?- =π π 0sin xdx B 、 ? = 1 32dx x C 、 ?? -=22 2 cos 2cos π ππ xdx xdx D 、 ?- =π π0sin 2 xdx 9 计算dx x ? -2 24的结果是( ) A 、4π B 、2π C 、π D 、 10. 若 0)32(0 2=-? dx x x k ,则k 等于( ) A 、0 B 、1 C 、0或1 D 、以上均不对 11.下列结论中成立的个数是( ) ①∑?=?= n i n n i dx x 133 1 031;②∑?=?-=n i n n i dx x 131031)1( ;③∑?=∞→?=n i n n n i dx x 1331031lim 。 A .0 B .1 C .2 D .3 12.根据定积分的定义,?202 dx x =( ) A . ∑=?-n i n n i 1 21)1( B . ∑=∞→?-n i n n n i 121)1(lim C . ∑=?n i n n i 122)2( D . ∑=∞→?n i n n n i 122 )2(lim 13.变速直线运动的物体的速度为v(t),初始t=0时所在位置为0s ,则当1t 秒末它所在的位置 为 ( ) A . ? 1 )(t dt t v B .dt t v s t ? + 1 0)( C .00 1 )(s dt t v t -? D .dt t v s t ?-1 0)(

§_5_定积分习题与答案

第五章 定积分 (A) 1.利用定积分定义计算由抛物线12 +=x y ,两直线)(,a b b x a x >==及横轴所 围成的图形的面积。 2.利用定积分的几何意义,证明下列等式: ? =1 12)1xdx 4 1) 21 2π = -? dx x ?- =π π0sin ) 3xdx ?? - =2 2 20 cos 2cos )4π ππ xdx xdx 3.估计下列各积分的值 ? 33 1arctan ) 1xdx x dx e x x ?-0 2 2)2 4.根据定积分的性质比较下列各对积分值的大小 ?2 1 ln )1xdx 与dx x ?2 1 2)(ln dx e x ?10)2与?+1 )1(dx x 5.计算下列各导数

dt t dx d x ?+20 2 1)1 ?+32 41)2x x t dt dx d ?x x dt t dx d cos sin 2)cos()3π 6.计算下列极限 x dt t x x ?→0 20 cos lim )1 x dt t x x cos 1)sin 1ln(lim )20 -+?→ 2 2 20 )1(lim )3x x t x xe dt e t ? +→ 7.当x 为何值时,函数? -=x t dt te x I 0 2 )(有极值? 8.计算下列各积分 dx x x )1 ()12 1 42? + dx x x )1()294+?

? --212 12) 1()3x dx ? +a x a dx 30 2 2) 4 ?---+2 11)5e x dx ?π20sin )6dx x dx x x ? -π 3sin sin )7 ? 2 )()8dx x f ,其中??? ??+=22 11)(x x x f 1 1>≤x x 9.设k ,l 为正整数,且l k ≠,试证下列各题: ?- =π π 0cos )1kxdx πππ =?-kxdx 2cos )2 ?- =?π π 0sin cos )3lxdx kx ?-=π π 0sin sin )4lxdx kx

高考数学定积分的定义

教案6:定积分的定义与性质 一、课前检测 1. 2 21(21)x x dx ++=? ; 2. 由抛物线2y x =与直线2y x =-围成的平面图形的面积 为 . 3. 用力把弹簧从平衡位置拉长10 cm,此时用的力是200 N ,变力F 做的功W 为 J. 二、知识梳理 1.定积分的概念:设函数()f x 在区间[,]a b 上有定义,将区间[,]a b 等分 成n 分小区间,每个小区间长度为x ?(x ?= ),在每个小区间上 取一点,依次为12,,,,i n x x x x ,作和n S = .如果x ?无限 趋近于0(亦即n 趋向于+∞)时,n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分,记为S = ,其 中 称为被积函数, 称为积分区间, 称为积分下限, 称为积分上限, 2.微积分基本定理:对于被积函数()f x ,如果()()F x f x '=,则 ()b a f x dx ?= . 3.定积分的运算性质:⑴()b a kf x dx ?= ; ⑵[()()]b a f x g x dx ±=? ;⑶()b a f x dx =? .()a c b << 4.定积分的几何意义:在区间[,]a b 上曲线与x 轴所围成图形面积的 (即x 轴上方的面积减去x 轴下方的面积); ⑴当()f x 在区间[,]a b 上大于0时,()b a f x dx ?表示由直线

,(),0x a x b a b y ==≠=和曲线所围成的曲边梯形的面积,这也是定积分的几何意义. ⑵当()f x 在区间[,]a b 上小于0时,()b a f x dx ?表示由直线 ,(),x a x b a b y ==≠=和曲线所围成的曲边梯形的面积的 . ⑶当()f x 在区间[,]a b 上有正有负时,()b a f x dx ?表示介于直线 ,()x a x b a b ==≠之间x 轴之上、之下相应的曲边梯形的面积的 . 5.定积分在物理中的应用:⑴匀变速运动的路程公式,作变速直线运动的物体所经过的路程s ,等于其速度函数()v t 在时间区间[,]a b 上的定积分,即s = . ⑵变力做功公式,一物体在变力()F x (单位:N )的作用下作直线运动,如果物体沿着与F 相同的方向从x a =移动到()x b a b =<(单位:m ),则力F 所作的功为W = . 三、典型例题分析 例1.求定积分 ⑴21 ?(2x 2 -1x )d x ; ⑵32?(x +1x )2d x ; (3)30π?(sin x -sin2x )d x ; 变式训练:求定积分:222||x x dx --?;

有关定积分问题的常见题型解析(全题型)

有关定积分问题的常见题型解析 题型一 利用微积分基本定理求积分 例1、求下列定积分: (1) ( ) 1 3 31x x dx -+? (2) 4 1dx ? (3) ? --2 2 24x 分析:根据求导数与求原函数互为逆运算,找到被积函数得一个原函数,利用微积分基本公式代入求值。 评注:利用微积分基本定理求定积分 dx x f a b )(?的关键是找出)()(/ x f x F =的函数)(x F 。 如果原函数不好找,则可以尝试找出画出函数的图像, 图像为圆或者三角形则直接求 其面积。 题型二 利用定积分求平面图形的面积 例2 如图 ,求直线y=2x+3与抛物线y=x 2 所围成的图形面积。 分析:从图形可以看出,所求图形的面积可以转化为一个梯形与一个曲边梯形面积的差,进而可以用定积分求出面积。为了确定出被积函数和积分和上、下限,我们需要求出两条曲线的交点的横坐标。 评注:求平面图形的面积的一般步骤:⑴画图,并将图形分割成若干曲边梯形;⑵对每个曲边梯形确定其存在的范围,从而确定积分上、下限;⑶确定被积函数;⑷求出各曲边梯形的面积和,即各积分的绝对值之和。 关键环节:①认定曲边梯形,选定积分变量;②确定被积函数和积分上下限。 知识小结:几种典型的曲边梯形面积的计算方法: (1)由三条直线x=a 、x=b (a <b )、x 轴,一条曲线y=()x f (()x f ≥0)围成的曲边梯形的面积: S = ()?b a dx x f ,如图1。 (2)由三条直线x=a 、x=b (a <b )、x 轴,一条曲线y=()x f (()x f ≤0)围成的曲边梯形的面积: S = ()()??-=b a b a dx x f dx x f ,如图2。 (3)由两条直线x=a 、x=b (a <b )、两条曲线y=()x f 、y=()x g (()()x g x f ≥)围成的平面图形的面积:S = ()()?-b a dx x g x f ][,如图3。

高中数学定积分知识点

数学选修2-2知识点总结 一、导数 1.函数的平均变化率为 =??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或 0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;

6、常见的导数和定积分运算公式:若() g x均可导(可积),则有: f x,() 用导数求函数单调区间的步骤: ①求函数f(x)的导数'() f x ②令'() f x>0,解不等式,得x的范围就是递增区间. ③令'() f x<0,解不等式,得x的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。 7.求可导函数f(x)的极值的步骤: (1)确定函数的定义域。 (2) 求函数f(x)的导数'() f x (3)求方程'() f x=0的根 (4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/() f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如

定积分计算例题

第5章 定积分及其应用 (一)、单项选择题 1.函数()x f 在区间[a ,b]上连续是()x f 在[a ,b]上可积的( )。 A .必要条件 B 充分条件 C 充分必要条件 D 既非充分也非必要条件 2.下列等式不正确的是( )。 A . ()()x f dx x f dx d b a =??????? B. ()()()[]()x b x b f dt x f dx d x b a '=???? ??? C. ()()x f dx x f dx d x a =??????? D. ()()x F dt t F dx d x a '=???? ??'? 3.? ?→x x x tdt tdt sin lim 的值等于( ). A.-1 B.0 C.1 D.2 4.设x x x f +=3 )(,则 ? -2 2 )(dx x f 的值等于( )。 A .0 B.8 C. ? 2 )(dx x f D. ?2 )(2dx x f 5.设广义积分 ? +∞ 1 dx x α收敛,则必定有( )。 A.1-<α B. 1->α C. 1<α D. 1>α 6.求由1,2,===y x e y x 围成的曲边梯形的面积时,若选择x为积分变量,则积分区间为( )。 A.[0,2e ] B.[0,2] C.[1,2] D.[0,1] 7.由曲线2,0,===y x e y x 所围成的曲边梯形的面积为( )。 A.dy y ? 2 1 ln B. dy e e x ? 2 C.dy y ? 2 ln 1ln D. ()d x e x ?-2 1 2 8.由直线1,+-==x y x y ,及x轴围成平面图形的面积为( )。 A. ()[]dy y y ?--1 1 B. ()[]dx x x ? -+-21 1 C. ()[]dy y y ? --210 1 D.()[]dx x x ? +--1 1 9.由e x x y x y e ===,log ,ln 1围成曲边梯形,用微法求解时,若选x为积分变量,面积微元为 ( )。 A.dx x x e ???? ? ? +1 log ln B.dy x x e ???? ? ?+1log ln C.dx x x e ???? ? ?-1log ln D.dy x x e ??? ? ? ?-1log ln 10.由0,1,1,2==-==y x x x y 围成平面图形的面积为( )。 A. ? -1 1 2dx x B. ? 1 2dx x C. ? 1 dy y D.? 1 2 dy y

2016年专项练习题集-定积分的计算

2016年专项练习题集-定积分的计算

2016年专项练习题集-定积分的计算 一、选择题 1.dx x )5(1 2 2 -?=( ) A.233 B.31 C.34 D .83 【分值】5分 【答案】D 【易错点】求被积函数的原函数是求解关键。 【考查方向】求定积分

【解题思路】求出被积函数的原函数,应用微积分基本定理求解。 【解析】dx x )5(1 22 -?=123 153 x x -=83 . 2.直线9y x =与曲线3 y x =在第一象限内围成的封闭 图形的面积为( ) A 、22 B 、42 C 、2 D 、4 【分值】5分 【答案】D 【易错点】求曲线围成的图形的面积,可转化为函数在某个区间内的定积分来解决,被积函数一般表示为曲边梯形上边界的函数减去下边界的

函数. 【考查方向】定积分求曲线围成的图形的面积 【解题思路】先求出直线与曲线在第一象限的交点,再利用牛顿-莱布尼茨公式求出封闭图形的面积. 【解析】由 ???==39x y x y ,得交点为()()()27,3,27,3,0,0--, 所以()4 8103412 9 942 30 3 =??? ? ?-=-=?x x dx x x S ,故选D. 3.22 -? 2 412x x -+dx =( ) A.π4 B.π 2 C.π D.π3 【分值】5分 【答案】A

【易错点】利用定积分的几何意义,一般根据面积求定积分,这样可以避免求原函数,注意理解所涉及的几何曲线类型. 【考查方向】求定积分 【解题思路】利用定积分的几何意义,转化为圆的面积问题。 【解析】设y=2 4 x- +,即(x-2)2+y2=16(y≥0). 12x ∵22-?2 x- +dx表示以4为半径的圆的四分之一12x 4 面积.∴22-?2 x- +dx=π4. 12x 4 4.F4遥控赛车组织年度嘉年华活动,为了测试一款新赛车的性能,将新款赛车A设定v=3t2+1(m/s)的速度在一直线赛道上行驶,老款赛车B设定在A的正前方5 m处,同时以v=10t(m/s)的速度与A同向运动,出发后赛车A 追上赛车B所用的时间t(s)为( )

定积分证明题方法总结六

定积分证明题方法总结六篇 定积分是历年数学的考查重点,其中定积分的证明是考查难点,同学们经常会感觉无从下手,小编特意为大家总结了定积分的计算方法,希望对同学们有帮助。 篇一:定积分计算方法总结一、不定积分计算方法 1. 凑微分法 2. 裂项法 3. 变量代换法 1) 三角代换 2) 根幂代换 3) 倒代换 4. 配方后积分 5. 有理化 6. 和差化积法 7. 分部积分法(反、对、幂、指、三) 8. 降幂法 二、定积分的计算方法 1. 利用函数奇偶性 2. 利用函数周期性 3. 参考不定积分计算方法 三、定积分与极限

1. 积和式极限 2. 利用积分中值定理或微分中值定理求极限 3. 洛必达法则 4. 等价无穷小 四、定积分的估值及其不等式的应用 1. 不计算积分,比较积分值的大小 1) 比较定理:若在同一区间[a,b]上,总有 f(x)>=g(x),则 >= ()dx 2) 利用被积函数所满足的不等式比较之 a) b) 当0 2. 估计具体函数定积分的值 积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则 M(b-a) 3. 具体函数的定积分不等式证法 1) 积分估值定理 2) 放缩法 3) 柯西积分不等式 ≤ % 4. 抽象函数的定积分不等式的证法 1) 拉格朗日中值定理和导数的有界性 2) 积分中值定理 3) 常数变易法 4) 利用泰勒公式展开法

五、变限积分的导数方法 篇二:定积分知识点总结 1、经验总结 (1) 定积分的定义:分割—近似代替—求和—取极限 (2)定积分几何意义: ①f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积 ab ②f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积的相a 反数 (3)定积分的基本性质: ①kf(x)dx=kf(x)dx aabb ②[f1(x)f2(x)]dx=f1(x)dxf2(x)dx aaa ③f(x)dx=f(x)dx+f(x)dx aac (4)求定积分的方法:baf(x)dx=limf(i)xi ni=1nbbbbbcb ①定义法:分割—近似代替—求和—取极限②利用定积分几何意义 ’③微积分基本公式f(x)F(b)-F(a),其中F(x)=f(x) ba 篇三:定积分计算方法总结 1、原函数存在定理 ●定理如果函数f(x)在区间I上连续,那么在区间I上

不定积分 计算题

计算题(共 200 小题) 1、 ??+=.d )( , sin d )()(x x f c x x x f n 求设 2、 ?'>+=.d )(),0()(2x x f x x x x f 试求设 3、 .d x x ?求 4、 .)( .0,sin ,0)(2的不定积分求 设x f x x x x x f ? ??>≤= 5、 已知,求它的原函数.f x x F x ()()=-1 6、 .d x x ?求  7、 ? -233d x x 求  8、 .,d 2是常数其中求 a x x a ? 9、 .0,,d >?a a x e a x x 是常数其中求  10、 .d tan csc 22x x x ??求 11、 ? ?x x x d cot sec 22求 12、 ?+22d x x 求  13、 ? +82d 2x x 求

14、 ?-9d 2x x 求  15、 ? -.63d 2x x 求  16、 ?+232d x x 求  17、 .d 2432x x x x ?-求 18、 x x x d ??求  19、 .d )1(23 x x x ?+求  20、 .,,d )cosh sinh (均为常数其中求 b a x x b x a ?+ 21、 ?x x d cot 2求 22、 .d 11)(3x x x ?++求  23、 .d x x x x ?求  24、 ?+.d )arccos (arcsin x x x 求  25、 [].d )1(cos cos )1(sin sin x x x x x ?+++求  26、 ??.d 2 sin 22x x 求 27、

(完整版)高中数学高考总复习定积分与微积分基本定理习题及详解()

高中数学高考总复习定积分与微积分基本定理习题及详解 一、选择题 1.(2010·山东日照模考)a =??0 2x d x ,b =??02e x d x ,c =??0 2sin x d x ,则a 、b 、c 的大小关系是 ( ) A .a 2,c =? ?0 2sin x d x =-cos x |02=1 -cos2∈(1,2), ∴c

定积分练习题

题型 1.定积分与极限的计算 2.计算下列定积分 3.计算下列广义积分 内容 一.定积分的概念与性质 1.定积分的定义 2.定积分的性质 3.变上限函数及其导数 4.牛顿—莱布尼茨公式 5.换元积分公式与分部积分公式 6.广义积分 题型 题型I 利用定积分定义求极限 题型II比较定积分的大小 题型III利用积分估值定理解题 题型IV关于积分上限函数以及牛顿—莱布尼茨公式问题 题型V定积分的计算

题型VI 积分等式证明 题型VII 积分不等式证明 题型VIII 广义积分的计算 自测题五 1.根据极限计算定积分 2.根据定积分求导 3.求极限 4.求下列定积分 5.证明题 4月21日定积分练习题 基础题: 一.选择题、填空题 1.将和式的极限)0(.......321lim 1 >+++++∞→p n n P p p p p n 表示成定积分 ( ) A .dx x ?1 01 B .dx x p ?10 C .dx x p ?10)1( D .dx n x p ?10)( 2.将和式)21 .........2111(lim n n n n +++++∞→表示为定积分 . 3.下列等于1的积分是 ( ) A . dx x ? 1 B .dx x ?+1 )1( C .dx ? 1 1 D . dx ?1 021 4.dx x |4|1 02 ? -= ( ) A . 321 B .322 C .3 23 D . 3 25 5.曲线]2 3 ,0[,cos π∈=x x y 与坐标周围成的面积 ( )

A .4 B .2 C .2 5 D .3 6. dx e e x x ?-+1 )(= ( ) A .e e 1+ B .2e C .e 2 D .e e 1- 7.若10x m e dx =?,11e n dx x =?,则m 与n 的大小关系是( ) A .m n > B .m n < C .m n = D .无法确定 8. 按万有引力定律,两质点间的吸引力2 2 1r m m k F =,k 为常数,21,m m 为两质点的质量,r 为两点间距离,若两质点起始距离为a ,质点1m 沿直线移动至离2m 的距离为b 处,试求所作之功(b >a ) . 9.由曲线2 1y x =-和x 轴围成图形的面积等于S .给出下列结果: ① 1 21 (1)x dx --? ;②121 (1)x dx --?;③120 2(1)x dx -?;④0 21 2(1)x dx --?. 则S 等于( ) A .①③ B .③④ C .②③ D .②④ 10.0 (sin cos sin )x y t t t dt =+? ,则y 的最大值是( ) A .1 B .2 C .7 2 - D .0 11. 若()f x 是一次函数,且1 ()5f x dx =? ,1 017 ()6xf x dx =?,那么21()f x dx x ?的值是 . 12.???????=≠?=0 ,0,)()(2 x c x x dt t tf x F x ,其中)(x f 在0=x 处连续,且0)0(=f 若)(x F 在 0=x 处连续,则=c ( ) 。 (A).0=c ; (B).1=c ; (C).c 不存在; (D).1-=c .

最新高考数学第一轮复习 定积分汇总

2014高考数学第一轮复习定积分

第4讲 定积分的概念与微积分基本定理 【2014年高考会这样考】 1.考查定积分的概念,定积分的几何意义,微积分基本定理. 2.利用定积分求曲边形面积、变力做功、变速运动的质点的运动路程. 【复习指导】 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等. 基础梳理 1.定积分 (1)定积分的定义及相关概念 如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0

定积分计算应当注意的几个问题

定积分计算中应当注意的几个问题 辛 开 远 定积分计算是高等数学中很重要的内容,本文针对应当注意的几个问题,通过求解例题,让读者掌握解题技巧。 一、利用函数奇偶性简化计算 若)(x f 在],[a a -上连续并且为偶函数,则有 ??=-a a a dx x f dx x f 0 )(2)( , ()(x f 是偶函数) 若)(x f 在],[a a -上连续并且为奇函数,则有 0)(=? -a a dx x f , ()(x f 是奇函数) 例1:计算 ? - 2 2 10sin π π xdx x 解 :因为x x x f sin )(10 =是奇函数,积分区间对称于原点,所以,原式=0。 例2:计算 ?---a a dx x a x a 2 2 解:原式= ? ? -----a a a a dx x a x dx x a a 2 2 2 2 右边第一个积分的被积函数是偶函数,第二个积分的被积函数是奇函数,积分区间对称于原点,从而 原式=a a x a dx x a a a a π=??? ?? =-? 00 2 2arcsin 22 例3:计算 () dx x x x x ?-++-1 1 341cos sin 95200 解:原式=() 5 1212 10 4 = +?dx x 二、利用函数的周期性简化计算 设)(x f 是以T 为周期的连续函数,则有 ??=+T T a a dx x f dx x f 0 )()( ?? =+T nT a a dx x f n dx x f 0 )()( (n 为整数) 例4:计算 ? +- 2 1002 100222sin π π xdx x tg

高中数学定积分综合练习(含答案)

定积分综合练习 一、选择题: 1.将和式的极限)0(.......321lim 1>+++++∞→p n n P p p p p n 表示成定积分 ( ) A .dx x ?1 01 B . dx x p ? 1 C .dx x p ?1 0)1( D .dx n x p ?1 0)( 2.下列等于1的积分是 ( ) A . dx x ? 1 B .dx x ?+10 )1( C .dx ? 1 01 D .dx ?1 021 3.dx x |4|1 02 ? -= ( ) A . 321 B .322 C . 3 23 D . 3 25 4.已知自由落体运动的速率gt v =,则落体运动从0=t 到0t t =所走的路程为 ( ) A .3 2 0gt B .2 0gt C .2 2 0gt D .6 2 0gt 5.曲线]2 3,0[,cos π∈=x x y 与坐标周围成的面积 ( ) A .4 B .2 C .2 5 D .3 6.dx e e x x ? -+1 )(= ( ) A .e e 1 + B .2e C . e 2 D .e e 1- 7.求由1,2,===y x e y x 围成的曲边梯形的面积时,若选择x为积分变量,则积分区间为( ) A .[0,2e ] B .[0,2] C .[1,2] D .[0,1] 8.由直线1,+-==x y x y ,及x轴围成平面图形的面积为 ( ) A .()[]dy y y ?--101 B .()[]dx x x ?-+-2101 C .()[]dy y y ?--210 1 D .()[]dx x x ? +--1 01 9.如果1N 力能拉长弹簧1cm ,为将弹簧拉长6cm ,所耗费的功是 ( ) A .0.18 B .0.26 C .0.12 D .0.28 10.将边长为1米的正方形薄片垂直放于比彼一时为ρ的液体中,使其上距液面距离为2米,则该正方形薄片 所受液压力为 ( ) A .? 3 2 dx x ρ B . ()?+2 1 2dx x ρ C .? 1 dx x ρ D .()? +32 1dx x ρ 二、填空题: 12.曲线1,0,2===y x x y ,所围成的图形的面积可用定积分表示为 . 13.由x y cos =及x 轴围成的介于0与2π之间的平面图形的面积,利用定积分应表达为 . 14.按万有引力定律,两质点间的吸引力2 2 1r m m k F =,k为常数,21,m m 为两质点的质量,r为两点间距离,若两质点起始距离为a,质点1m 沿直线移动至离2m 的距离为b处,试求所作之功(b>a ) .

专项练习题集定积分的计算

2016年专项练习题集-定积分的计算 一、选择题 1.dx x )5(1 22-?=( ) B.3 1 C.3 4 D .83 【分值】5分 【答案】D 【易错点】求被积函数的原函数是求解关键。 【考查方向】求定积分 【解题思路】求出被积函数的原函数,应用微积分基本定理求解。

【解析】dx x )5(122-?=123153x x -=83 . 2.直线9y x =与曲线3y x =在第一象限内围成的封闭图形的面积为( ) A 、 B 、 C 、2 D 、4 【分值】5分 【答案】D 【易错点】求曲线围成的图形的面积,可转化为函数在某个区间内的定积分来解决,被积函数一般表示为曲边梯形上边界的函数减去下边界的函数. 【考查方向】定积分求曲线围成的图形的面积 【解题思路】先求出直线与曲线在第一象限的交点,再利用牛顿-莱布尼茨公式求出封闭图形的面积. 【解析】由???==39x y x y ,得交点为()()()27,3,27,3,0,0--, 所以()481034129 9423 3=??? ??-=-=?x x dx x x S ,故选D.

3.22-?2412x x -+dx =( ) A.π4 B.π2 C.π D.π3 【分值】5分 【答案】A 【易错点】利用定积分的几何意义,一般根据面积求定积分,这样可以避免求原函数,注意理解所涉及的几何曲线类型. 【考查方向】求定积分 【解题思路】利用定积分的几何意义,转化为圆的面积问题。 【解析】设y =2412x x -+,即(x -2)2+y 2=16(y ≥0).∵22 -?2412x x -+dx 表示以4为半径的圆的四分之一面积.∴22 -?2412x x -+dx =π4. 遥控赛车组织年度嘉年华活动,为了测试一款新赛车的性能,将新款赛车A 设定v =3t 2+1(m/s)的速度在一直线赛道上行驶,老款赛车B 设定在A 的正前方5 m 处,同时以v =10t (m/s)的速度与A 同向运动,出发后赛车A 追上赛车B 所用的时间t (s)为( )

高考理科数学定积分与微积分基本

定积分与微积分基本定理 [时间:45分钟 分值:100分] 基础热身 1.[2011·郑州一中模拟] 已知f (x )为偶函数,且 ??0 6 f(x)d x =8,则? ?6-6f(x)d x =( ) A .0 B .4 C .8 D .16 2.[2011·福州模拟] 设f(x)=???? ? x 2,x ∈[0,1],1x ,x ∈(1,e ](其中e 为自然对数的底数),则??0 e f(x)d x 的值为( ) A .43 B .2 C .1 D .23 3.[2011·临沂模拟] 若a =??02x 2d x ,b =??02x 3d x ,c =??0 2sin x d x ,则a 、b 、c 的大小关系 是( ) A .a

相关主题
文本预览
相关文档 最新文档