当前位置:文档之家› 电厂循环水余热利用技术探究

电厂循环水余热利用技术探究

电厂循环水余热利用技术探究
电厂循环水余热利用技术探究

电厂循环水余热利用技术探究

摘要:热力系统主要的热损失发生在凝汽器,占燃料热能的50%以上。并在热电联产循环指出,提高排汽压力,以利用排汽的热量供生产和生活用能,是提高蒸汽动力循环效率最有效的途径。本文讨论利用凝汽器冷却循环水供热的有关技术。

关键词:循环水余热利用

利用循环水余热进行供热是改小型凝汽机组为供热机组的有效措施。我国从20世纪80年代起就开始利用该技术改造中低压机组,已有数十台凝汽 (抽汽)式机组进行了改造。仅辽宁省就有沈阳、抚顺、阜新等电厂,至今已安全运行20多年。仅靠提高凝汽器压力,在安全的前提下,只能将循环水加热到60~65℃,在寒冷季节需投入尖峰加热器,将循环水加热到80~90℃,以满足采暖的需要。该系统称为低温循环水供热系统。还有一种系统,将低真空运行的循环水在尖峰加热器中加热到110~120℃,通过主循环管路送到热力站,在热力站通过混水,将高温水 (120℃左右)混成低温水(65~70℃)送入居民家中,40~50℃的回水直接回到凝汽器,加热到65~70℃,完成一个循环,下面分析这两种系统优缺点。

一、低温循环水供热系统

将纯凝机组或抽凝机组在采暖期改成低真空运行,排汽压力提高到0.3~0.4mpa,同时将冷却循环水量减少。从而使循环出口温度由30~35℃提高到65~70℃。循环水不再去冷却塔,而是用热

热电厂循环水余热利用方案

******技术发展有限公司 ******热电厂循环水利用方案 (溴化锂吸收式热泵) 联系人: 手机: 联系电话: 传真: 信箱: 2013年8月18日

目录 1 项目简介 (3) 1.1 吸收式热泵方案 (3) 1.2 吸收式热泵供暖工艺流程设计 (3) 1.3 蒸汽型吸收式热泵主机选型(31.7℃→25℃) (4) 1.4 节能运行计算 (4) 1.5 初投资与回报期计算 (5) 2 热泵机组简介 (6) 2.1 吸收式热泵供暖机组 (6) 2.2 溴化锂吸收式热泵采暖技术特点 (7) 2.3 标志性案例介绍 (7)

1 项目简介 ********热电厂,采暖季有温度为26.3~19.6℃的循环冷却水2800m3/h,需要通过降低汽轮机组凝汽器真空或提高汽轮机背压,使得冷却循环水的温度提升到到31.7℃,然后利用溴化锂吸收式热泵机组提取凝汽器冷却循环水中的热量,将循环冷却水温度降低到25℃,可以制备供水温度为74.7/55℃热网水2400 m3/h,对建筑物进行供暖,供暖期为152天。提高汽轮机背压大约2KPa左右,汽轮机的轴向推力几乎不变,对发电量影响不大。 1.1 吸收式热泵方案 采用蒸汽型吸收式热泵机组,通过0.49MPa的饱和蒸汽作为驱动热源,在冬季采暖期,将2800m3/h的循环冷却水从31.7℃降低到25℃,可以从循环冷却水中提取21.82MW的热量用于建筑物采暖。 1.2 吸收式热泵供暖工艺流程设计 使用吸收式热泵加热,供暖系统流程原理图如下: 由上图可以看出,实际应用流程非常简单,只是把工艺循环水引到热泵机房,把原来通过冷却塔排放到环境中的冷凝废热,通过溴化锂吸收式热泵机组将热量传递给供暖回水。此系统改造不影响循环水原系统的稳定性,节省大量的蒸汽,同时带来了大量的经济效益。

我国火电厂循环冷却水处理技术的发展

收稿日期:  20030611作者简介:  罗奖合,男,教授级高级工程师,现任国电热工研究院科研业务部副主任兼国电水处理公司总经理。主要从事电厂化学水处理技术及药剂的研究开发。 我国火电厂 循环冷却水处理技术的发展 罗奖合1,李营根1,郭怀保2 (1.国电热工研究院,陕西西安 710032;2.苇湖梁发电有限责任公司,新疆乌鲁木齐 830002) [摘 要] 介绍电力体制改革后我国火电厂循环冷却水处理技术面临的主要问题和今后的发展方向。根 据目前的实际需要和可能,认为近期内各火电厂循环水的浓缩倍率应以大于3为控制目标,为此提出了8点建议:(1)完善循环水的外部处理方法;(2)开发新型水质稳定剂和高效复合配方;(3)加强凝汽器管防腐技术研究;(4)对城市污水用于循环水技术进行研究;(5)探索其它杀菌剂的应用;(6)加强自动控制技术的应用;(7)对运行中除垢技术进行研究;(8)循环水处理药剂应定点生产。[关键词] 火电厂;循环水;浓缩倍率;药剂;配方;凝汽器;结垢;腐蚀[中图分类号]TM621.8 [文献标识码]A [文章编号]1002 3364(2003)08 0009 03 五大发电集团公司成立后将实行“厂网分开、竟价上网”的方针。发电企业的生产要以节能降耗来降低发电成本,增强上网电价的竞争力。做好火电厂循环水处理工作,对于降低发电成本有着重要的作用。 1 火电厂循环冷却水处理技术面临的 主要问题 1.1 水资源日益紧张 我国水资源人均拥有量为2200m 3,只有世界平均水平的1/4,属缺水国家。且有限的水资源分配很不均匀,81%分布在长江流域及其以南地区。目前我国一方面水资源紧张,另一方面却又存在大量浪费水资源的情况。 火电厂是工业用水大户,其耗水量约占工业用水量的20%左右。在缺水的北方地区,水资源严重不足,使火电厂的建设规划和运行受到限制,因此节约用水已成为当务之急。据有关资料统计,我国凝汽式火电厂(采用冷却塔和水力输灰)的耗水率为1.64m 3/(s ?GW ),与国外水平(0.7~0.9)m 3/(s ?GW )差距较大,说明我国火电厂节水潜力很大。目前经原国家经 贸委批准的单位发电量取水量标准已正式实施,其目的在于限制火力发电厂的取水量,具体规定如下:采用循环冷却供水系统时单位发电量取水量定额,在单机容量<300MW 时为4.80m 3/(MW ?h );在单机容量≥300MW 时为3.84m 3/(MW ?h )。当前全国达到这一标准的火电厂还不到30%,因此节水空间巨大。 火电厂全厂用水的比例:循环冷却水系统补给水50%~80%,水力输灰用水20%~40%,锅炉补给水2%~4%。因此,火电厂节水工作的重点应在优化冷 却水和冲灰水系统的设计和运行方面,尽可能减少循环冷却系统的排污,提高循环冷却水的浓缩倍率,可取得良好的经济效益。但浓缩倍率的提高,会使结垢和腐蚀等问题更加突出,同时对循环水处理技术也提出了更高的要求。 1.2 环境保护的要求更为严格 进入21世纪以来,以环保为主题的绿色能源声势日高,为了保护水资源水质,减少工业排放废水及污水对水体造成的危害,环保部门对火力发电厂排放水量和水质提出了严格要求。就排放水量而言,将对火力 技术经济综述 热力发电?2003(8) 9

热电厂循环水余热利用项目可行性实施报告

某某县热电厂 循环水余热利用项目可行性研究报告 2000年2月1日

目录 概述 (2) 1.企业的描述 (4) 2.工艺现状和相关的能耗情况 (4) 3.建议的项目 (5) 4.期望的能耗 (7) 5.投资估算 (8) 6.预计运行费用 (8) 7.预计节能效益 (9) 8.节能效果验证 (9) 9.存在的设备供货商 (10) 10.存在的设备安装承包商 (10) 11.技术经济分析 12.主要设备材料清单

1、概述 1.1县城及企业概况 某某县隶属省日照市,位于半岛的西南部,东接胶南,西连莒县,南与日照接壤,北与诸城相邻. 某某县热电厂位于城区的西北部,厂区东靠解放路,西临沿河路. 该厂始建于一九六八年, 占地面积5.6万平方米,,最大供热能力90t/h.职工450人,其中各类专业技术人员60人。原为小型火力发电厂.自一九八三年后改建为热电厂.厂在一九八五年建成规模为2×20t/h锅炉+2×1500kw背压式汽轮发电机组.为了适应外部热负荷逐渐增加的要求,该厂在九三年又进行了扩建,扩建机组的容量为2×35t/h锅炉+1×C6-3.43/0.981抽汽凝汽式汽轮发电机组,并于一九九六年建成投产.某某县热电厂通过不断地发展,逐渐成为某某县基础性行业和县城的唯一的热源厂,承担着城区30余家工业用户用汽和部分居民的采暖用汽供应。该厂坚持国家的产业政策,以让“政府放心,用户满意“为目标,积极发挥热电联产,集中供热的优势,努力改善居民的生活条件,增加能源供应,减轻环境污染,取得了显著的经济效益和社会效益,1998年全厂实现销售收入4067万元,利税558万元,两个文明建设取得突出成绩,连续三年被县委县政府先进企业和十佳明星企业。 1996-1998年生产经营情况表见表-1 表-1 2、存在问题

电厂循环水余热利用可行性研究报告

电厂循环水余热利用建议书 编制: 朱明峰 审核: 批准: 中海油节能环保服务有限公司 2013年9月19日

目录 一概述 (1) 1.1项目背景 (1) 1.2余热资源现状 (1) 1.3项目实施条件 (1) 1.4遵循的标准及规范 (2) 二余热回收方案设计 (3) 2.1现有补水加热流程图 (3) 2.2改造方案 (3) 2.3改造主要工作量 (5) 2.4技改效果 (6) 2.5改造投资及静态回收期 (6) 三节能环保效益分析 (7) 3.1节能效益 (7) 3.2环保效益 (7) 四结论与建议 (7)

一概述 1.1项目背景 **热电厂全年供应蒸汽。由于外供蒸汽的凝结水回收比例较低,需要大量的除盐补充水,新厂补充除盐水的流量常年在100~150t/h,平均温度约为25℃,本方案将回收电厂发电后的大量循环水余热,用于加热锅炉补充除盐水,从而减少部分除氧器加热蒸汽耗量,节省的蒸汽可用于外送或发电。 充分利用电厂循环水余热,提高能源利用效率,对节能减排工作得推动起到了重要的作用。 1.2余热资源现状 **热电循环冷却水总流量约为15000t/h,上下塔温度夏季为40/30℃、冬季为30/20℃,最冷时下塔温度约为15~18℃。 循环冷却水余热若按照温差10℃提取,可回收的余热量为:ΔQ =4.1868MJ/t·℃×15000t×10℃/3600s=174.4MW 1.3项目实施条件 蒸汽压力:0.5-0.8MPa(饱和蒸汽) 除盐水补水平均温度:25℃ 预热除盐水温度:90℃(夏)/80℃(冬) 除盐水量:100t/h 循环水温度(冬季):30/20℃ 循环水温度(夏季):40/30℃

基于热泵技术的热电厂循环水余热回收方案研究

基于热泵技术的热电厂循环水余热回收方案研究 发表时间:2018-10-01T19:15:42.717Z 来源:《基层建设》2018年第26期作者:陈永山 [导读] 摘要:传统的热电厂进行供热的时候,能源选用上通常是煤、石油、天然气这样的能源,供热效率较低,且会产生一些对人类有害的气体。 身份证号码:37011219810311XXXX 摘要:传统的热电厂进行供热的时候,能源选用上通常是煤、石油、天然气这样的能源,供热效率较低,且会产生一些对人类有害的气体。而如果使用循环水余热回收技术,就能够改变这一点,通过该技术的使用使得整个供热过程变得清洁环保,且节约了大量的能源,供热的规模也大大增强了。由此可见,将循环水余热回收技术加以利用是非常重要的。 关键词:热泵技术;热电厂循环水余热;回收方案 引言 随着社会的不断发展,全球化石能源的储量随之急剧减少。伴随着化石燃料消耗量的急剧增加,环境问题又日益凸显出来。全球气候变暖、雾霆、大气层破坏等诸多环境问题对人类社会的长久稳定发展造成极大的影响。在我国的能源消耗构成中,电力企业占国家化石能源的消耗量的比重相对较大,近些年我国政府也出台针对电力企业节能减排的政策:重点推广能量梯级利用、低温余热发电和热泵机组供暖等节能减排技术。 1热泵的分类及基本工作原理 1.1热泵的基本种类 如图1所示,由热源来源进行种类划分,热泵主要可分为如下几类:①水源热泵。所利用的水源主要包括自然水源和人工排水源。自然水源主要为地下水、河川水及海洋水。人工排水源主要为城市生活污水、工业废水及热电冷却水。②地源热泵。③空气源热泵。具体至当前普遍应用于热电厂的热泵,我们具体又可将其划分为两大类:①压缩式热泵,包括蒸汽驱动压缩式热泵和电驱动压缩式热泵。②吸收式热泵。 图1热泵的基本种类结构示意 1.2热泵技术的基本工作原理 从本质上而言,热泵显然为一种热量提升装置。热泵主要从周围环境中吸收热量,并将其有效传递给被加热对象,也即是温度较高的物体。热泵的工作原理和制冷机类似。一般情况下,热泵主要有如下几个重要部分构成:①压缩机;②蒸发器;③冷凝器;④膨胀节流阀等。具体如图2所示。 图2热泵技术的基本工作原理示意 (1)压缩机为热泵机组的心脏,压缩机起到的作用主要为:压缩并输送循环工质,将其由低温、低压转变为高温、高压。蒸发器为热泵机组的输出冷量设备。(2)蒸发器可使经节流阀流入的制冷剂液体蒸发,进而吸收被冷却物体的热量,最终切实实现制冷的目的。(3)冷凝器为热泵机组输出热量的设备。压缩机消耗功转化的热量以及蒸发器中吸收的热量传输至冷凝器中之后,会被冷却介质带走,从而实现制热的基本目的。(4)热泵机组的膨胀阀亦或是节流阀可以对循环工质起到较好的节流降压作用,在此基础上还可起到对进入蒸发器的循环工质流量进行调节的重要作用。研究表明,采用热泵技术能够节约大量的电能。 2方案确定 在选择循环水余热回收方案时,首先要对各个方案的经济性进行分析并以此为方案选择依据,当热泵机组确定时,即使余热量无限大,但是热泵机组增加的热量不是无限增大的,热泵机组所能回收的热量存在一个极限值,也就是理论最大回收热量。因此,本文将针对吸收式热泵和压缩式热泵,以电厂实际条件为背景,分析其所能提供的最大供热量,来选择合适的热泵机组。 2.1应用吸收式热泵 采用吸收式热泵时,需要耗费部分抽汽作为热泵的驱动热源,吸收循环水的余热并将吸收的热量输送给一次网回水,使一次网回水温度升高。吸收式热泵的供热量为:

热电厂循环水处理合同

热电厂循环水处理合同 2011年7月31日FJW 提供 编号:()CXWYX XX -HT-第号 甲方:乙方: 甲、乙双方经协商,就将____________________________________ 循环 水处理事项委托与乙方,签订本合同。 第一条甲乙双方确认,本合同履行期间由※※探※※※物业管理有 限责任公司_________________________ 物业管理中心,代为行使甲方权利,履 行甲方义务。 第二条技术指标 腐蚀率:碳钢w 0. 125毫米/年铜及其合金w 0.0 05毫米/年污垢热阻:w 0.0006m2h°c/kcal 避免因水质恶化造成的结垢、腐蚀、菌藻滋生问题和停机事故。第三条甲 方责任 (一)应向乙方提供循环水的循环水量,系统容积、设备材质等基础技 术资料。 (二)确保在投药运行期间循环水不作它用,不易流、损失,不与生活 水相连。 (三)甲方应在乙方进行水处理工作之前,指派专人负责与乙方联系, 在实施投药作业期间,应有专人按乙方提出的工艺要求加药和日常管理。 第四条乙方责任 (一)为甲方提供复合阻垢缓蚀剂、清洗预膜剂、缓蚀钝化剂和杀菌 剂。将循环水水质调整到最佳状态,随时取水化验。 (二)为甲方提供日常管理工作方面的资料。在投药运行期间,进行现 场服务,冷却水水样分析每周一次,冷冻水每月取水一次,分析结果以书面形式通知甲方,协助甲方进行有效的管理。 (三)免费为甲方运送水处理剂。 (四)如甲方要求建立与水处理相关的分析化验室,乙方将免费培训化 验人员,也可以培训现场管理人员。 (五)如水处理现场出现异常现象,乙方应随即赶赴现场解决问题。 第五条服务项目 (一)循环冷却水处理

电厂循环水余热回收供暖节能分析与改造技术

电厂循环水余热回收供暖节能分析与改造技术 摘要:当今世界,节能已成为一项重要的研究课题。发电厂作为耗能大户,存在大量循环水余热没有得到有效利用,浪费严重。因此,如何利用循环水余热成为电厂节能的重要任务。 1.回收电厂循环水余热的意义 能源是国民经济发展的基础,深入开展节能工作,不仅是缓解能源矛盾和保障国家经济安全的重要措施,而且也是提高经济增长质量和效益的重要途径。本世纪的头20 年,我国工业化和城镇化进程将进一步加快,需要较高的能源增长作为支撑。因此,节能工作对促进整个经济社会发展的作用日益凸显,国家已经把节能作为可持续发展的大政策。 目前,我国大中型城市普遍存在着集中供热热源不能满足迅速增加的供热需求的情况,而新建大型热源投资高、建设周期长,并受到城市环境容量的强烈制约。 为了缓解供热紧张的局面,一些地方盲目发展小型燃煤锅炉房,严重恶化了城市的大气环境;一些城市盲目发展燃气采暖、甚至电热采暖,在带来高采暖成本的同时,也引发了城市的燃气和电力资源的全面紧张。一方面,是燃用高品位的化石燃料来提供低品位的热能用于供暖和提供生活热水。另一方面,城市周边的火力发电厂在发电过程中,通过冷却塔将大量的低品位热量排放到大气中,造成了巨大的能源浪费和明显的环境湿热影响。因此,如果能将循环冷却水余热用于供热(采暖、生活热水等),不仅能够减少电厂冷却水散热造成的水蒸发损失和环境的热污染,而且能够缓解采暖带来燃气和电力资源的紧张局面。同时,实现能源的梯级利用,节约大量燃料,提高能源综合利用率。 北京五大热电厂和热力集团所属六个供热厂的供热能力都已达到极限。北京热电厂普遍采用的抽凝式汽轮机组,即使在冬季最大供热工况下,也有占热电厂总能耗10~20%的热量由循环水(一般通过冷却塔)排放到环境。根据调研,北京并入城市热网的四大热电厂在冬季可利用的循环水余热量就达1000MW 以上,远期规划余热量将达约1700MW。如果将这些余热资源加以利用,仅仅考虑有效利用现有的余热量,就相当于在不新增电厂装机容量和不增加当地污染物排放的情况下,可新增供热面积3000 万平方米以上。因此,利用电厂循环水余热供热是一种极具吸引力的城市集中供热新形式。 2.电厂循环水余热供热技术现状 2.1汽轮机低真空运行供热技术 凝汽式汽轮机改造为低真空运行供热后,凝汽器成为热水供热系统的基本加热器,原来的循环冷却水变成了供暖热媒,在热网系统中进行闭式循环,可有效利用汽轮机凝汽所释放

余热回收利用

余热回收利用(S-CO2)动力循环-应用海运 业 摘要 船舶动力的主要来源是柴油机,它已经发展成为一种高效的发电装置,用于推进和辅助用途。然而,只有小于50%的燃料能源转化为有用的工作,其余的损失。这是公认的,约占总能量的转换在30%型柴油机是在排拒天然气。最近授权的EEDI [ 1 ]系统大型船舶归功于任何可回收的能源设计的船。而一些节能的设备正在酝酿,利用风能和太阳能发电研究中,它被公认为从发动机废气和冷却水的余热回收仍然可以利用,以产生能量,从而提高能源效率的工厂。从废气中回收热能的方法之一是将热量传递给一个能量回收的介质。在大型船舶上,所用的是水和蒸汽,从而产生了我用于加热燃料油或用于涡轮机的电能生产。本文提出了一种替代流体(超临界二氧化碳)作为一种手段,通过一个碳回收的能量闭环循环燃气轮机(布雷顿循环)它明显在较低的温度和无腐蚀性,无毒,不易燃,热稳定。在超临界状态下,S-CO2已高密度的结果,如涡轮机的部件的尺寸减小。超临界二氧化碳气体涡轮机可以在一个高的循环热效率,即使在温和的温度下产生的功率对550℃。周期可以在宽范围的操作压力为20。在一个典型的发动机安装在近海供应船的排气气体的能量回收量的案例研究,提出了理论计算的热量进行的UT的功率可由发动机的超临界CO2气轮机厂产生的废气和提取 . 关键词:余热,S-CO2布雷顿循环,水, 一、引言 今天的大多数船舶使用柴油发动机的推进和电力生产。通常被认为具有实际应用潜力的热排阻式柴油机为了浪费热量恢复是排气和外套冷却液。热通常是从一个以蒸汽的形式大型海轮主推进发动机的废气是最优选的介质用于燃料和货物加热,包括国内服务所需的加热。冷却水的热量通常以新鲜水的形式回收。从辅助余热回收辅助发动机,直到最近,没有考虑经济实用的除的情况下,大型客运船舶或船舶电力推进系统的操作。国际海事组织和国际海

电厂水处理工艺流程及优化设计解析

电厂水处理工艺流程及优化设计解析 水的质量及出水受到水处理工艺的影响,发电厂的水处理工艺直接影响到发电质量和效率。对发电厂中的自然水进行有效处理,不仅可以提高水质和洁净水的产量,还能够提高发电厂发电效率。本文对电厂水处理工艺进行分析,并且提出了水处理工艺优化策略,旨在提高电厂发电效率。 1、概述 人们通过长期实践经验得出,发电厂热力设备的安全状况,发电厂是否能够经济运行受到热力系统中水品质的影响。天然水由于没有经过处理,含有很多杂质,含有杂质的水进入热力系统中的水汽循环系统,会对热力设备造成损害。要想确保热力系统中能够有良好的水质,就必须要对水进行净化处理,并且要对汽水质量进行严格监按控。 2、电厂水处理系统工艺流程 2.1 预处理 电厂锅炉水处理工艺的第一个流程就是给水预处理,这一流程主要包括混凝、沉淀澄清以及过滤,经过这几项工作将水中的悬浮物及胶体物质去除,确保水中悬浮物的含量低于5mg/L,最终得到澄清水。水经过预处理之后,还需要按照不同的用途进行深度处理。如在火力发电厂作为锅炉用水,还必须用反渗透及离子交换的方法去除水中溶解性的盐类;用加热、抽真空和鼓风的方法去除水中溶解性气

体。 2.2 补给水处理 发电厂补给水处理方式多采用反渗透和离子交换。超滤在补给水处理系统中可用作反渗透进水的前处理,它可有效地去除水中胶体等颗粒状物,使反渗透进水水质合格,减少反渗透膜的污染,延长反渗透膜的使用寿命。 2.3 凝结水处理 火力发电厂锅炉的给水由汽轮机凝结水和锅炉补给水组成,凝结水是锅炉给水的主要组成部分,它的量占锅炉给水总量的90%以上。凝结水中含有悬浮物和金属腐蚀物,在混床除盐前,可以用过滤的方法予以去除,以此来确保混床设备的有效运行。现阶段电厂中使用的过滤设备主要有覆盖过滤器和电磁过滤器两种。 2.4 循环水处理 电厂循环水处理工艺有很多种,比如加水稳计、加酸、石灰软化、弱酸离子软化以及膜处理技术等。在国家节水政策的要求下,火力发电厂尤其是采用干除灰工艺的火电厂,要在循环水处理这一环节进行节水,以提高循环水的浓缩倍率作为前提,使补充水量以及排污水量减少,进而能够减少新鲜水的使用量。 2.5废水处理

电厂循环水余热利用可行性研究报告

电厂循环水余热利用建议书 编制: _________朱明峰____________ 审核: ___________________________ 批准: ___________________________ 中海油节能环保服务有限公司 2013年9月19日

一概述................................................................. 1.. 1.1项目背景...................................................... 1.. 1.2余热资源现状.................................................. 1. 1.3项目实施条件................................................... 1. 1.4遵循的标准及规范............................................... 2. 二余热回收方案设计.................................................... 2. 2.1现有补水加热流程图............................................ 2. 2.2改造方案....................................................... 2. 2.3改造主要工作量................................................. 4. 2.4技改效果....................................................... 5. 2.5改造投资及静态回收期.......................................... 5. 三节能环保效益分析..................................................... 5. 3.1节能效益....................................................... 5. 3.2环保效益....................................................... 6. 四结论与建议......................................................... 6..

电厂循环冷却水系统中的问题解决知识讲解

电厂循环冷却水系统中的问题解决 2011年7月31日 FJW提供 1.概述 电厂的循环水冷却处理系统是由以下几部分组成:①生产过程中的热交换器;②冷却构筑物(冷却塔);③循环水泵及集水池。该系统是利用冷却水进行降温和水质处理。冷却水在冷却生产设备或产品的过程中,水温升高,虽然其物理性状变化不大,但长期循环使用后,水中某些溶解物浓缩或消失、尘土积累、微生物滋长,造成设备、管道内垢物沉积或对金属设备管道腐蚀。因此,必须对其进行降温和稳定处理等解决方案,才能使循环水系统正常进行,使上述问题得到解决或改善。 2.敞开式循环冷却水系统存在的问题 2.1循环冷却水系统中的沉积物 2.2.1沉积物的析出和附着 一般天然水中都含有重碳酸盐,这种盐是冷却水发生水垢附着的主要成分。 在直流冷却水系统中,重碳酸盐的浓度较低。在循环冷却水系统中,重碳酸盐的浓度随着蒸发浓缩而增加,当其浓度达到过饱和状态时,或者在经过换热器传热表面使水温升高时,会发生下列反应 Ca(HCO3)2=CaCO3↓+CO2↑+H2O 冷却水在经过冷却塔向下喷淋时,溶解在水中的CO2要逸出,这就促使上述反应向右进行。 CaCO3沉积在换热器传热表面,形成致密的碳酸钙水垢,它的导热性能很差。不同的水垢其导热系数不同,但一般不超过1.16W/(m.K),而钢材的导热系数为46.4-52.2 W/(m.K),可见水垢形成,必然会影响换热器的传热效率。 水垢附着的危害,轻者是降低换热器的传热效率,影响产量;严重时,则管道被堵。 2.2设备腐蚀 循环冷却水系统中大量的设备是金属制造的换热器。对于碳钢制成的换热器,长期使用循环冷却水,会发生腐蚀穿孔,其腐蚀的原因是多种因素造成的。 2.2.1冷却水中溶解氧引起的电化学腐蚀 敞开式循环冷却水系统中,水与空气能充分的接触,因此水中溶解的氧气可达饱和状态。当碳钢与溶有氧气的冷却水接触时,由于金属表面的不均一性和冷却水的导电性,在碳钢表面会形成许多腐蚀微电池,微电池的阳

电厂化学水处理技术全解析

由于电厂中的某些热力设备可能受到水中一些物质的作用从而产生有害的成分,使设备发生腐蚀的现象,因此电厂安全运行和化学水处理系统具有直接的关系。水中杂质对设备的破坏决定了电厂中的水必须要经过一定的处理才能被使用,该处理就是电厂中的化学水处理系统。 1 电厂化学水处理技术发展的现状 1.1 电厂获得纯净除盐水主要采用的三种方式: (1)采用传统澄清、过滤+离子交换方式,其流程如下: 原水→絮凝澄清池→多介质过滤器→活性炭过滤器→阳离子交换床→除二氧化碳风机→中间水箱→阴离子交换床→阴阳离子交换床→树脂捕捉器→机组用水。 (2)采用反渗透+混床制水方式,其流程如下: 原水→絮凝澄清池→多介质过滤器→活性碳滤器→精密过滤器→保安过滤器→高压泵→反渗透装置→中间水箱→混床装置→树脂捕捉器→除盐水箱。 (3)采用预处理、反渗透+EDI 制水方式,其流程如下: 原水→絮凝澄清池→多介质过滤器→活性炭过滤器→超滤装置→反渗透装置→反渗透水箱→EDI装置→微孔过滤器→除盐水箱。 以上3种水处理方式是目前电厂获得纯净除盐水的主要工艺,其他的水质净化流程大都是在以上3种制水方式的基础上进行不同组合而搭成的制水工艺流程。 1.2三种制水方式的优缺点: (1)第一种采用澄清、过滤+离子交换的优点在初期投资少,设备占用地方相对较少,其缺点是离子交换器失效需要酸、碱进行再生来恢复其交换容量,需大量耗费酸碱。再生所产生的废液需要中和排放,后期成本较高,容易对环境造成破坏。 (2)第二种采用反渗透+混床,这种制水工艺是化学制取超纯除盐水相对经济的方法,只需对混床进行再生,而且经过反渗透半除盐处理的水质较好,缓解了混床的失效频度。减少了再生需要的酸、碱用量,对环境的破坏相对较小。其缺点是在投资初期反渗透膜费用较大,但总的比较相对划算,多数电厂目前考虑接受这种制水工艺。 (3)第三种采用预处理、反渗透+EDI的制水方式也称全膜法制水。这种制水方法不需要用酸、碱进行再生就可以制取纯净除盐水,不会对环境造成破坏。是目前电厂最经济、最环保的化学制水工艺,但其缺点是设备初期投资相对前面两种制水方式过于昂贵。 2 电厂化学水处理措施 2.1 补给水的处理措施 电厂在生产锅炉的补给水处理中,关系到生产安全与效率。目前随着科学技术的快速发展,电厂关于环保节能的理念深入人心,过去传统的离子交换、澄清过滤或混凝等比较落后的技术已经逐渐被摒弃,现如今新的纤维材料广泛应用于过滤设备,不仅除去了胶体,微生物以及一些颗粒的悬浮物等,在过滤中也具有较强的吸附、截污能力,取得了相当好的效果。膜分离技术被采用,当前反参透占主导地位,反渗透技术能除去水中90%以上离子,如水中有机物、硅有较好的去除率。由于膜分离技术具有明显的优势,因此在锅炉补给水的处理中节约了大量的由于离子交换或澄清过滤等落后技术在运营时产生废水排放的费用,同时过去操作复杂和排放困难的许多问题也得到了改进。新的膜分离技术不仅达到了环保的要求。当水中的氯含量比较高时,可以采用活性碳过滤或者使用水质还原剂来进行处理。而混床在除盐处理的作用仍占有重要的位置,混床除盐技术相对成熟、可靠,混床的功能具有其他除盐所无法替代的作用。目前将超滤、反渗透装置和电渗析除盐技术有效的搭配,形成高效的除盐工艺,不需要酸、碱再生剂,只通过对水电离出来的H+和OH-即可完成再生的作用,从而完成电渗析的再生、除盐。这种制水工艺将是电厂化学制水的发展方向。

余热回收方案

能量回收系统

第一部分:能量回收系统介绍 压缩空气是工业领域中应用最广泛的动力源之一。由于其具有安全、无公害、调节性能好、输送方便等诸多优点,使其在现代工业领域中应用越来越广泛。但要得到品质优良的压缩空气需要消耗大量能源。在大多数生产型企业中,压缩空气的能源消耗占全部电力消耗的10%—35%。 根据行业调查分析,空压机系统5年的运行费用 组成:系统的初期设备投资及设备维护费用占到总费用的25%,而电能消耗(电费)占到75%,几乎所有的系统浪费最终都是体现在电费上。 根据对全球范围内各个行业的空气系统进行评估,可以发现:绝大多数的压缩空气系统,无论其新或旧,运行的效率都不理想—压缩空气泄漏、人为用气、不正确的使用和不适当的系统控制等等均会导致系统效率的下降,从而导致客户大量的能耗浪费。据统计,空气系统的存在的系统浪

费约15—30%。这部分损失,是可以通过全面的系统解决方案来消除的。 对压缩空气系统节能提供全面的解决方案应该从压缩空气系统能源审计 开始。现代化的压缩空气系统运行时所碰到的 疑难和低效问题总是让人觉得很复杂和无从下 手。其实对压缩空气系统进行正确的能源审计 就可以为用户的整个压缩空气系统提供全面的 解决方案。对压缩空气系统设备其进行动态管理,使压缩空气系统组件 充分发挥效能。 通过我们在压缩空气方面的专业的、全面的空气系统能源审计和分析采 取适合实际的解决方案,能够实现为客户的压缩空气系统降低 10%—50%的电力消耗,为客户带来新的利润空间。 经过连续近二十年的经济高速增长,中国已经成为全球制造业的中心,大规模的产量提升,造成巨大的资源消耗和能量需求,过快的发展正逐步制约国家经济实力的进一步提升,因此,2005年《国务院关于加强节能工作的决定》明确目标指出: ?到“十一五”期末(2010年),万元GDP能耗比“十五”期末降低20% 左右,平均年节能率为4.4%。 ?重点行业主要产品单位能耗总体达到或接近本世纪初国际先进水平。 ?压缩机作为制造行业的能耗大户,受到越来越多的关注,节能潜力巨大。 ?压缩机在工矿企业的平均耗能占整个企业的约30%,部分行业的压缩机 耗电量占总耗电量的比例高达70% ?从投资成本结构分析,压缩机的节能重心在能耗上,针对于电机驱动类 型的压缩机,能耗可以近似等于电耗。 平均全球各地区平均使用空压机负荷的百分比

电厂循环水余热回收供暖节能分析与改造技术知识讲解

电厂循环水余热回收供暖节能分析 与改造技术 摘要:当今世界,节能已成为一项重要的研究课题。发电厂作为耗能大户,存在大量循环水余热没有得到有效利用,浪费严重。因此,如何利用循环水余热成为电厂节能的重要任务。 1.回收电厂循环水余热的意义 能源是国民经济发展的基础,深入开展节能工作,不仅是缓解能源矛盾和保障国家经济安全的重要措施,而且也是提高经济增长质量和效益的重要途径。本世纪的头20 年,我国工业化和城镇化进程将进一步加快,需要较高的能源增长作为支撑。因此,节能工作对促进整个经济社会发展的作用日益凸显,国家已经把节能作为可持续发展的大政策。 目前,我国大中型城市普遍存在着集中供热热源不能满足迅速增加的供热需求的情况,而新建大型热源投资高、建设周期长,并受到城市环境容量的强烈制约。 为了缓解供热紧张的局面,一些地方盲目发展小型燃煤锅炉房,严重恶化了城市的大气环境;一些城市盲目发展燃气采暖、甚至电热采暖,在带来高采暖成本的同时,也引发了城市的燃气和电力资源的全面紧张。一方面,是燃用高品位的化石燃料来提供低品位的热能用于供暖和提供生活热水。另一方面,城市周边的火力发电厂在发电过程中,通过冷却塔将大量的低品位热量排放到大气中,造成了巨大的能源浪费和明显的环境湿热影响。因此,如果能将循环冷却水余热用于供热(采暖、生活热水等),不仅能够减少电厂冷却水散热造成的水蒸发损失和环境的热污染,而且能够缓解采暖带来燃气和电力资源的紧张局面。同时,实现能源的梯级利用,节约大量燃料,提高能源综合利用率。 北京五大热电厂和热力集团所属六个供热厂的供热能力都已达到极限。北京热电厂普遍采用的抽凝式汽轮机组,即使在冬季最大供热工况下,也有占热电厂总能耗10~20%的热量由循环水(一般通过冷却塔)排放到环境。根据调研,北京并入城市热网的四大热电厂在冬季可利用的循环水余热量就达1000MW 以上,远期规划余热量将达约1700MW。如果将这些余热资源加以利用,仅仅考虑有效利用现有的余热量,就相当于在不新增电厂装机容量和不增加当地污染物排放的情况下,可新增供热面积3000 万平方米以上。因此,利用电厂循环水余热供热是一种极具吸引力的城市集中供热新形式。 2.电厂循环水余热供热技术现状 2.1汽轮机低真空运行供热技术

电厂循环水处理方案

电厂循环排污水处理方案 处理量:300m3/h 出水达到中水水质要求。 PH:6.5~9 浊度:5NTU BOD5:10mg/l COD cr:50mg/l 游离性余氯:末端大于0.2 总大肠菌群:小于3 氯化物:300mg/l 铁:0.3mg/l 锰:0.5mg/l 1、处理方案: 循环冷却水的排污水含有一定浓度的悬浮物、各种盐类、金属氧化物、阻垢剂等,为达到中水水质的要求,进行以下处理,先通过混凝处理,去除水中的悬浮物及金属氧化物等,再经过,过滤,超滤,消毒后,达到中水水质要求。 絮凝剂反冲系统 循环排污水→原水箱→原水泵→→超过滤装置→出水 2、设备及构筑物选型: 2.1预处理系统 2.1.1原水箱:150m3 2.1.2原水泵: 数量:3台 流量:150m3/h 扬程:28m 2.1.3絮凝剂加药系统两箱三泵 2.1.5.1多介质机械过滤器 1. 设备参数 1)形式与数量 形式:立式 数量:4台 2)设备出力 正常出力:80m3/h/台 3)运行流速 正常流速:10m/h 4)设备直径DN3200mm 5)本体材料Q235-A

衬里材料天然硫化橡胶1层3mm 6)设计压力:0.5Mpa 水压试验压力:0.8Mpa 7)设计温度0℃~50℃ 8)滤料 石英沙粒径/高度粒度0.45-0.6mm,层高800mm 无烟煤粒径/高度粒度1.0-1.5mm,层高400mm 9)反洗膨胀高度:300~600mm 10)水反洗强度:10~13L/m2.s 气洗压力:58.8KPa 气洗强度:10~20L/m2.s 11)运行压差(设备进出口) 正常出力压差0.02MPa 最大出力压差0.05MPa 12)本体材料Q235-A 13)控制方式手动控制 2. 内部装置 1)进水配水装置 形式:挡板喷淋 材料:Q235-A,内外衬塑 2)出水配水装置多孔板配水帽型 水帽材料:ABS水帽 3. 设备本体外部装置 1)设备人孔 形式:配吊盖人孔 数量:2套/台 直径:DN450 材料:Q235-A 2)设备窥视孔: 数量:1个/台 规格(长/宽):305mm/100mm 视镜材料:透明塑料板

火力发电厂循环水处理技术的发展趋势

第20期总第150期内蒙古科技与经济 No.20,the 150th issue  2007年10月Inner Mongolia Science Technology &Economy Oct.2007 火力发电厂循环水处理技术的发展趋势 Ξ 杨海燕1,包明山2,董素芹1 (1内蒙古农业大学职业技术学院,内蒙古包头 014109;2.乌海市蒙西电厂,内蒙古乌海 016014) 摘 要:本文分析了几种典型水处理技术的主要发展特点与趋势,从水处理工艺方面阐述火力电厂 水处理技术的最新进展与应用情况。 关键词:火电厂;水处理技术 中图分类号:TM621 文献标识码:A 文章编号:1007—6921(2007)20—0068—02 水,是一种宝贵的自然资源。水资源的日益匮乏已经逐渐制约着地区经济的发展。目前,能源工业发展迅速,火电厂大容量、高参数机组逐渐成为主力机组。众所周知,火电厂是工业中用水最大用户之一,因此,对其运行管理过程中优先考虑节水措施,努力实现对外零排放已势在必行。而在电厂工业用水中,火力发电厂耗水最多的是循环冷却系统的水损失,循环冷却水耗量占全电厂水耗量的60%~80%。提高循环冷却水的浓缩倍率、减少排污是实现电厂节水的重要环节。然而,提高浓缩倍率又会增大凝汽器冷却水通道内结垢与腐蚀的倾向,影响机组的安全经济运行。这样,从解决腐蚀问题和节水的角度优化选择循环水处理方案,提高循环水浓度倍率,就对我们在经济建设过程中如何合理保护利用水资源具有十分重要的意义。 从不同地域的电厂各自运行状况可知,循环水管道的腐蚀不仅与材质有关,也与水质有关,即不同材质在同一介质或同一材质在不同的介质中腐蚀速率不同。因此基建过程中设备选型和水质处理应统筹考虑。在以往的循环水设备选型问题上,只考虑水质对凝结器管材的影响,而忽视了循环水管道的腐蚀问题。循环水管路不但长,且埋在地下,腐蚀现象不易发现,处理和更换也比较困难。为避免循环水管道腐蚀,在设备选型时,应考虑循环水管道的材质,同时寻找适当的水处理方案。目前循环冷却水处理的方式多种多样,下面通过几种典型的处理方式的不断优化说明火力发电厂循环水处理技术的发展趋势。1 过滤法 过滤是最常用的旁流处理方式(通称旁滤),其处理量通常为循环水量的2%~5%,可以去除水中大部分悬浮固体、粘泥和微生物等,但不能降低水的硬度和含盐量,反冲洗时杂质将随反洗水排出系统。由于反冲洗水中杂质浓度比排污水高得多,所以系统排出的杂质多而消耗的水量少,即通过旁滤可使 排污量显著降低。大型循环冷却水系统一般采用以石英砂或无烟煤为滤料的重力无阀旁滤池,其滤速只能控制在10m/h 以下,而冷却水的悬浮物浓度只能控制在10mg/l 以下,过滤及占地面积的增大导致基础投资较大。与石英砂相比,纤维滤料具有孔隙率高、孔隙分布合理和比表面积大等特点,采用纤维滤料时滤速可高达20~85m/h 。由于纤维具有柔软性和可压缩性,故随着水流阻力的增大而逐渐被压缩,使滤料上层受力小、孔隙大,下层受力大、孔隙小,充分体现出纤维滤料纳污量大、过滤周期长的特点。纤维滤料过滤器通常需采用汽水反冲,借助气体的搅动使截留的悬浮物与滤料分离,再随反洗水排出。纤维过滤器对悬浮物、铁、锰、微生物粘泥都具有良好的截留作用,其过滤精度高,通常出水浊度<1N TU 。除此以外,还可与水中钙、镁离子进行离子交换,具有软化水质的功能。所以将这种旁滤法引入火力发电厂循环冷却水处理工艺值得我们关注。2 膜分离法 反渗透法和电渗析法是常见的两种膜分离方法,可以有效去除冷却水中的硬度、微生物等有害成分,有较高的脱盐率,水回收率可以达到75%~90%。由于渗透膜易被污染导致运行成本不断增大,通常先采用石灰软化法去除大部分硬度和悬浮物后,再采用反渗透法做进一步的降硬处理,以达到循环水补充水的水质要求。膜分离法的缺点是对进水水质要求苛刻,且运行过程中的压力波动易导致膜被破坏,水中的腐蚀产物和微生物易使预滤装置和反渗透膜堵塞、污染,频繁的清洗增大了运行费用,且一次性投入成本较高,故该法已经不适用于电厂这样的大型循环冷却水系统。3 化学沉淀软化法 通常采用石灰———纯碱软化法来降低水中的碳酸盐硬度和非碳酸盐硬度。在化学沉淀法中加入混凝剂可使呈胶体状态的CaCO 3和Mg (O H )2等形成 ? 86?Ξ 收稿日期:2007-06-12

循环水余热利用收益的算法讨论

循环水余热利用收益的算法讨论 利用热泵吸收电厂循环水中的余热用于冬季采暖,有节能减排的社会效益,但对于电厂自身而言,其获得的收益和其投入相比并不十分理想。就目前可供参考的此方面资料来看,其中对于电厂收益的计算都有或多或少的放大,热泵投运后的效果和预期相去较远。文章仅对热泵在电厂循环水余热利用中,就电厂自身所得收益的算法进行讨论、讨论中不涉及财务及税收问题,仅针对技术性的问题进行讨论。 标签:热泵;循环水余热利用;节能减排;算法 1 常见算法极其缺陷 1.1 按燃料价格计算 当下常见的算法之一,就是按燃料计算收益。持这种观点的人认为:电厂增加热泵后,其供热量就会增加且增加的供热量就是热泵所吸收的热量,电厂所得到的收益,就是热泵所吸收的热量折算燃料的费用,当然也考了热泵投入后所伴随的一些损失。这里的问题在于,对于电厂而言,热泵所吸收的热量并不能简单折算成燃料费用。下面详细解释一下。 为了使问题简化我们做一些假设,第一、热泵投入后不会对电厂产生任何附加损失,无论是汽轮机背压升高产生的损失还是由于管道阻力增加造成的热网循环泵电耗增加,第二,热泵自身不消耗任何形式的能量,其作用仅仅是将循环水中的余热吸收到供热系统中。 有了如上假设之后,可以这样描述热泵投入后的作用:当热泵投入后,就会有一些“白得的”热量进入热网系统,在供热量不变的情况下,供热抽汽就会相应的减少,减少的这部分抽汽当然会返回汽轮机中做功或者说发电。由于电厂发多少电,是由电网决定的,因此我们进一步假定,当供热抽汽被排挤到汽轮机中做功时,还需保证汽轮机组的发电功率不变。为此只有减少主蒸汽的进汽量。显然,减少的主蒸汽,或者说省下来的这部分主蒸汽所发的电,应等于被排挤到汽轮机中的供热抽汽所发的电。增加热泵后,电厂所得的收益就是这部分被剩下来的主蒸汽,确切的说,就是加热这部分主蒸汽所消耗的燃料。由此可见,把热泵吸收的热量直接折算成燃料费用,并以此作为电厂的收益,显然不尽合理。 为了此后叙述方便,把上面这种算法叫做“排挤抽汽法”。显然这种算法更为合理。需要指出的是,当电厂的供热抽汽量达到最大,再也无法增加供热时,这时热泵所吸收的热量可以按燃料费用计算收益,但也只有超出电厂最大供热能力的那部分热量可以如此计算。有关这一点在后面加以详细讨论。 1.2 按热价计算

余热回收方案

余热回收方案 一、能量使用情况与节能要求 1.1 车间供热需求 为了保证产品质量和产能产值,三号车间的两个产品半成品仓库,冬季需要控制室内温度为22℃~40℃,以保证产品的质量,无人员值守故不需考虑温控与新风、人员舒适度问题,但须考虑入库人员的安全。 两个仓库占地面积基本相似,均为:12.65x 7=88.55m2。 仓库层高为6m,每个仓库体积为532m3。 VA装配车间,需要控制室内温度为22℃~30℃,以保证工艺的正常生产,装配车间有操作工人,需要考虑操作人员的舒适性因此提出需要对车间的温度、湿度、新风量进行控制。 装配车间占地面积15x23=345m2,层高为 2.5m,总体积为862.5m3。 武汉市地处中国中部,夏季室内温度>25℃,因此夏季不需要对生产车间供热,冬季室内温度<25℃,需要对室内供热。 车间供热需求为季节性,夏季停运,冬季投用。 1.2节能要求 公司要求不采用高品位的电能和蒸汽热能对车间供热,需要采用余热回收途径对车间供热,

1.3 车间耗热量 ①根据仓库的性质,估算每个仓库的供热负荷为25kW。 ②根据装配车间的性质,估算VA装配车间供热负荷为120kW。 1.4余热利用条件 1.4.1 可利用的热能 钢化玻璃工段有两台玻璃炉,其作用是玻璃软化后处理。玻璃高温处理后由冷风急速冷却。根据加工产品的不同,所需急冷温度由65~165℃。急冷后的热风直接排入大气,外排热风温度为45℃~65℃。外排热风仅为热空气,不含有毒有害气体。 为外排热风,每台玻璃炉配三台20000m3/h轴流风机。 根据估算,每台轴流风机按120%配置,维持室温25℃,每台轴流风机的热风可提供热负荷为100kW。 合计的余热足够满足车间的供热需求。 1.4.2可用余热回收型式。 根据现场情况,受热车间与玻璃炉间距比较近,可以将热风引入受热车间,由热风直接供暖。 该供暖方式简单易行,投资省,运行费用低,余热回收利用充分。 二、余热利用方案 2.1余热回收

相关主题
文本预览
相关文档 最新文档