当前位置:文档之家› 6-中国联通LTE无线网络优化指导书-切换及互操作优化指导手册

6-中国联通LTE无线网络优化指导书-切换及互操作优化指导手册

6-中国联通LTE无线网络优化指导书-切换及互操作优化指导手册
6-中国联通LTE无线网络优化指导书-切换及互操作优化指导手册

中国联通LTE 无线网络优化指导书 第6分册:

切换及互操作优化指导手册 内部资料 注意保存

中国联通运行维护部 中国联通网络技术研究院 2013年12月

目录

1 概述 (5)

2 LTE切换原理 (5)

2.1 频内切换 (6)

2.1.1 eNodeB内切换 (6)

2.1.2 基于X2接口的切换 (7)

2.1.3 基于S1接口的切换 (10)

2.2 频间切换 (12)

3 LTE互操作原理 (12)

3.1 空闲态互操作原理 (12)

3.1.1 LTE到2G/3G小区重选 (12)

3.1.2 3G到LTE小区重选 (17)

3.1.3 2G到LTE小区重选 (19)

3.2 连接态PS业务互操作原理 (21)

3.2.1 LTE到3G的切换 (21)

3.2.2 LTE到2G的切换 (25)

3.2.3 3G到LTE的切换 (27)

3.2.4 2G到LTE的切换 (31)

3.2.5 LTE到2G/3G的重定向 (33)

3.2.6 2G/3G到LTE的重定向 (36)

3.3 CSFB语音业务互操作原理 (37)

3.3.1 CSFB的技术原理 (37)

3.3.2 CSFB的信令流程 (39)

4 GUL互操作总体推荐策略 (43)

4.1 空闲态 (44)

4.2 PS连接态 (44)

4.3 CSFB语音业务 (45)

4.4 邻区配置原则 (46)

5 LTE切换问题优化方法及流程 (47)

5.1 LTE主要切换问题 (47)

5.1.1 邻区配置 (47)

5.1.2 参数设置 (47)

5.1.3 无线环境引起的切换异常 (47)

5.2 LTE切换问题优化流程 (47)

5.3 LTE切换相关参数分析 (49)

5.3.1 A3事件触发偏置因子 (49)

5.3.2 A3事件触发迟滞因子 (49)

5.3.3 A3事件触发偏置因子小区分量 (50)

5.3.4 A3事件触发持续时间 (51)

5.3.5 A3事件触发类型 (52)

5.3.6 A1事件基于RSRP主触发门限 (52)

5.3.7 A2事件基于RSRP主触发门限 (53)

5.3.8 A4事件基于RSRP主触发门限 (54)

5.3.9 A5事件基于RSRP触发门限1 (54)

5.3.10 A5事件基于RSRP触发门限2 (55)

6 LTE互操作问题优化方法及流程 (56)

6.1 LTE互操作主要问题 (56)

6.1.1 邻区配置 (56)

6.1.2 参数设置 (56)

6.1.3 无线环境引起的互操作问题 (56)

6.2 LTE互操作问题优化流程 (57)

6.3 LTE互操作相关参数分析 (57)

6.3.1 最小接收电平 (58)

6.3.2 高优先级重选门限 (58)

6.3.3 低优先级邻小区重选门限 (59)

6.3.4 低优先级服务小区重选门限 (59)

6.3.5 小区重选优先级 (60)

6.3.6 CSFB优先级 (61)

6.3.7 B2事件基于RSCP触发门限2(3G) (61)

6.3.8 B2事件基于RSRP触发门限1 (62)

6.3.9 B2事件基于接收电平触发门限2(2G) (63)

前言

本优化指导手册是中国联通LTE无线网络优化指导书系列文档之一,该系列文档的结构和名称如下:

(1)中国联通LTE无线网络优化指导书第1分册:LTE无线网络优化指导原则

(2)中国联通LTE无线网络优化指导书第2分册:工程优化指导手册

(3)中国联通LTE无线网络优化指导书第3分册:LTE无线网络优化测试方案及验收指标

(4)中国联通LTE无线网络优化指导书第4分册:覆盖优化指导手册

(5)中国联通LTE无线网络优化指导书第5分册:干扰优化指导手册

(6)中国联通LTE无线网络优化指导书第6分册:切换及互操作优化指导手册

(7)中国联通LTE无线网络优化指导书第7分册:室内外协同优化指导手册

(8)中国联通LTE无线网络优化指导书第8分册:开局参数设置及优化指导手册

1概述

本文主要从移动管理性出发,针对LTE的同频异频切换,及异系统的小区重选、重定向、切换进行分析,为中国联通LTE网络的切换、互操作优化提供方法与指导。

GUL(GSM/UMTS/LET)互操作是中国联通在LTE商用后面临的重点难点问题。特别是在LTE的布网初期,在LTE还没有达到整个网络全面覆盖的情况下,需要依赖现有的网络制式,实现多网协同,保证良好的用户感知。

2 LTE切换原理

当正在使用网络服务的用户从一个小区移动到另一个小区,或由于无线传输业务负荷量调整、激活操作维护、设备故障等原因,为了保证通信的连续性和服务的质量,系统要将该用户与原小区的通信链路转移到新的小区上,这个过程就是切换。LTE的切换过程与WCDMA相同,包括测量、判决和执行三个过程,具体过程如下图所示:

、RSRQ等

图1 LTE系统中的切换过程

基站根据不同的需要利用移动性管理算法给UE下发不同种类的测量任务,UE收到消息后,对测量对象实施测量,并用测量上报标准进行结果评估,当评估测量结果满足上报标准后向基站发送相应的测量报告,基站通过终端上报的测量报告决策是否执行切换。

E-UTRAN内切换根据服务小区与邻区的频率差别,又分为频内切换和频间切换。

2.1频内切换

2.1.1 eNodeB内切换

当UE从当前所处的服务小区切换到同一eNodeB下的另一小区时,会发生Intra-eNodeB切换,其信令流程如下图所示:

图2 Intra-eNodeB切换

详细信令流程:

(1)eNodeB给UE下发MeasurementControl消息。

(2)UE向eNodeB发送MeasurementReport消息(其中包含MeasResults 信元),以通知eNodeB当前无线链路已经变差且达到出发切换测量事件的条件。

(3)eNodeB依据UE上报的测量结果,决定启动切换流程。

(4)eNodeB向UE发送RRC Connection Reconfiguration消息(消息中包含mobility ControlInfo),要求UE执行切换。

(5)UE收到RRC Connection Reconfiguration消息后,通过基于竞争的随机接入过程或无竞争的随机接入过程发起向目标小区的上行同步。

(6)eNodeB给UE发送上行定时指令。

(8)当UE成功接入到目标小区后,给eNodeB返回RRC Connection Reconfiguration Complete。

2.1.2 基于X2接口的切换

当两个eNodeB之间存在X2接口时,UE从当前所驻留的服务小区切换到另一eNodeB时,可采用基于X2接口的切换。

跨站切换与同站切换的主要区别是切换请求通过X2口从源小区到目标小区,切换执行过程中,UE接入到目标小区后,源eNB与核心网的路径改为目标eNB与核心网之间。

图3 基于X2接口的切换

(1)eNodeB给UE下发MeasurementControl消息。

(2)UE向源eNodeB发送MeasurementReports消息(其中包含MeasResults信元),以通知源eNodeB当前无线链路已经变差且达到触发切换测量事件的条件。

(3)eNodeB依据UE上报的测量结果,决定启动切换流程。

(4)源eNodeB向目标eNodeB发送HandoverRequest消息,以通知目标eNodeB准备切换时,所需要的MMEUSE1APID、E-RABsToBeSetupList、RRCContext(其中包含HandoverPreparationInformation消息)等UE上下文信息。

(5)目标eNodeB根据收到的E-RAB QoS信息来执行准入控制。

(6)目标eNodeB准备好L1/L2切换所必须的资源,然后向源eNodeB发送HandoverRequestAcknowledge消息,其中包括E-RABAdmittedList、Target eNodeB To Source eNodeB Transparent Container(其中包含HandoverCommand消息,该消息由目标eNodeB产生,通过X2接口传送给源eNodeB,最后由源eNodeB发给UE)等信元。

(7)源eNodeB在接收到目标eNodeB发送的HandoverRequestAcknowledge消息后,向UE发送RRCConnectionReconfiguration消息(消息中包含mobilityControlInfo),要求UE执行切换。

(8)源eNodeB向目标eNodeB发送SN STATUS TRANSFER消息,以传递采用PDCP状态保留(即RLC AM)的E-RAB的上行链路PDCP SN接收机状态和下行链路PDCP SN发送机状态。

(9)UE收到RRCConnectionReconfiguration消息后,通过基于竞争的随机接入过程或无竞争的随机接入过程发起向目标eNodeB的上行同步。

(10)目标eNodeB给UE发送上行定时指令。

(11)当UE成功接入到目标eNodeB后,给目标eNodeB返回RRCConnectionReconfigurationComplete消息,并开始与UE间的数据发送。

(12)目标eNodeB发送PathSwitchRequest消息给MME,以通知MME,UE所在服务小区已发生变更。

(13)MME发送UpdateUserPlaneRequest给Serving GW。

(14)Serving GW将下行数据路径切换到目标eNodeB上,然后向源eNodeB发送End Marker,随后源eNodeB发送End Marker给目标eNodeB,协助目标eNodeB重排序。

(15)Serving GW发送UpdateUserPlaneResponse给MME。

(16)MME发送PathSwitchRequestAcknowledge消息,确认Path Switch 成功。

(17)目标eNodeB发送UECentextRelease消息给源eNodeB,以通知源eNodeB切换成功,触发其释放资源。

(18)源eNodeB释放其相关资源。

2.1.3 基于S1接口的切换

当两个eNodeB之间不存在X2接口,或X2接口不可用时,UE从当前所驻留的服务小区切换到另一eNodeB时,可采用基于S1接口的切换。

图4 基于S1接口的切换

(1)源eNodeB给UE下发MeasurementControl消息。

(2)UE向源eNodeB发送MeasurementReports消息(其中包含MeasResults信元),以通知源eNodeB当前无线链路已经变差且达到触发切换测量事件的条件。

(3)eNodeB依据UE上报的测量结果,决定启动切换流程。

(4)源eNodeB发送HandoverRequired消息给MME,发起切换流程,在该消息中包含MME UE S1AP ID、eNodeB UE S1AP ID、Source to Target Transparent Container等参数。

(5)目标eNodeB收到MME发来的HandoverRequest消息后,创建UE 上下文,包含承载信息、安全上下文等,然后返回HandoverRequestAcknowledge消息给MME。

(7)MME发送一个HandoverCommand消息到源eNodeB,携带了用于数据转发的IP和TEID。

(8)源eNodeB向UE发送RRCConnectionReconfiguration消息(包含Mobility ControlInfo)。

(9)当源eNodeB认为即将冻结传输端/接收端状态时,将停止向下行SDU 分配PDCP SN,同时向MME发送eNBStatusTransfer。

(10)MME收到源eNodeB发来的eNBStatusTransfer后,向目标eNodeB 发送MMEStatusTransfer,即实现从源eNodeB经由MME向目标eNodeB传输上行PDCP SN和HFN接收方状态,以及下行PDCP SN和HFN发送方状态的目的。

(11)UE收到RRCConnectionReconfiguration消息后,通过基于竞争的随机接入过程或无竞争的随机接入过程发起向目标eNodeB的上行同步。

(12)目标eNodeB给UE发送上行定时指令。

(13)在UE成功同步到目标小区后,给目标eNodeB返回RRCConnectionReconfigurationComplete消息,切换上行路径到目标侧。

(14)目标eNodeB将向MME发送HandoverNotify消息,通知MME,UE已经到达目标小区并完成切换。

(15)MME发送ModifyBearerRequest消息给S-GW,携带目标eNodeB 分配给S1-U的IP和TEID。

(16)S-GW返回ModifyBearerResponse消息给MME,表明更新成功。

(17)MME发送UEContextReleaseCommand消息给源eNodeB,通知eNodeB释放资源。

(18)源eNodeB收到MME发来的UEContextReleaseCommand消息后,释放其资源并响应UEContextReleaseComplete消息。

2.2频间切换

TDD与FDD的切换都是LTE系统内的切换,在FDD侧,切换的目标小区如果是TDD邻区,那么FDD会当作异频切换处理。

当TDD和FDD两个eNodeB之间存在X2接口时,UE从当前所驻留的服务小区切换到另一eNodeB时,可采用基于X2接口的切换,切换信令跟章节2.1.2的信令流程一样。

当TDD和FDD 两个eNodeB之间不存在X2接口,或X2接口不可用时,UE从当前所驻留的服务小区切换到另一eNodeB时,可采用基于S1接口的切换,切换信令跟章节2.1.3的信令流程一样。

3 LTE互操作原理

LTE与2G、3G网络的互操作包含切换、重选、重定向三种模式。

3.1空闲态互操作原理

3.1.1 LTE到2G/3G小区重选

小区选择过程完成后,UE选择一个合适的E-UTRAN小区进行驻留,并开始小区重选评估过程。一旦UE所驻留的服务小区信号较弱时,UE将重选到信

号更好的小区进行驻留。

LTE与2G/3G之间的重选首先考虑邻区间的优先级高低。一般情况下,LTE 小区的优先级设置为最高,其次是WCDMA邻区优先级,GSM邻区优先级设置最低。

UE通过系统消息获得异频或异系统邻区的优先级。不同系统间小区不能设置为相同的优先级,在条件允许的情况下,UE会登录及驻留在高优先级无线系统。驻留在高优先级的小区,只有当高优先级小区的信号低于某个设定的门限,且低优先级小区高于某个门限,UE才会转移到低优先级小区。

UE仅在RRC_IDLE状态下执行小区重选。

3.1.1.1小区重选过程

(1)重选优先级

小区重选优先级是指E-UTRAN系统内不同频率之间的绝对优先级,以及不同系统间的绝对优先级,它是UE在进行小区重选时首先需要考虑的参数,由网络侧配置。小区重选优先级可以通过系统消息或RRC连接释放消息下发,也可以通过异系统小区选择(重选)从另一个RAT中继承过来。需要说明的是,如果是在专用信令中提供优先级,则UE应该忽略系统信息中提供的所有优先级。

此外,重选优先级的划分是依据频率划分,而非小区划分,即同一频率下的不同小区具有相同的优先级。

(2)小区重选测量准则

为了评估小区重选的目标小区,UE测量需遵循如下规则:

?同频小区测量准则

?如果服务小区的接收功率Srxlex高于同频测量启动门线S intraSearchP,且信号质量Squal高于同频测量启动门限S intraSearchQ(门限值包含

在系统消息SIB3中)时,UE可以不执行频内测量。

?否则,UE应执行频内测量。

?异频/异系统小区测量准则

?若E-UTRAN异频/异系统小区的重选优先级高于当前服务小区频率所对应的重选优先级时,则UE应进行更高优先级E-UTRAN异频/

异系统小区测量。

?若E-UTRAN异频小区的重选优先级和当前服务小区频率所对应的重选优先级等同、更低,或异系统小区其重选优先级带有比当前

E-UTRAN频率更低的优先级时:

?如果服务小区的接收功率Srxlev高于异频/异系统测量启动门限

S nonintraSearchP,且信号质量Squal高于异频/一系统测量启动门限

S nonintraSearchQ(门限值包含在系统消息SIB3中)时,则UE不

执行异频或异系统测量。

?否则,UE应执行异频或异系统测量。

(3)小区重选判别准则

1)高优先级小区重选判别准则

,且满足如下条件时,小区当系统消息SIB3中包含参数Thresh serving

,lowQ

重选到比服务小区频率优先级更高的异频或者异系统小区上。

?更高优先级的异频E-UTRAN小区或UTRAN小区在时间周期

T reselectionRAT内,其信号质量Squal高于重选门限值Thresh X,HighQ;或

者GERAN小区的接收功率Srxlex高于重选门限值Thresh X

,HighP

?UE驻留到当前服务小区已超过1s。

当上述条件不满足时,则对小区进行如下判断,如满足下述条件,则UE仍可以重选到高优先级的小区上。

?更高优先级的异频或异系统小区在时间周期T reselectionRAT内,其Srxlex

高于重选门限值Thresh X

,HighP

?UE驻留到当前服务小区已超过1s。

2)同等优先级小区重选判别准则

同等优先级的小区重选是指UE重选到与当前服务小区所在频率具有相同优先级的小区上。但不同系统下小区的重选优先级各不相同。

UE对所有满足小区选择准则S的小区进行排序。小区排序遵循R准则,其定义如下:

R s=Q meas,s+Q Hyst

R n=Q meas,n+Q offset

其中,

-R s代表服务小区。

-R n代表邻区。

-Q meas为小区重选中RSRP测量值。

-Q offset:Q offset= Q offsets,n+ Q offsetfrequency,其中Q offsets,n为被测邻小区的补偿

值,该参数包含在SIB4及SIB5消息中,对应信元q-OffsetCell;Q offsetfrequency 为被测邻小区所在频率的补偿值,该参数包含在SIB5消息中,对应信元q-OffsetFreq。因此,对于同频小区,如果系统消息中包含Q offsets,n,则Q offset=

Q offsets,n,否则Q offset= 0;而对于异频小区,如果系统消息中包含Q offsets,n,则

Q offset= Q offsets,n+ Q offsetfrequency,否则Q offset= Q offsetfrequency。

R值最大的小区被认为是最优小区,如果该小区满足如下条件,则重选到该

小区。

?在T reselectionRAT时间周期内,邻小区R n大于服务小区R s;

?UE驻留到当前服务小区已超过1s。

3)低优先级小区重选判别准则

当高优先级小区及同等优先级小区均不满足上述小区重选判别准则,且系统

时,则判别低优先级的小区是否满足如消息SIB3中包含参数Thresh serving

,lowQ

下条件,如条件满足,则UE重选到低优先级的小区。

?服务小区的信号质量Squal低于低优先级的重选门限值Thresh serving,

,且在T reselectionRAT时间周期内低优先级的E-UTRAN或UTRAN小lowQ

区的信号质量Squal高于Thresh X

;或者在T reselectionRAT时间周期

,HighQ

内低优先级的GERAN小区的接收功率Srxlex高于Thresh X

,HighP

?UE驻留到当前服务小区已超过1s。

当上述条件不满足时,则对小区进行如下判断,如满足下述条件,则UE仍可以重选到低优先级的小区上。

?服务小区的接收功率Srxlev低于低优先级的重选门限值Thresh X,lowP,

且在时间周期T reselectionRAT内低优先级小区的Srxlex高于Thresh X

,lowP

UE驻留到当前服务小区已超过1s。

3.1.1.2小区重选信令流程

2G与3G系统共用一套核心网,LTE到2G/3G系统小区重选时,流程如下:

图5 LTE向2G/3G重选信令流程

如图5所示,当UE重选到2G/3G系统时,将首先发起路由区域RA的更新。RA更新请求中携带UE的临时标识GUTI、位置标识TAI。收到RA更新消息的SGSN向MME请求该UE的移动性上下文、安全秘匙等必须的参数,并与UE执行所需要的鉴权认证过程。

之后,SGSN 向HSS发起注册过程。当SGSN获得UE在MME中的参数后,SGSN向MME(还是P-GW)发起更新PDP的过程。当UE 在2G/3G系统中注册成功后,UE向SGSN发送路由区更新成功的信息,同时MME删除该UE在LTE中的会话。

以下两图分别为LTE到3G和2G的小区重选过程的接入侧信令流程图:

(b)3G接入网信令

图6 LTE向2G/3G重选时,2G/3G接入网侧信令

3.1.2 3G到LTE小区重选

UTRAN下的重选同样基于优先级有不同的方式,判断方式也为S准则,因此在重选判决的基本方法和流程上与LTE基本一致。

3.1.2.1小区重选过程

(1)UMTS小区的优先级

UMTS与LTE类似,为每一个小区设置一个绝对优先级,通过比较绝对优先级之间的高低情况,决定当前重选是高优先级重选还是低优先级重选。

本小区和所配置的邻频点的优先级,均会在SIB19中下发。

(2)测量启动标准

异频/异系统小区测量启动的规则如下:

?若被异频/异系统小区优先级高于当前服务小区:

?总是触发进行异系统小区测量。

?若被异频/异系统小区优先级低于或等于当前服务小区:

?如果Srxlev ServingCell<= S prioritysearch1;或Squal ServingCell<=

S prioritysearch2:则进行异频/异系统测量。

?反之,若同时有Srxlev ServingCell> S prioritysearch1且Squal ServingCell> S prioritysearch2:则不进行异频/异系统测量。

其中,S prioritysearch1与S prioritysearch2会在SIB19中下发。

(3)小区重选标准

判决小区重选的S准则与LTE中基本相同,其中Srxlev的测量值变为RSCP,Squal的测量值变为CPICH Ec/N0。

判决准则也基本相同,如下:

?若为高优先级重选(LTE优先级高)

?Thresh x,high2 或Thresh x,low2未配置;

?有测量到LTE小区Srxlev nonServingCell,x > Thresh x,high且持续时间

T320;重选;

?若同时配置了Thresh x,high2和Thresh x,low2;

?有测量到LTE小区Squal nonServingCell,x > Thresh x,high2且持续时间

T320;重选;

?若为低优先级重选(LTE优先级低或等于UMTS优先级)

?Thresh x,high2 或Thresh x,low2未配置;

?有Srxlev ServingCell < Thresh serving,low或Squal ServingCell <= 0,且

相等或更低优先级的LTE邻区测量到Srxlev nonServingCell,x>

Thresh x,low且持续时间T320;重选;

?若同时配置了Thresh x,high2和Thresh x,low2;

?有Squal ServingCell < Thresh serving,low2或Srxlev ServingCell <= 0,且

相等或更低优先级的LTE邻区测量到Squal nonServingCell,x>

Thresh x,low2且持续时间T320;重选;

3.1.2.2小区重选信令流程

图7 3G到LTE小区重选信令流程图

基站侧指导UE对服务WCDMA小区和相邻LTE小区频点进行测量。终端根据测量结果,判决并决定从WCDMA小区重选进新的LTE小区驻留。如上图所示,当UE重选到LTE系统时,将发起跟踪区域更新TAU。

3.1.3 2G到LTE小区重选

GERAN小区选择和重选的基本原则与LTE中类似,也是LTE系统演进的雏形。因此,其重选的概念,流程以及优先级的约束条件均与LTE中的定义相仿,这里仅对其重选的原则与判断条件做简单的介绍。

3.1.3.1小区重选过程

(1)GSM小区的优先级

GSM下对于优先级的判断和作用于LTE/UMTS中类似,对于高优先级重选和低优先级重选有着不同的判断标准。

LTE网络优化经典案例-重要

1 LTE优化案例分析 1.1 覆盖优化案例 1.1.1 弱覆盖 问题描述:测试车辆延长安街由东向西行驶,终端发起业务占用京西大厦1小区(PCI =132)进行业务,测试车辆继续向东行驶,行驶至柳林路口RSRP值降至-90dBm以下,出现弱覆盖区域。 问题分析:观察该路段RSRP值分布发现,柳林路口路段RSRP值分布较差,均值在-90dBm以下,主要由京西大厦1小区(PCI =132)覆盖。观察京西大厦距离该路段约200米,理论上可以对柳林路口进行有效覆盖。 通过实地观察京西大厦站点天馈系统发现,京西大厦1小区天线方位角为120度,主要覆盖长安街柳林路口向南路段。建议调整其天线朝向以对柳林路口路段加强覆盖。 调整建议:京西大厦1小区天线方位角由原120度调整为20度,机械下倾角由原6度调整为5度。 调整结果:调整完成后,柳林路口RSRP值有所改善。具体情况如下图所示。

问题描述:测试车辆延月坛南街由东向西行驶,发起业务后首先占用西城月新大厦3小区(PCI= 122),车辆继续向西行驶,终端切换到西城三里河一区2小区(PCI =115),切换后速率由原30M降低到5M。 问题分析:观察该路段无线环境,速率降低到5M时,占用西城三里河一区2小区(PCI =115)RSRP为-64dBm覆盖良好,SINR值为2.7导致速率下降。观察邻区列表中次服务小区为西城月新大厦3小区(PCI =122)RSRP为-78dBm,同样对该路段有良好覆盖。介于速率下降地点为西城三里河一区站下,西城月新大厦3小区在其站下应具有相对较好的覆盖效果,形成越区覆盖导致SINR环境恶劣,速率下降。 调整建议:为避免西城月新大厦3小区越区覆盖,建议将西城月新大厦3小区方位角由原270度调整至250度,下倾角由原6度调整为10度。 调整后 调整结果:西城三里河一区站下仅有该站内小区信号,并且SINR提升到15以上,无线环境有明显提升。

LTE切换问题定位和优化指导书

LTE 切换问题定位指导 (仅供内部使用) For internal use only 拟制: LTE 性能专家组 日期: 审核: 日期: 审核: 日期: 批准: 日期: 华为技术有限公司 Huawei Technologies Co., Ltd. 版权所有 侵权必究 All rights reserved

目录 概述 (3) 1切换问题定位思路 (3) 1.1切换失败问题 (5) 1.1.1UE发多条测量报告仍没有收到切换命令 (5) 1.1.2切换过程随机接入失败 (5) 1.1.3测量报告丢失 (6) 1.1.4切换命令丢失 (9) 1.1.5下行信道质量差导致发送preamble达最大次数仍未收到RAR (9) 1.1.6eNB下发RRC信令等待UE反馈,不处理切换命令 (11) 1.1.7X2_IPPATH配置错误导致切换失败为例进行分析 (11) 1.1.8X2切换,源侧发出切换请求,没有收到切换响应 (13) 1.1.9X2切换,目标侧发送S1AP_PATH_SWITCH_REQ未收到响应 (13) 1.1.10X2切换准备时间过长错过最佳切换时间 (14) 1.1.11S_RSRP、N_RSRP都比较高的站内切换,用较小的HO_TTT(64ms),可以在信 号恶化之前及时进行切换 (15) 1.1.12切换门限改小后乒乓切换次数增多,但是由于切换更加及时,切换失败次数减少 18 1.2CHR分析切换问题 (19) 1.2.1站内切换,随机接入失败导致切换失败 (19) 1.2.2站内切换,切换完成丢失导致切换失败 (21) 1.2.3X2切换,源侧等待上下文释放命令超时 (23) 1.2.4X2切换,S1PathSwitch失败导致切换失败 (25) 1.2.5切换随机接入失败触发重建,重建重配失败而掉话 (28) 1.2.6eNB未响应UE切换测量报告,信道质量恶化而掉话 (29) 1.2.7切换命令丢失导致切换失败 (31) 1.2.8X2切换,Preamble丢失导致切换失败 (32) 1.2.9X2切换,目标侧等待S1PathSwitchAck超时导致切换失败 (34) 1.2.10X2切换,随机接入失败触发重建,重建完成丢而掉话 (37) 1.2.11站内切换,随机接入失败触发重建,重建失败而掉话 (38) 1.2.12站内切换,切换完成丢失触发重建,重建失败而掉话 (41)

TD-LTE重叠覆盖专题优化指导书

TD-LTE重叠覆盖优化指导书 (仅供内部使用) 拟制: 广西移动LTE专项项目组日期: 更新: 日期: 审核: 日期: 批准: 日期: 华为技术有限公司 版权所有侵权必究

目录 1重叠覆盖概述 (3) 2重叠覆盖的评估方法 (3) 3重叠覆盖的来源 (4) 3.1网络结构方面 (4) 3.2天馈设置方面 (4) 3.3无线环境方面 (4) 4重叠覆盖的影响 (4) 5重叠覆盖的优化 (5) 5.1分析的流程 (5) 5.2优化的手段 (6) 5.2.1调整天线下倾角 (6) 5.2.2调整天线方位角 (8) 5.2.3调整天线挂高 (8) 5.2.4站点整改或搬迁 (9) 5.2.5站点更换频段(F改D) (9) 5.2.6调整小区参考功率 (9) 5.3优化的步骤 (9) 5.4优化的案例 (10) 5.4.1站点过覆盖导致重叠覆盖 (10) 5.4.2弱信号导致重叠覆盖 (12) 5.4.3主服不明显导致重叠覆盖 (15) 6优化总结 (18) 7后续推广优化建议 (18)

在TD-LTE 同频网络中,可将弱于服务小区信号强度6dB 以内且RSRP 大于-105dBm 的重叠小区数超过3个(含服务小区)的区域,定义为重叠覆盖区域。重叠覆盖给TD-LTE 网络带来了严重的同频干扰,极大地降低了受影响区域的用户性能,相比于未受重叠覆盖的区域,重叠覆盖区域的吞吐量将会受到很大损失,且随着重叠覆盖程度的加深,同频干扰造成的性能损失会进一步加大。从重叠覆盖影响范围来看,不同场景所占的比例有所不同,可通过研究重叠覆盖影响的大小和范围来寻找规避和解决的方法。 重叠覆盖原理示意图如下: 上图四个小区中间的棕色椭圆处是重叠覆盖区域,实线覆盖的为主覆盖小区,虚线覆盖的为干扰小区。评估的目的是找出重叠覆盖区域,通过RF 优化达到改善甚至消除重叠覆盖。 由于市区内诸如密集型住宅小区、城中村这样的区域类型较多,从路测数据上难以完全将这些区域的重叠覆盖呈现出来,而通过采集MR 数据后进行栅格化分布,就能直观地反映出这些问题区域。 2 重叠覆盖的评估方法 工具:OMstar (网络评估); 评估数据源:MR 数据、ATU 数据、工参; 评估的基本思路如下: 1) 基于MR 数据,以栅格(50米*50米)为单位,通过OMstar 工具评估南宁市网格内 的重叠覆盖情况; 2) 重点分析存在成片重叠覆盖栅格的区域,结合路测数据、干扰贡献度给出优化建议。

LTE 路测案例分析

1覆盖类 1.1 概述 覆盖类问题只要涉及弱覆盖、越区覆盖、过覆盖、无主导小区、上下行不平衡及导频污染等。 在TD-LTE中一般认为RSRP<-110dBm,认为是弱覆盖。 越区覆盖:由于基站天线挂高过高或下倾角过小引起的该小区覆盖距离过远,从而越区覆盖到其他站点覆盖的区域,并且在该区域终端接收到的信号电平较好。 过覆盖:指网络中存在过度的覆盖重叠,容易引起干扰和乒乓切换; 无主导小区:指某一片区域内服务小区和邻区的接收电平相差不大,不同小区之间的下行信号在小区重选门限附近的区域,并且无主导覆盖的区域接收电平一般或者较差,在这种情况下由于网络频率复用的原因,导致服务小区的SINR不稳定,可能发生空闲态主导小区频繁重选、连接态频繁切换,无主导覆盖也可认为是若覆盖的一种。 导频污染:指在某一点存在过多(一般认为大于等于3个)的强导频,但却没有一个足够强的主导频; 1.2弱覆盖 1.2.1弱覆盖分析 造成弱覆盖的原因有: 1、规划的站点由于种种原因如物业等没有开起来; 2、天线方位角、下倾角不合理,如下倾角过低; 3、在站建起来后,由于新建楼宇的遮挡,导致部分区域RSRP很差; 4、站点过高,如四十多米或更高,会造成塔下黑 5、下倾角、方位角由于条件所限,无法调整,如:美化邓杆站点不方便调整天线的方位角(3个天线方位要一起转,因为外面有罩子盖住下倾角无法调整,如科技园四、海德三路等;深大校园里站点天线都是放在美化罩子(长方体的箱子)里面,对天线的下倾角和方位角调整范围也有影响(如:深大、深大南校等))。 针对以上原因建议的方案有:

1、推动客户将规划站点尽快开起来; 2、调整天线方位角、下倾角到合理位置; 1.2.2天线方位角不合理导致弱覆盖 现象:科技园三的102和104小区由于天线被住宅楼遮挡,导致覆盖区域内部分道路信号较弱,存在弱覆盖,科技园三站点周围的地物如图: 图表1科技园三周围地物 调整前道路的电平值如下图: 图表2优化前科技园三覆盖 措施:将104小区的方位角由20度调整为40度;将102的方位角由150度调整到100度;调整后弱覆盖得到改善,如下图:

LTE切换问题定位和优化指导书

Huawei Technologies Co. Ltd. 华为技术有限公司 产品名称Project ID密级Confidentiality level 项目组名称Group name 日期Date 版本Version LTE 切换问题定位指导 (仅供内部使用) For internal use only 拟制:LTE 性能专家组日期: 审核:日期: 审核:日期: 批准:日期: 华为技术有限公司 Huawei Technologies Co., Ltd.

版权所有侵权必究All rights reserved

目录 概述 (5) 1 切换问题定位思路 (5) 1.1 切换失败问题 (7) 1.1.1 UE发多条测量报告仍没有收到切换命令 (7) 1.1.2 切换过程随机接入失败 (7) 1.1.3 测量报告丢失 (8) 1.1.4 切换命令丢失 (11) 1.1.5 下行信道质量差导致发送preamble达最大次数仍未收到RAR (12) 1.1.6 eNB下发RRC信令等待UE反馈,不处理切换命令 (14) 1.1.7 X2_IPPATH配置错误导致切换失败为例进行分析 (14) 1.1.8 X2切换,源侧发出切换请求,没有收到切换响应 (16) 1.1.9 X2切换,目标侧发送S1AP_PATH_SWITCH_REQ未收到响应 (16) 1.1.10 X2切换准备时间过长错过最佳切换时间 (17) 1.1.11 S_RSRP、N_RSRP都比较高的站内切换,用较小的HO_TTT(64ms),可以在信 号恶化之前及时进行切换 (19) 1.1.12 切换门限改小后乒乓切换次数增多,但是由于切换更加及时,切换失败次数减少 22 1.2 CHR分析切换问题 (23) 1.2.1 站内切换,随机接入失败导致切换失败 (23) 1.2.2 站内切换,切换完成丢失导致切换失败 (25) 1.2.3 X2切换,源侧等待上下文释放命令超时 (27) 1.2.4 X2切换,S1PathSwitch失败导致切换失败 (29) 1.2.5 切换随机接入失败触发重建,重建重配失败而掉话 (32) 1.2.6 eNB未响应UE切换测量报告,信道质量恶化而掉话 (33)

网格优化指导书

网格优化指导书 1总述 无线网络覆盖问题产生的原因是各种各样的,总体来讲有四类:一是无线网络规划结果和实际覆盖效果存在偏差;二是覆盖区无线环境变化;三是工程参数和规划参数间的不一致;四是增加了新的覆盖需求。良好的无线覆盖是保障移动通信质量和指标要求的前提,因此,覆盖的优化非常重要,并贯穿网络建设的整个过程。 移动通信网络中涉及到的覆盖问题主要表现为覆盖空洞、覆盖弱区、越区覆盖、导频污染和邻区设定不合理等几个方面。本章结合覆盖优化相关案例,主要介绍了处理覆盖问题的一般流程和典型解决方法。 2整体优化思路 每个县城都是一张各有特色的网络,每位驻县工程师需要对这张网络了如指掌,哪里是密集城区、哪些是VIP区域、哪里有河流、有几条桥梁、是否与高架铁路横跨、哪些站点过高、哪些站点无法调整导致越区等等。 针对现场网格,拿到测试数据主要从以下三个方面逐步着手: ?解决弱覆盖,各项指标覆盖是基础,必须把覆盖解决到位才能进行下一步的SINR值提升; ?梳理整个县城道路的主服务小区,对每个小区控制好覆盖区域,避免越区覆盖、切换不及时、邻区漏配等现象; ?最后对网格不需要覆盖的小区进行天馈调整,控制覆盖,降低MOD3干扰与重叠覆盖情况,在调整的同时也需要考虑深度覆盖问题,若不能两者兼顾可考虑深度覆盖差的区域新建小基站解决覆盖问题。 针对问题点也有一定的先后顺序,优先解决采样点连片差的问题点,其次解决零星采样点差,最大幅度的提升网络质量。

3RF优化流程 RF优化一般一次很难达到优化目标,经常会出现多次迭代,优化后需要采集数据进行分析判断看是否能够达到最初确定的优化目标,若不能达到则需要继续对数据进行分析输出优化建议。一般人工优化时凭工程师的经验,无法进行全面的预测,可能会经过2~3轮的

LTE切换问题定位和优化指导书

L T E切换问题定位和优 化指导书 SANY GROUP system office room 【SANYUA16H-

LTE切换问题定位指导 (仅供内部使用) Forinternaluseonly 拟制:LTE性能专家组日 期: 审核: 日期: 审核: 日期: 批准: 日 期: 华为技术有限公司HuaweiTechnologiesCo.,Ltd. 版权所有侵权必究 Allrightsreserved

目录 概述 (3) 1切换问题定位思路 (3) 1.1切换失败问题 (5) 1.1.1UE发多条测量报告仍没有收到切换命令 (5) 1.1.2切换过程随机接入失败 (5) 1.1.3测量报告丢失 (6) 1.1.4切换命令丢失 (9) 1.1.5下行信道质量差导致发送preamble达最大次数仍未收到RAR (9) 1.1.6eNB下发RRC信令等待UE反馈,不处理切换命令 (11) 1.1.7X2_IPPATH配置错误导致切换失败为例进行分析 (11) 1.1.8X2切换,源侧发出切换请求,没有收到切换响应 (13) 1.1.9X2切换,目标侧发送S1AP_PATH_SWITCH_REQ未收到响应 (13) X2切换准备时间过长错过最佳切换时间 (14) S_RSRP、N_RSRP都比较高的站内切换,用较小的HO_TTT(64ms),可以在信号恶化之前及时进行切换 (15) 切换门限改小后乒乓切换次数增多,但是由于切换更加及时,切换失败次数减少 18 1.2CHR分析切换问题 (19) 1.2.1站内切换,随机接入失败导致切换失败 (19) 1.2.2站内切换,切换完成丢失导致切换失败 (21) 1.2.3X2切换,源侧等待上下文释放命令超时 (23) 1.2.4X2切换,S1PathSwitch失败导致切换失败 (25) 1.2.5切换随机接入失败触发重建,重建重配失败而掉话 (28) 1.2.6eNB未响应UE切换测量报告,信道质量恶化而掉话 (29) 1.2.7切换命令丢失导致切换失败 (31) 1.2.8X2切换,Preamble丢失导致切换失败 (32) 1.2.9X2切换,目标侧等待S1PathSwitchAck超时导致切换失败 (34) X2切换,随机接入失败触发重建,重建完成丢而掉话 (37) 站内切换,随机接入失败触发重建,重建失败而掉话 (38) 站内切换,切换完成丢失触发重建,重建失败而掉话 (41)

LTE切换优化专题-参数功能和优化思路

内容:参数功能及设置、切换原理、信令流程、优化案例等。 1LTE切换原理 1.1Intra-eNodeB切换 触发事件:A3事件(同频切换),A5事件(异频切换) 当UE从当前所处的服务小区切换到同一eNodeB下的另一小区时,会发生Intra-eNodeB切换。 基于X2接口的切换 触发事件:A3事件(同频切换),A5事件(异频切换) 当两个eNodeB之间存在X2接口时,UE从当前所驻留的服务小区切换到另一eNodeB时,可采用基于X2接口的切换。 基于S1接口的切换 触发事件:A3事件(同频切换),A5事件(异频切换) 当两个eNodeB之间不存在X2接口,或X2接口不可用时,UE从当前所驻留的服务小区切换到另一eNodeB时,可采用基于S1接口的切换。 1.1.1LTE到3G的切换 实现LTE到3G的切换首先需要满足几个前提: 1.网络侧,LTE系统和3G系统均支持LTE到3G的PS切换 2.UE侧,UE需要支持LTE到3G的PS切换,UE的Feature Group Indicator bit 位8 和bit位22数值必须为1。 LTE到3G切换的流程概述: 1.LTE基站如果收到UE上报的A2测量报告,发现LTE的覆盖较差。 2.LTE基站通过RRC重配置消息对UE配置B2事件的测量的相关参数。 3.LTE基站收到B2事件的测量报告后,通过MobilityFromEutranCommand通 知UE发起到3G的切换。 4.LTE基站收到UE上发的MobilityToUtranComplete,切换成功。 主要的LTE RRC空口信令: ●UE上报B2测量报告:Measurement Report ●UE在LTE小区收到往3G切换命令:MobilityFromEutranCommand ●UE向LTE小区反馈到3G切换成功:MobilityToUtranComplete

Assistant簇优化分析指导书V2

Assistant-簇优化指导书 华为技术有限公司 墨西哥LTE网优项目组

目录 墨西哥簇优化分析指导书 (3) 1新建工程 (3) 2设置并点方式 (3) 3导入工参 (4) 4导入Logs (7) 5设置地图 (8) 6编辑Legend (以RSRP举例) (10) 7分析PCI地图 (11) 7.1检查站点是否on-air (11) 7.2检查站点经纬度是否正确 (12) 7.3查看小区颜色与覆盖PCI不匹配的情况 (13) 7.4无主导小区及越区覆盖 (13) 8分析RSRP地图 (14) 8.1有阻挡物导致RSRP差 (14) 8.2海拔较高导致RSRP差 (15) 9分析异常事件 (16) 9.1正常切换由于缺少邻区导致的异常释放 (17) 9.2由于越区导致异常切换的缺少邻区引起的掉话 (17) 9.3由于CSFB造成的异常释放 (18) 9.4由于SINR差导致的异常释放 (19)

簇优化分析指导书 介绍: 此文档主要针对assistant 3.5软件的使用及在簇优化方面的一些经验总结及案例分析。 1 新建工程 选择LTE,选择保存的路径 2 设置并点方式 KPI,IE,Theme,Filter,Sites Display,Others无需设置,使用模板即可 Binning里有四种并点方式:1.no binning 2.distance binning 3.time binning 4.location binning 并点方式需要与客户进行协商,不同的并点方式得到的采样点数不同,墨西哥使用的是location binning 20m*20m的并点方式

第二十二课:LTE-S1切换占比专题优化

1、专项思路 1、第一步,进行全网存在S1切换请求的小区进行分析和收集,对和S1切换流程中的 相关过程参数和操作的收集,不仅要收集日常修改的优化参数,还包括一些常涉及的操作,例如X2链路配置、需要上站进行排障操作的站点等;对这些参数和操作的工作需求进行分析汇总; 2、第二步,对S1切换占比优化的调整和相关操作进行整理,确定主要工作内容:全网 SCTP链路状态核查调整优化、现场邻区关系测试优化、故障站点排障、切换参数优化调整; 3、第三步,S1切换占比优化整理出的主要工作内容实施,KPI指标同步跟踪监控处理 效果评估并进行分析反馈以方便进一步优化调整; 4、在专项实施过中,对S1切换占比优化中存在的问题和不完善进行收集整理,总结主 要问题处理案例,并提出相应的改进优化方案,并将S1切换占比加入日常KPI优化指标中。 2、S1切换与X2切换的区别 根据源eNB和目标eNB是否连接到同一个MME以及他们之间是否存在X2连接,LTE中的切换分为X2切换和S1切换。LTE中将缺省进行X2切换,除非源和目标eNB之间不在同一个MME的范围或者不存在X2连接。在X2切换过程中,MME保持不变,而与之相连的SGW则有可能发生改变。X2切换过程是在两个eNB之间直接进行的,在切换成功后才通知MME进行路径切换。 二者的差别主要体现在切换准备上,S1切换处理要比X2多两条信令消息,X2的切换时延从测试统计出大概在30ms左右,S1的切换时延要比X2切换的多出20ms左右,而如果切换时延定义为重配置到重配置完成,则切换时延没有差别,但整个切换流程S1切换用时仍然多于X2切换用时。另外二者的传输时延也存在不同。 3、导致S1切换主要原因及处理思路

LTE切换和重选

L T E切换和重选 一、切换的原理 1.1同频切换 1.1.1同频切换测量 开启测量:RSRP of serving cell<-140+threshold1 关闭测量:RSRP of serving cell>-140+threshold1 1.1.2基于A3事件的切换 满足切换条件后,持续a3TimeToTrigger时间后上报测量报告,间隔a3ReportInterval时间重新上传测量报告,上报测量报告之后,等待eNB下发切换命令后执行切换。 1.1.3基于A5事件的切换 切换条件:RSRP at serving cell < threshold3和RSRP at target > threshold3a 满足此条件后,持续a5TimeToTrigger时间后上报测量报告,间隔a5ReportInterval 时间重新上报,上报测量报告之后,等待eNB下发切换命令后执行切换。 1.1.4参数设置

1.2异频切换 1.2.1异频切换测量 开启测量:RSRP of servingcell<-140+threshold2InterFreq+hysThreshold2InterFreq,满足条件后持续a2TimeToTriggerActInterFreqMeas时间开启测量(A2事件) 关闭测量:RSRP of servingcell>-140+threshold2a+hysThreshold2a,满足条件后持续a1TimeToTriggerDeactInterMeas时间关闭测量(A1事件) 1.2.2基于A3事件切换 切换条件:Mn-hysA3OffsetRsrpInterFreq > Ms + a3OffsetRsrpInterFreq 满足异频A3切换条件后,持续a3TimeToTriggerRsrpInterFreq 时间后开始上报测量报告,间隔a3ReportIntervalRsrpInterFreq时间重新上报,上报测量报告之后,等待eNB下发切换命令后执行切换。 1.2.3基于A5事件的切换 切换条件:Ms + hysThreshold3InterFreq < threshold3InterFreq和Mn –hysThreshold3InterFreq > threshold3aInterFreq 满足异频A5切换条件后,持续a5TimeToTriggerInterFreq时间后开始上报测量报告,间隔a5ReportIntervalInterFreq时间重新上报,上报测量报告之后,等待eNB 下发切换命令后执行切换。

簇优化指导书

cluster优化指导书

目录 一总体概述............................................................... - 3 - 二基站簇CLUSTER优化 .................................................... - 4 - 2、1 基站簇优化工作目标 (4) 2、2 基站簇优化前的注意事项 (4) 2、21划分基站簇............................................................. - 4 - 2、22确认基站簇状态......................................................... - 5 - 2、23规划测试路线........................................................... - 5 - 2、24测试工具准备和检查..................................................... - 6 - 2、3 簇优化的测试内容和方法 (6) 2、31簇优化主要内容......................................................... - 6 - 2、32簇优化KPI指标详解以及其目标值........................................ - 17 -三总结..................................................................- 18 -

LTE切换问题定位和优化指导书

LTE 切换问题定位指导 (仅供内部使用) For internal use only 拟制:LTE 性能专家组日期: 审核:日期: 审核:日期: 批准:日期: 华为技术有限公司 Huawei Technologies Co., Ltd. 版权所有侵权必究 All rights reserved

目录 概述................................................................ 错误!未定义书签。 1 切换问题定位思路................................................ 错误!未定义书签。 切换失败问题.............................................. 错误!未定义书签。 UE发多条测量报告仍没有收到切换命令.................... 错误!未定义书签。 切换过程随机接入失败.................................. 错误!未定义书签。 测量报告丢失.......................................... 错误!未定义书签。 切换命令丢失.......................................... 错误!未定义书签。 下行信道质量差导致发送preamble达最大次数仍未收到RAR ... 错误!未定义书签。 eNB下发RRC信令等待UE反馈,不处理切换命令.............. 错误!未定义书签。 X2_IPPATH配置错误导致切换失败为例进行分析............. 错误!未定义书签。 X2切换,源侧发出切换请求,没有收到切换响应............ 错误!未定义书签。 X2切换,目标侧发送S1AP_PATH_SWITCH_REQ未收到响应...... 错误!未定义书签。 X2切换准备时间过长错过最佳切换时间................... 错误!未定义书签。 S_RSRP、N_RSRP都比较高的站内切换,用较小的HO_TTT(64ms),可以在信号恶化之前及时进行切换.......................................... 错误!未定义书签。 切换门限改小后乒乓切换次数增多,但是由于切换更加及时,切换失败次数减少 错误!未定义书签。 CHR分析切换问题........................................... 错误!未定义书签。 站内切换,随机接入失败导致切换失败.................... 错误!未定义书签。 站内切换,切换完成丢失导致切换失败.................... 错误!未定义书签。 X2切换,源侧等待上下文释放命令超时.................... 错误!未定义书签。 X2切换,S1PathSwitch失败导致切换失败.................. 错误!未定义书签。 切换随机接入失败触发重建,重建重配失败而掉话.......... 错误!未定义书签。 eNB未响应UE切换测量报告,信道质量恶化而掉话........... 错误!未定义书签。 切换命令丢失导致切换失败.............................. 错误!未定义书签。 X2切换,Preamble丢失导致切换失败...................... 错误!未定义书签。 X2切换,目标侧等待S1PathSwitchAck超时导致切换失败..... 错误!未定义书签。 X2切换,随机接入失败触发重建,重建完成丢而掉话....... 错误!未定义书签。 站内切换,随机接入失败触发重建,重建失败而掉话....... 错误!未定义书签。 站内切换,切换完成丢失触发重建,重建失败而掉话....... 错误!未定义书签。

(完整版)5GNR无线覆盖优化指导书

一、覆盖优化概述 无线网络覆盖是网络业务和性能的基石,通过开展无线网络覆盖优化工作,可以使网络覆盖范围更合理、覆盖水平更高、干扰水平更低,为业务应用和性能提升提供重要保障。无线网络覆盖优化工作伴随实验网建设、预商用网络建设、工程优化、日常运维优化、专项优化等各个网络发展阶段,是网络优化工作的主要组成部分。 二、5GNR覆盖优化内容 5GNR覆盖优化主要消除网络中存在的四种问题:覆盖空洞、弱覆盖、越区覆盖和导频污染。覆盖空洞可以归入到弱覆盖中,越区覆盖和导频污染都可以归为交叉覆盖,所以,从这个角度和现场可实施角度来讲,优化主要有两个内容:消除弱覆盖和交叉覆盖。 三、5GNR覆盖优化目标 无线网络覆盖以保障网络基础覆盖水平、有效抑制干扰、提升业务上传下载速率为根本目标。开展无线网络覆盖优化之前,需要明确优化的基线KPI目标。 1、5GNR覆盖评估指标 LTE网络主要基于CRS-RSRP和SNR对网络覆盖进行测量,CRS也即小区下行考参考信号,用于小区信号测量和相位参考,下行信道估计及非beamforming模式下的解调参考。而5GNR网络覆盖主要基于同步信号( SS-RSRP和S|NR)或CS-RS信号(CS-RSRP和SNR)进行测量,当前阶段主要采用SS-RSRP/SS-SINR进行覆盖评估。 5GNR覆盖评估指标说明如下 ? 5 G NR SS-RsRP,SS-SNR ?基于广播同步信号SSB测量RSRP及SNR ?空闲态/连接态均可测量 ?用于重选、切换、波束选择判决 ?5G CSI-RSRP, CSI-SINR ?基于用户CS|-RS测量 ?仅连接态可测量 ?对连接态UE发送,用于RRM测量、无线链路状态监测、CQUPMI/R|测量 2、5GNR覆盖优化标准 国内三家运营商提出了初步的网络覆盖规划设计要求,用于指导5G闷络建设,现阶段网络优化项目交付中可选择性参考。(具体目标门限以客户服务合同技术规范要求为准) 中移2.6GHz5G网络以SA为目标网开展规划,规划优化覆盖指标要求:室外的最小的规划场强SS-RSRP≥-100dBm,在SsB宽波束时频域对齐配置下,要求SsS|NR≥-7dBm,可满足下行边缘 100Mbps速率要求。

景区LTE网络覆盖优化指导书V3

2015年景区LTE网络覆盖优化指导书 2015年12月 中国电信江苏公司无线网络优化中心 2015年12月28日

概述 目前全省4A级以上景区共有163个,其类型是多样化的,有自然风光,有人文古迹;也有商业广场,有游玩乐园等,正因为如此,景区的网络采用多种不同的方式进行覆盖,在此基础上,抓住共性问题,结合典型,总结出LTE网络在景区覆盖原则及规律,供全省参考。 一、景区覆盖原则及规律 (1)宏站能够起到较好的广覆盖效果,需优先考虑,即使景区内部建站困难,也要在景区周边建设,确保语音前提下,要保证4G信号在室外景点不脱网。 (2)对于室外开放游玩型景区,其内部补盲时,覆盖方案需重点考虑人流密集区域,覆盖方式优先考虑天线挂高及增益。 (3)对于室内封闭场馆型,优先考虑新建室内分布系统,合理的布放天线的密度及设置出口功率。 (4)景区规划应给根据政府要求,在遵循网络覆盖规则下,适当放宽规划要求,信号覆盖先做到有,再做到优。 二、景区覆盖常用的特型设备 为了做到与景区环境的相和谐,基站安装需要较好的美观性、隐蔽性。所以常用到一些特殊的塔型、天线或者信源。下面对这些特型的设备进行一些介绍。 (1)特殊塔型: 仿真美化树:结构精致逼真,外形美观优雅。让通信铁塔与周围的自然环境相协调,有效地解决了风景区等地建站难的问题,可以安装在风景区内外与其树种相似的树丛中,贴近自然且融于自然。塔上能够使用任何板状天线。覆盖范围广,有利于后续的优化维护。但是造价过高,目前价格达到1.1万/米,正常情况高度在30-35米。仅铁塔的费用在40万元以上。 美化灯杆或监控杆:根据现场环境需要,高度和颜色可定制,高度10-25米不等,颜色

LTE无线网络优化切换优化手册

LTE无线网络优化切换优化手册

目录 1 概述 (4) 2 LTE切换原理 (4) 2.1 Intra-eNodeB切换 (4) 2.2 基于X2接口的切换 (5) 2.3 基于S1接口的切换 (6) 2.4 异系统之间切换 (6) 2.4.1 LTE到3G的切换 (6) 2.4.2 LTE到2G的切换 (8) 2.4.3 3G到LTE的切换 (10) 2.4.4 2G到LTE的切换 (12) 3 LTE切换问题优化方法及流程 (14) 3.1 LTE主要切换问题 (14) 3.1.1 邻区配置 (14) 3.1.2 参数设置 (15) 3.1.3 无线环境引起的切换异常 (16) 3.2 LTE切换问题优化流程 (17) 3.3 LTE切换相关参数分析 (18) 3.3.1 最小接收电平 (18) 3.3.2 高优先级重选门限 (19) 3.3.3 低优先级重选门限 (19) 3.3.4 小区重选优先级 (20) 3.3.5 B2事件基于RSRP触发门限2(3G) (21) 3.3.6 B2事件基于RSRP触发门限1 (21) 3.3.7 B2事件基于接收电平触发门限2(2G) (22) 3.4 LTE切换相关参数分析 (23) 3.4.1 A3事件触发偏置因子 (23) 3.4.2 A3事件触发迟滞因子 (24) 3.4.3 A3事件触发偏置因子小区分量 (24)

3.4.4 A3事件触发持续时间 (25) 3.4.5 A3事件触发类型 (26) 3.4.6 A1事件基于RSRP主触发门限 (27) 3.4.7 A2事件基于RSRP主触发门限 (27) 3.4.8 A4事件基于RSRP主触发门限 (28) 3.4.9 A5事件基于RSRP触发门限1 (29) 3.4.10 A5事件基于RSRP触发门限2 (30) 4 LTE切换及互操作相关参数详表 (30)

5GNR无线覆盖优化指导书

、覆盖优化概述 无线网络覆盖是网络业务和性能的基石,通过开展无线网络覆盖优化工作,可以使网络覆盖范围更合 理、覆盖水平更高、干扰水平更低,为业务应用和性能提升提供重要保障。无线网络覆盖优化工作伴随实验网建设、预商用网络建设、工程优化、日常运维优化、专项优化等各个网络发展阶段,是网络 优化工作的主要组成部分。 二、5GNR 覆盖优化内容 5GNR 覆盖优化主要消除网络中存在的四种问题:覆盖空洞、弱覆盖、越区覆盖和导频污染。覆盖空洞可以归入到弱覆盖中,越区覆盖和导频污染都可以归为交叉覆盖,所以,从这个角度和现场可实施角度来讲,优化主要有两个内容: 消除弱覆盖和交叉覆盖。 三、5GNR 覆盖优化目标无线网络覆盖以保障网络基础覆盖水平、有效抑制干扰、提升业务上传下载速率为根本目标。开展无线网络覆盖优化之前,需要明确优化的基线KPI 目标。 1 、5GNR 覆盖评估指标 LTE网络主要基于CRS-RSRP和SNR 对网络覆盖进行测量,CRS也即小区下行考参考信号,用于小区信号测量和相位参考,下行信道估计及非beamforming 模式下的解调参考。而5GNR 网络覆盖主要基于同步信号( SS-RSRP 和 S|NR) 或CS-RS 信号(CS-RSRP 和SNR) 进行测量,当前阶段主要采用SS-RSRP/SS-SINR 进行覆盖评估。 5GNR 覆盖评估指标说明如下 5 G NR SS-RsRP,SS-SNR 基于广播同步信号SSB测量RSRP及SNR 空闲态/ 连接态均可测量 用于重选、切换、波束选择判决 5G CSI-RSRP, CSI-SINR 基于用户CS|-RS 测量 仅连接态可测量 对连接态UE 发送,用于RRM 测量、无线链路状态监测、CQUPMI/R| 测量 2 、5GNR 覆盖优化标准 国内三家运营商提出了初步的网络覆盖规划设计要求,用于指导5G 闷络建设,现阶段网络优化项目交 付中可选择性参考。(具体目标门限以客户服务合同技术规范要求为准) 中移 2.6GHz5G 网络以SA 为目标网开展规划,规划优化覆盖指标要求:室外的最小的规划场强SS-RSRP≥-100dBm, 在SsB 宽波束时频域对齐配置下,要求SsS|NR ≥-7dBm, 可满足下行边缘100Mbps 速率要求。

LTE参数优化

一、LTE小区选择及相关参数 1.1 小区选择S准则 UE进行小区选择时,需要判断小区是否满足小区选择规则。小区选择规则的基础是EUTRAN小区参考信号的接收功率测量值,即:RSRP。 驻留小区的条件要求符合小区选择S准则:Srxlev>0。 Srxlev= Qrxlevmeas-(Qrxlevmin+Qrxlevminoffset)-Pcompensation;Pcompensation=max(PMax-UE Maximum Outpower,0) 各参数含义如下: 1、Srxlev:小区选择S值,单位dB; 2、Qrxlevmeas:测量小区的RSRP值,单位dBm; 3、Qrxlevmin:小区最小接收电平,单位dBm,目前集团规定为:-128;(该参数可影响用户接入) 4、Qrxlevminoffset:减少PLMN之间的乒乓选择,此参数只在UE驻留在访问PLMN (Visited PLMN)时, 周期性地搜寻更高级别的PLMN时使用.; 5、PMax:UE在小区中允许的最大上行发送功率; 6、UE Maximum Outpower:UE能力决定的最大上行发送功率 1.2 小区选择相关参数 小区选择相关参数如下: 二、LTE小区重选及相关参数 2.1 小区重选相关知识 2.1.1 小区重选知识 小区重选指(cell reselection)指UE在空闲模式下通过监测邻区和当前小区的信号质量以选择一个最好的小区提供服务信号的过程。当邻区的信号质量及电平满足S准则且满足一定重选判决准则时,终端将介入该小区驻留。UE驻留

到合适的小区停留1S后,就可以进行小区重选的过程。小区重选过程包括测量和重选两部分过程,终端根据网络配置的相关参数,在满足条件时发起相应的流程。 2.1.2 重选的分类 1)系统内小区测量及重选; ●同频小区测量、重选 ●异频小区测量、重选 2)系统间小区测量及重选; 2.1.3 重选优先级概念 1)与2/3G网络不同,LTE系统中引入了重选优先级的概念 ●在LTE系统,网络可配置不同频点或频率组的优先级,通过广播在系统消息中告诉UE,对应参数为cellreselectionPriority,取值为(0….7);(注:0优先级为最低,现网同频设置为5;异频设置宏站加室分底层&高层设置为6,室分高层加宏站为4,室分底层加宏站为5.) ●优先级配置单位是频点,因此在相同载频的不同小区具有相同的优先级; ●通过配置各频点的优先级,网络便能方便地引导终端重选到高优先级的小区驻留达到均衡网络负荷、提升资源利用率,保障UE信号质量等作用; 2)重选优先级也可以通过RRCConnectionRelease消息告诉UE,此时UE忽略广播消息中的优先级信息,以该信息为准; 网络主动引导UE进行系统间小区重选,完成CS域语音呼叫等; 2.1.4 重选系统消息 LTE中,SIB3-SIB8全部为重选相关信息,具体如下:

LTE路测优化指导书三

第1章加载加扰方式和好中差点的选取 1.1 加载加扰方式 外场区域分为(若干)主测小区与非主测小区,主测小区加入真实终端进行数据传输称为加载,而非主测小区引入的真实终端干扰或模拟干扰均称为加扰。 对于上行: 主测小区上行加载方式:采用真实终端进行加载; 邻小区上行加扰方式:采用真实终端进行加扰,最终需对主测小区达到相应干扰级别所要求的上行干扰水平(IOT)。 对于下行: 主测小区下行加载方式:采用真实终端进行加载; 邻小区下行加扰方式:采用OCNG方式(模拟加扰),或采用真实终端进行加扰。 加扰级别: 对业务信道的干扰,目前定义有三种干扰级别: ● 干扰级别一:下行50%加扰+ 上行IOT抬升12dB ● 干扰级别二:下行70%加扰+ 上行IOT抬升12dB ● 干扰级别三:下行100%加扰+ 上行IOT抬升12dB 建议下行使用模拟加扰,上行需要真实终端加扰,上行加扰的点位需要进行选取并控制加扰

水平至少抬升12dB。 1.2 好中差点的选取 对主测小区的周边小区进行下行70%的加扰,然后在主测小区通过SINR的数值来选择点位。相应的点位对应的SINR区间如下: 极好点:>22dB 好点:15~20dB 中点:5dB~10dB 差点:-5dB~0dB 第2章用户面时延测试(Ping) 2.1 测试目的: 用户面时延测试是考察单用户在好/中/差点的Ping包时延(包括小包/大包),判断TD-LTE 时延能否满足用户需求。 2.2 测试条件: 测试区域:选择一个单小区,小区周围至少5个小区且开启; 测试点:主测小区内选择4个测试点:1个“极好”点、1个“好”点、1个“中”点、1个“差点”; 测试资源:测试UE 3部; 2.3 测试步骤:

LTE路测优化指导书五(CDS后台统计分析篇)

LTE路测优化指导书五 (CDS后台统计分析篇) 目录 第1章覆盖测试统计 (2) 1.1 覆盖分析 (2) 1.2 CDF/PDF曲线图 (3) 1.3 IE-距离关系 (3) 第2章单用户吞吐量统计 (4) 第3章KPI测试统计 (5) 3.1 事件统计 (5) 3.2 测试报告 (5) 第4章测试数据输出 (8)

第1章覆盖测试统计 为了考察全网覆盖的连续性,需要统计RSRP、SINR的打点图;全网RSRP、SINR、吞吐量等IE的统计及CDF图;IE值随距离变化的曲线图 1.1 覆盖分析 选择配置窗口,可以根据测试需求,将IE图层拖拽到显示窗口,可以得到IE值的打点图,如将RSRP拖拽到显示窗口,可以得到RSRP的打点图: 在图例显示区可以看到已添加的图层的图例信息: 用户可以在图层显示选项点击右键,可以对图例的颜色、大小、形状等信息配置:

1.2 CDF/PDF曲线图 打开IE数据统计窗口 点击红框IE数据按钮,将IE数据拖动至分析窗口后,软件会自动完成分析。将RSRP拖动到分析窗口后,得到全网平均RSRP,并在下面自动生成CDF和PDF 曲线图。 1.3 IE-距离关系 IE-与距离分析适用于各数据随距离变化单位分析。打开分析插件后,将IE 数据需要统计的IE数据拖动至分析窗口,然后在红框处输入距离步长、频点、PCI后,点击执行按钮,即可自动完成分析,可以得到RSRP、SINR等IE值随

距离的变化关系图。 第2章单用户吞吐量统计 在测试单用户峰值吞吐量时,统计测试过程中的L1 、L3速率、平均RSRP、SINR、CQI、MCS及占用PRB数量等 IE数据统计如下图: 将需要统计的IE值拖到右上角的分析窗口后,自动分析出RSRP、SINR等IE 值的平均值:

相关主题
文本预览
相关文档 最新文档