当前位置:文档之家› 第一章 矢量分析典型例题

第一章 矢量分析典型例题

第一章  矢量分析典型例题
第一章  矢量分析典型例题

第一章 矢量分析

1.1.试证明下列三个矢量:

x y z 11e 9e 18e A =++ ,x y z 17e 9e 27e B =++ ,x y z 4e 6e 5e C =-+

在同一平面上。

1.2.给定三个矢量A ,B

和C

如下:

x y z e 2e 3e A =+- ,y z 4e e B =-+ ,x y 5e 2e C =-

求:1)A

e

(A

e 表示矢量A

方向上的单位矢量)。

2)B A

?

3)A C ?

1.3.证明:如果C

A B A

?=?且A B A C ?=? ,则B C = 。

1.4.如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确

定该未知矢量。设A 为一已知矢量,P A X = 而P A X

=?

,P 和P

已知,试求X

1.5.设标量2

3

u xy yz =+,矢量x y z 2e 2e e A =+-

,试求标量函数u 在(2,1,1)

-处沿矢量A

的方向上的方向导数。

1.6.设232(,,)3u x y z x y y z =-,求u 在点(1,2,1)M -处的梯度。

1.7.设23

x y z e e (3)e A x y z x =++- ,求A 在点(1,0,1)M -处的散度。 1.8.设324x y z

e 2e 2e A xz x yz yz =-+ ,求A 在点(1,1,1)M --处的旋度。 1.9.求1

()r

?。

1.10.设r =(,,)M x y z 的矢径r

的模,试证明:0r r r r

?=

= 。

1.11.计算:1)矢量r

对一个球心在原点,半径为a

的球表面的积分。

2)??对球体积的积分。

1.12.求矢量22

x y z e e e A x x y z =+- 沿,x y 平面上的一个边长为2的正方形回

路的线积分,此正方形的两个边分别与x 轴和y 轴相重合。再求A ??

对此回路

所包围的表面积的积分,验证斯托克斯定理。

1.13.利用散度定理证明

V

S

AdV d S A ??=

??

?

。 1.14.应用斯托克斯定理证明 S

l

d S d l ????=

?

?

1.15.设

222[()()()]R x x y y z z '''=-+-+-

为源点r ' 到场点r

的距离,R

的方

向规定为从源点指向场点。试利用直角坐标证明:

2

1(

)4()

r r R

πδ'?=--

1.16.试判断下列矢量场是否为均匀矢量场:

1)圆柱坐标系中112A e sin e cos e r z A A A ???=++

,其中12,A A 都为常数。

2)球坐标系中,0A e r A =

,其中0A 为常数。

1.17.两个矢量A ,B

22r 22

x y z

A e sin e cos e 2sin

B (32)e e 2e z z z rz y x x z ????=++=-++

1)哪些矢量可以由一个标量函数的梯度表示?哪些矢量可以由一个矢量函

数的旋度表示?

2)求出这些矢量的源分布。

1.18.利用直角坐标系证明:f A A f A f ??+??=??

)(。

1.19.用直角坐标验证矢量恒等式:()f G f G f G ??=??+??

1.20.证明对任意矢量V

,下列式子都成立: 1)dt dV

V dt V d V = (记2V V V =? ) 2)22

()d dV d V

V V dt dt dt

?=? 。

矢量分析与场论 第四 谢树艺 习题答案 高等教育出社

矢量分析与场论 第四版 谢树艺 习题答案 高等教育出版社 习题1 解答 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 ()1x a t y b t cos ,sin == () 2x t y t z t 3sin ,4sin ,3cos === 解: ()1r a ti b tj cos sin =+,其图形是xOy 平面上之椭圆。 ()2r ti tj tk 3sin 4sin 3cos =++,其图形是平面430x y -=与圆柱面 2223x z +=之交线,为一椭圆。 2.设有定圆O 与动圆c ,半径均为a ,动圆在定圆外相切而滚动,求动圆上一定点M 所描曲线的矢量方程。 解:设M 点的矢径为OM r xi yj ==+u u u u r ,AOC θ∠=,CM u u u r 与x 轴的夹角为 2θπ-;因OM OC CM =+u u u u r u u u r u u u u r 有 ()()r xi yj a i a j a i a j θθθπθπ2cos 2sin cos 2sin 2=+=++-+- 则 .2sin sin 2,2cos cos 2θθθθa a y a a x -=-= 故j a a i a a r )2sin sin 2()2cos cos 2(θθθθ-+-= 4.求曲线3 2 3 2,,t z t y t x = ==的一个切向单位矢量τ。 解:曲线的矢量方程为k t j t ti r 3 2 3 2++= 则其切向矢量为k t tj i dt dr 2 22++= 模为24221441|| t t t dt dr +=++= 于是切向单位矢量为2 22122||/t k t tj i dt dr dt dr +++= 6.求曲线x a t y a t z a t 2 sin ,sin 2,cos ,===在t π 4 = 处的一个切向矢量。

矢量分析与场论

矢量分析与场论 第一章 矢理分析 1.1 矢性函数 1. 矢性函数的定义:数性变量t 在一范围G 内,对于任意的t 都有唯一确定的矢量A 与其 对应则称A 是t 的矢性函数,并称G 为A 的定义域,记作:()A A t = 2. 矢性函数的极限和连续性 (1) 矢性函数极限的定义:()A t 在0t 某领域内有定义,对于0ε?>,0δ?>,常矢 量0A ,只要为0<0t t δ-<就有0()A t A ε-< ,则称0A 为()A t 当0t t →的极 限,记作:0 0lim ()t t A t A →= ; 极限的性质:(有界性)若0 0lim ()t t A t A →= ,则0δ?>,M>0,0(;)t U t δ?∈ 都有 ()A t M < 。 证明: 0lim ()1,0,..(;) t t A t A s t t U t εδδ→=∴=?>?∈ 都有0()1A t A ε-<= ,00()()1A t A A t A ∴-<-< , 0()1A t A ∴<+ ,取M=01A + 极限的则运算:0 lim ()()lim ()lim ()t t t t t t u t A t u t A t →→→=? 000l i m (()())l i m ()l i m () t t t t t t A t B t A t B t →→→±=± lim(()())lim ()lim ()t t t t t t A t B t A t B t →→→?=? lim(()())lim ()lim ()t t t t t t A t B t A t B t →→→?=? 其中()u t ,()A t ,()B t 当0t t →时极限均存在。 证明:设0 0lim ()t t A t A →= ,0 0lim ()t t u t u →=,0 0lim ()t t B t B →= ; 000000()()()()()()u t A t u A u t A t u A t u A t u A -=-+- ,

《矢量分析与场论》

1、若一个矢量的大小和方向不变,则该矢量为常矢量。 ( ) 2、若穿过一个封闭曲面的通量为零,则该曲面内无源。 ( ) 3、平行平面矢量场中的所有矢量的大小和方向都相同。 ( ) 二、单项选择题 1、下列关于导矢()t 'r 的说法正确的是( ) A 、()t 'r 的几何意义为矢端曲线上的一个单位切向矢量。 B 、()t 'r 的物理意义为一个质点的加速度矢量。 C 、若()t =r 常数,则()t r 与()t 'r 互相平行。 D 、()t 'r 恒指向t 值增大的一方 2、下列关于环量面密度和旋度的各种说法,正确的是( ) A 、环量面密度和旋度都是矢量。 B 、矢量场中某一个点的环量面密度有无数个 ,其中最大的那个环量面密度就 是旋度。 C 、旋度是用矢量场来描述数量场。 D 、某个方向的环量面密度等于旋度在该方向上的投影。 3、下列关于拉普拉斯运算符、调和场和调和函数,说法错误的是( ) A 、若0u ?=,则u 为调和函数 B 、()u divgrad u ?= C 、调和场的散度和旋度都为0 D 、调和场是一个矢量场

1、已知曲线的矢量方程为sin sin cos t t t =++r i j k ,该曲线的参数方程是______。 2、矢性函数()t A 的导矢()t 'A 可分解为两个矢量,分解后的矢量一个与()t A 垂直, 另一个矢量与()t A ______。 3、数量场x y u z -=22 通过M (2,1,1)的等值面方程为______。 4、矢量场()22xz yz x y =+-+A i j k 的矢量线方程为______。 5、矢量场333x y z =++A i j k 穿出球面2221x y z ++=的通量为______。 6、在线单连域内,场有势,场无旋,______,P Q R ?=++A dl dx dy dz 为某个函数 的全微分是互相等价的。 7、平面调和场的力线又是矢量场的_____。 8、正交曲线坐标系中一般曲线弧微分ds 和坐标曲线弧微分1ds ,2ds ,3ds 的关系是______。 四、计算题(每题8分,共40分) 1、已知矢量()()232(2)424t t t t t t =-++-A i j k ,计算(1)()1 lim t t =A (2分), (2)()d dt t A (2分),(3)()dt t ?A (2分),(4)()11dt t -?A (2分)。 2、计算积分()()0a e b d a ???≠?e ,式中()b ?e 为圆函数。 3、求函数u xyz =在曲面20z xy -=上的点M (2,3,3)处沿曲面上侧法线方向的 ()23222)()3yz y yz xyz xz -+++-i j k 所产生的散度场通过点

矢量分析与场论第四版谢树艺习题答案高等教育出版社.docx

4 矢量分析与场论第四版谢树艺习题答案高等教育出版社 习题1 解答 1 ?写出下列曲线的矢量方程,并说明它们是何种曲线。 1 X = a cost, y = bsint 2 X = 3sin t, y = 4sin t,z = 3cost 1 r =acosti bsintj ,其图形是Xoy 平面上之椭圆。 2 r = 3sin ti 4sin tj 3costk ,其图形 是平面4x-3y = 0与 圆柱面 z -32之交线,为一椭圆。 2.设有定圆0与动圆c ,半径均为a ,动圆在定圆外相切而滚动, 求动圆上一定点 M 所描曲线的矢量方程。 解:设M 点的矢径为O^ = ^Xi yj , Z AOC=二 2)-二;因 OM -OC CM 有 r = xi yj = 2a cosri 2asin ∏ j a cos 2v -二 i asin 2 - ■: j 则 X = 2acos ■- acos2^, 目=2asin ) - asin2^. 故 r=(2acos - acos2^ )i (2asi^ - asin2 ) j 2 4.求曲线x=t, y = t 2,z t 3的一个切向单位矢量 .。 3 2 2 3 解:曲线的矢量方程为 - ti tj 2tk dr . . 2 则其切向矢量为dt = i 2tj 2t k dr 2 4 2 模为 I d t Pl 4t 4t =1 2t dr ι dr i + 2tj + 2t 2k 于是切向单位矢量为不门頁F 1 2t 2 2 Tl 6.求曲线X =asin t,y =asin2t,z = acost,在t 处的一个切向矢量。 解: CM 与X 轴的夹角为

全的矢量分析与场论讲义(必考

矢量分析与场论 第一章 矢量分析 一 内容概要 1 矢量分析是场论的基础,本章主要包括以下几个主要概念:矢性函数及其极限、连续,有关导数、微分、积分等概念。与高等数学研究过的数性函数的相应概念完全类似,可以看成是这些概念在矢量分析中的推广。 2 本章所讨论的,仅限于一个自变量的矢性函数()t A ,但在后边场论部分所涉及的矢性函数,则完全是两个或者三个自变量的多元矢性函数()y x ,A 或者()z y x ,,A ,对于这种多元矢性函数及其极限、连续、偏导数、全微分等概念,完全可以仿照本章将高等数学中的多元函数及其有关的相应概念加以推广而得出。 3 本章的重点是矢性函数及其微分法,特别要注意导矢()t 'A 的几何意义,即()t 'A 是位于()t A 的矢端曲线上的一个切向矢量,其起点在曲线上对应t 值的点处,且恒指向t 值增大的一方。 如果将自变量取为矢端曲线的弧长s ,即矢性函数成为()s A A =,则()ds d s A A ='不仅是一个恒指向s 增大一方的切向矢量,而且是一个单位切向矢量。这一点在几何和力学上都很重要。 4 矢量()t A 保持定长的充分必要条件是()t A 与其导矢()t 'A 互相垂直。因此单位矢量与其导矢互相垂直。比如圆函数()j i e t t t sin cos +=为单位矢量,故有()()t t 'e e ⊥,此外又由于()()t t 1'e e =,故()()t t 1e e ⊥。(圆函数还可以用来简化较冗长的公式,注意灵活运用)。 5 在矢性函数的积分法中,注意两个矢性函数的数量积和两个矢性函数的矢量积的分部积分法公式有所不同,分别为:

矢量分析与场论课后答案..

矢量分析与场论 习题1 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 ()1x a t y b t cos ,sin == () 2x t y t z t 3sin ,4sin ,3cos === 解: ()1r a ti b tj cos sin =+,其图形是xOy 平面上之椭圆。 ()2r ti tj tk 3sin 4sin 3cos =++,其图形是平面430x y -=与圆柱面 2223x z +=之交线,为一椭圆。 4.求曲线3 2 3 2,,t z t y t x = ==的一个切向单位矢量τ。 解:曲线的矢量方程为k t j t ti r 32 3 2+ += 则其切向矢量为k t tj i dt dr 222++= 模为24221441||t t t dt dr +=++= 于是切向单位矢量为2 22122||/t k t tj i dt dr dt dr +++= 6.求曲线x a t y a t z a t 2 sin ,sin 2,cos ,===在t π 4 = 处的一个切向矢量。 解:曲线矢量方程为 r a ti a tj a tk 2sin sin2cos =++ 切向矢量为r a ti a tj a tk t τd sin22cos2sin d ==+- 在t π 4 = 处,t r ai a k t π τ4 d 2d 2 = = =- 7.求曲线t t z t y t x 62,34,12 2 -=-=+= 在对应于2=t 的点M 处的切线方程和法平面方程。 解:由题意得),4,5,5(-M 曲线矢量方程为,)62()34()1(22k t t j t i t r -+-++=

矢量期末复习题.docx

矢量分析与场论复习题 注意题目中出现的e x i,e y T j,e z 1.求下列温度场的等温线 1)T = xy, 2) T= J , x + y 解求等温线即设定相关的方程为常数,因此可得 C (1)xy = C f y =一; (2) x2 + y2 = C x ' 1.求下列标量场的等值面 1)u = ------ ! ------ , 2) w = z-yjx2 + y2 , 3) u = ln(x2+ y2 +z2) ax + by + cz 解据题意可得 (1)ax + by -\-cz=k (2)z _ J* +〉,2 = c , x2 + y2 = (z -c)2 (3)ln(x2 + y2 +z2)=c , x2 +y2 +z2 =e c, x2 +>j2+ z2 =k~ 2.求矢量场A = xe s +玖+ 2理经过点M(1.0, 2.0, 3.0)的矢量线方程。 解根据矢量线的定义,可得—- x y 2z 解微分方程,可得y = c【x, z = c2x2 将点M(L0, 2.0, 3.0)的坐标代入,可得q=2, c2 =3 即y = 2x, z = 3x2为所求矢 量线方程。 3.求矢量场A = y2xe x +x2Xv + )界阻的矢量线方程。 解根据矢量线的定义,可得芈=孚=半y x x y y z 解微分方程,可得x2-r =c,, z = c2x为所求矢量线方程。 4.设u(M) = 3尢2-2)* + 2兀z ,求: 1)讥M)在点M o(l.O, 2.0, 3.0)处沿矢量l = yxe x+ue y+xye:方向的方向导数, 2)u(M)在点M o(l.O, 2.0, 3.0)处沿矢量Z = (6x + 2z)e x -2ze y + (2z-2y + 2x)e z 方向的方向导数。 2 2 解/ 的方向余弦 为COS6Z = ;= ~^=, 722 +32 +22V17 3 3 2 2 COS B = { -------- = ~^= , COS7 = { ------- = —^=; A/22+32+22V17 722 +32 +22V17

矢量分析与场论讲义

矢量分析与场论 第一章矢量分析 一内容概要 1矢量分析是场论的基础,本章主要包括以下几个主要概念:矢性函数及其极限、连续,有关导数、微分、积分等概念。与高等数学研究过的数性函数的相应概念完全类似,可以看成是这些概念在矢量分析中的推广。 2本章所讨论的,仅限于一个自变量的矢性函数 A t ,但在后边场论部分所涉及的矢性函数,则完全是两个或者三个自变量的多元矢性函数A x,y或者A x, y,z,对于这种多元矢性函数及其极限、连续、偏导数、全微分等概念,完全可以仿照本章将高等数学中的多元函数及其有关的相应概念加以推广而得出。 3本章的重点是矢性函数及其微分法,特别要注意导矢A't的几何意义,即 A' t是位于A t的矢端曲线上的一个切向矢量,其起点在曲线上对应t值的点处,且恒指向t值增大的一方。 如果将自变量取为矢端曲线的弧长S,即矢性函数成为A = A s,则 A' s =d A不仅是一个恒指向S增大一方的切向矢量,而且是一个单位ds 切向矢量。这一点在几何和力学上都很重要。 4矢量A t保持定长的充分必要条件是 A t与其导矢A' t互相垂直。因此单位矢量与其导矢互相垂直。比如圆函数 e t = cost i si nt j为单 位矢量,故有e t _e't,此外又由于e' t = ei t,故e t — & t。(圆函数还可以用来简化较冗长的公式,注意灵活运用)。 5在矢性函数的积分法中,注意两个矢性函数的数量积和两个矢性函数的矢量积的分部积分法公式有所不同,分别为: A B'dt 二AB— B A'dt

A B'dt 二 A B B A'dt 前者与高等数学种数性函数的分部积分法公式一致,后者有两两项变为了求和,这是因为矢量积服从于“负交换律”之故。 6在矢量代数中,在引进了矢量坐标之后,一个空间量就和三个数量构成 对应关系,而且有关矢量的一些运算,例如和、差以及数量与矢量的乘积都可以转化为三个数量坐标的相应运算。同样,在矢量分析中,若矢性函数采用坐标表示式,则一个矢性函数就和三个数性函数构成一一对应关系,而且有关矢性函数的一些运算,例如计算极限、求导数、求积分等亦可以转化为对其三个坐标函数的相应运算。 7矢性函数极限的基本运算公式(14)、导数运算公式(p11)、不定积分 的基本运算公式(p16)典型例题: 教材p6 例2、p10 例4、p12 例6、p13 例7。习题一(p19~20) 此外还有上课所讲的例题。补充: 1 2 TT 1)设r 二a0]亠b k,求S 二-i ir r' d^ 2)一质点以常角加速度沿圆周r = ae「运动,试证明其加速度 2 八-£r,其中v为速度v的模。 a 3)已知矢量 A =t i -2t j l nt k , B = e t i si nt j - 3t k ,计算积分.A B' dt。 4)已知矢量 A = t i 2t j , B = cost i sint j ? e,k,计算积分A B'dt。 第二章场论一内容概要1本章按其特点可以划分为三部分:第一部分为第一节,除介绍场的概念外,主要讨论了如何从宏观上利用等值面(线)和矢量线描述场的分布规律;第二部分为第二、三、四节,内容主要是从微观方面揭示场的一些重要特性;第三部分为第五节,主要介绍三种具有某种特性而又常见的矢量场。其中第二部分又为本章之重点。 2空间数量场的等值面和平面数量场的等值线以及矢量场的矢量线等,都是为了能够形象直观地体现所考察的数量uM或矢量A M在场中的宏观分布情况而引入的概念。 比如温度场中的等温面,电位场中的等位面,都是空间数量场中等值

矢量分析与场论课后答案.

矢量分析与场论 习题1 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 ()1x a t y b t cos ,sin == () 2x t y t z t 3sin ,4sin ,3cos === 解: ()1r a ti b tj cos sin =+,其图形是xOy 平面上之椭圆。 ()2r ti tj tk 3sin 4sin 3cos =++,其图形是平面430x y -=与圆柱面 2223x z +=之交线,为一椭圆。 4.求曲线3 2 3 2,,t z t y t x = ==的一个切向单位矢量τ。 解:曲线的矢量方程为k t j t ti r 3 2 3 2+ += 则其切向矢量为k t tj i dt dr 222++= 模为24221441|| t t t dt dr +=++= 于是切向单位矢量为 2 22122||/t k t tj i dt dr dt dr +++= 6.求曲线x a t y a t z a t 2 sin ,sin2,cos ,===在t π 4 = 处的一个切向矢量。 解:曲线矢量方程为 r a ti a tj a tk 2sin sin2cos =++ 切向矢量为r a ti a tj a tk t τd sin22cos2sin d ==+- 在t π 4 = 处,t r ai a k t π τ4 d d = = =- 7.求曲线t t z t y t x 62,34,12 2-=-=+= 在对应于2=t 的点M 处的切线方程和 法平面方程。 解:由题意得),4,5,5(-M 曲线矢量方程为,)62()34()1(22k t t j t i t r -+-++=

(完整版)矢量分析与场论第四版谢树艺习题答案

4 习题 1 解答 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 1 x acost, y bsint 2 x 3sin t, y 4sin t,z 3cost 解: 1 r a costi bsin tj ,其图形是 xOy 平面上之椭圆。 2 r 3sin ti 4sin tj 3cos tk , 其 图 形 是 平 面 4x 3y 0 与 圆 柱 面 222 x 2 z 2 32 之交线,为一椭圆。 2.设有定圆 O 与动圆 c ,半径均为 a ,动圆在定圆外相切而滚 动, 所描曲线的矢量方程。 uuuur 解:设 M 点的矢径为 OM r xi yj , AOC 与 x 轴的夹角为 uuuur uuur ;因 OM OC uuuur CM 有 r xi yj 2acos i 2asin j acos 2 asin 2 则 x 2acos acos2 ,y 2asin asin2 . 故 r (2acos acos2 )i (2asin asin2 )j 4.求曲线 x t,y 2 ,z 2 t 3 的一个切向单位矢 量 解:曲线的矢量方程为 ti t dr 则其切向矢量为 dt 2t j 模为| d d r t | 1 4t 2 4t 4 dr 于是切向单位矢量为 dt / | d d r t 6.求曲线 x asin 2 t,y 23 t 3 k 2t 2 k 2t 2tj 2t 2 k 2 1 2t 2 asin 2t,z acost,在 t 处的一个切向矢量。 解:曲线矢量方程为 r asin 2 ti asin2tj acostk 求动圆上一定点 M

矢量分析与场论课后答案

矢量分析与场论课后答案矢量分析与场论 习题1 1(写出下列曲线的矢量方程,并说明它们是何种曲线。 1 xatybt,,cos,sin,, 2 xtytzt,,,3sin,4sin,3cos,, 1解: ,其图形是平面上之椭圆。 ratibtj,,cossinxOy,, ,其图形是平面与圆柱面rtitjtk,,,3sin4sin3cos430xy,,2,,222xz,,3之交线,为一椭圆。 2234(求曲线x,t,y,t,z,t的一个切向单位矢量。 ,3 223,,,rtitjtk解:曲线的矢量方程为 3 dr2,i,2tj,2tk则其切向矢量为 dt dr242||,1,4t,4t,1,2t 模为 dt 2drdri,2tj,2tk /||,于是切向单位矢量为 2dtdt1,2t ,2t,6(求曲线在处的一个切向矢量。 xatyatzat,,,sin,sin2,cos,4 2ratiatjatk,,,sinsin2cos解:曲线矢量方程为 dr,,,,,atiatjatksin22cos2sin切向矢量为 dt

,d2rt,在处, ,,,,aiak,4t,4d2t 22t,27.求曲线在对应于的点M处的切线方程和x,t,1,y,4t,3,z,2t,6t 法平面方程。 22r,(t,1)i,(4t,3)j,(2t,6t)k,M(5,5,,4),解:由题意得曲线矢量方程为dr在的点M处,切向矢量 t,2,,,[2ti,4j,(4t,6)k],4i,4j,2kt,2dtt,2 y,5y,5x,5z,4x,5z,4于是切线方程为 ,,,即,,442221于是法平面方程为,即 2(x,5),2(y,5),(z,4),0 2x,2y,z,16,0 238(求曲线上的这样的点,使该点的切线平行于平面。 xyz,,,24rtitjtk,,, dr2解:曲线切向矢量为, ? ,,,,,23itjtkdt 平面的法矢量为,由题知 nijk,,,2 22 ,,,,,,,niktt,,itjtk2302j,,,143,,,, 1t,,,1,得。将此依次代入?式,得3 111 |,|11t,,,,,i,j,k,,,i,j,k t,,39273 111,,,,,,1,11,,,故所求点为,,,,3927,, 习题2 1(说出下列数量场所在的空间区域,并求出其等值面。 11 u,;,,AxByCzD,,, z2,sinuarc ,,22,xy 1AxByCzD,,,,0解:场所在的空间区域是除外的空间。,, 等值面为 11,C或Ax,By,Cz,D,,0,这是与平(C,0为任意常数)11Ax,By,Cz,DC1

矢量分析与场论讲义

矢量分析与场论 矢量分析是矢量代数和微机分运算的结合和推广,主要研究矢性函数的极限、连续、导数、微分、积分等。而场论则是借助于矢量分析这个工具,研究数量场和矢量场的有关概念和性质。通过这一部分的学习,可使读者掌握矢量分析和场论这两个数学工具,并初步接触到算子的概念及其简单用法,为以后学习有关专业课程和解决实际问题,打下了必要的数学基础。 第一章 矢量分析 一 内容概要 1 矢量分析是场论的基础,本章主要包括以下几个主要概念:矢性函数及其极限、连续,有关导数、微分、积分等概念。与高等数学研究过的数性函数的相应概念完全类似,可以看成是这些概念在矢量分析中的推广。 2 本章所讨论的,仅限于一个自变量的矢性函数()t A ,但在后边场论部分所涉及的矢性函数,则完全是两个或者三个自变量的多元矢性函数()y x ,A 或者()z y x ,,A ,对于这种多元矢性函数及其极限、连续、偏导数、全微分等概念,完全可以仿照本章将高等数学中的多元函数及其有关的相应概念加以推广而得出。 3 本章的重点是矢性函数及其微分法,特别要注意导矢()t 'A 的几何意义,即()t 'A 是位于()t A 的矢端曲线上的一个切向矢量,其起点在曲线上对应t 值的点处,且恒指向t 值增大的一方。 如果将自变量取为矢端曲线的弧长s ,即矢性函数成为()s A A =,则()ds d s A A ='不仅是一个恒指向s 增大一方的切向矢量,而且是一个单位切向矢量。这一点在几何和力学上都很重要。 4 矢量()t A 保持定长的充分必要条件是()t A 与其导矢()t 'A 互相垂直。因此单位矢量与其导矢互相垂直。比如圆函数()j i e t t t sin cos +=为单位矢量,故有()()t t 'e e ⊥,此外又由于()()t t 1'e e =,故()()t t 1e e ⊥。(圆函

第一章矢量分析

1矢量分析 1.在球面坐标系中,当?与φ无关时,拉普拉斯方程的通解为:()。 2.我们讨论的电磁场是具有确定物理意义的(),这些矢量场在一定的区域内具有一定的分布规律,除有限个点或面以外,它们都是空间坐标的连续函数。 3. 矢量场在闭合面的通量定义为,它是一个标量;矢量场的()也是一个标量,定义为。 4. 矢量场在闭合路径的环流定义为,它是一个标量;矢量场的旋度是一个(),它定义为。 5.标量场u(r)中,()的定义为,其中n为变化最快的方向上的单位矢量。 6. 矢量分析中重要的恒等式有任一标量的梯度的旋度恒为()。 任一矢量的旋度的散度恒为()。 7. 算符▽是一个矢量算符,在直角坐标内,,所以 是个(),而是个(),是个()。

8. 亥姆霍兹定理总结了矢量场的基本性质,分析矢量场总要从它的散度和旋度开始着手,()方程和()方程组成了矢量场的基本微分方程。 9. ()坐标、()坐标和球坐标是电磁理论中常用的坐标 10. 标量:()。如电压U、电荷量Q、电流I、面积S 等。 11. 矢量:()。如电场强度矢量、磁场强度矢量、作用力矢量、速度矢量等。 12. 标量场:在指定的时刻,空间每一点可以用一个标量()地描述,则该标量函数定出标量场。例如物理系统中的温度、压力、密度等可以用标量场来表示。 13. 矢量场:在指定的时刻,空间每一点可以用一个矢量()地描述,则该矢量函数定出矢量场。例如流体空间中的流速分布等可以用矢量场来表示。 14. 旋度为零的矢量场叫做() 15. 标量函数的梯度是(),如静电场 16.无旋场的()不能处处为零 17. 散度为零的矢量场叫做() 18. 矢量的旋度是(),如恒定磁场 19.无散场的()不能处处为零 20.一般场:既有(),又有() 21.任一标量的梯度的旋度恒为()

矢量分析与场论第四版_谢树艺习题答案

矢量分析与场论习题解答 习题1解答 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 ()1x a t y b t cos ,sin == () 2x t y t z t 3sin ,4sin ,3cos === 解: ()1r a ti b tj cos sin =+,其图形是xOy 平面上之椭圆。 ()2r ti tj tk 3sin 4sin 3cos =++,其图形是平面430x y -=与圆柱面2 2 2 3x z +=之交线,为一椭圆。 2.设有定圆O 与动圆c ,半径均为a ,动圆在定圆外相切而滚动,求动圆上一定点M 所描曲线的矢量方程。 解:设M 点的矢径为OM r xi yj ==+,AOC θ∠=,CM 与x 轴的夹角为2θπ-;因OM OC CM =+有 ()()r xi yj a i a j a i a j θθθπθπ2cos 2sin cos 2sin 2=+=++-+- 则 .2sin sin 2,2cos cos 2θθθθa a y a a x -=-= 故j a a i a a r )2sin sin 2()2cos cos 2(θθθθ-+-= 4.求曲线3 2 3 2,,t z t y t x = ==的一个切向单位矢量τ。 解:曲线的矢量方程为k t j t ti r 3 2 3 2+ += 则其切向矢量为k t tj i dt dr 2 22++= 模为24221441|| t t t dt dr +=++= 于是切向单位矢量为2 22122||/t k t tj i dt dr dt dr +++= 6.求曲线x a t y a t z a t 2 sin ,sin 2,cos ,===在t π 4 = 处的一个切向矢量。 解:曲线矢量方程为 r a ti a tj a tk 2sin sin2cos =++ 切向矢量为r a ti a tj a tk t τd sin22cos2sin d ==+- 在π r d 2

第一章 矢量分析典型例题

第一章 矢量分析 1.1.试证明下列三个矢量: x y z 11e 9e 18e A =++ ,x y z 17e 9e 27e B =++ ,x y z 4e 6e 5e C =-+ 在同一平面上。 1.2.给定三个矢量A ,B 和C 如下: x y z e 2e 3e A =+- ,y z 4e e B =-+ ,x y 5e 2e C =- 求:1)A e (A e 表示矢量A 方向上的单位矢量)。 2)B A ? 3)A C ? 1.3.证明:如果C A B A ?=?且A B A C ?=? ,则B C = 。 1.4.如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确 定该未知矢量。设A 为一已知矢量,P A X = 而P A X =? ,P 和P 已知,试求X 。 1.5.设标量2 3 u xy yz =+,矢量x y z 2e 2e e A =+- ,试求标量函数u 在(2,1,1) -处沿矢量A 的方向上的方向导数。 1.6.设232(,,)3u x y z x y y z =-,求u 在点(1,2,1)M -处的梯度。 1.7.设23 x y z e e (3)e A x y z x =++- ,求A 在点(1,0,1)M -处的散度。 1.8.设324x y z e 2e 2e A xz x yz yz =-+ ,求A 在点(1,1,1)M --处的旋度。 1.9.求1 ()r ?。 1.10.设r =(,,)M x y z 的矢径r 的模,试证明:0r r r r ?= = 。 1.11.计算:1)矢量r 对一个球心在原点,半径为a 的球表面的积分。 2)??对球体积的积分。 1.12.求矢量22 x y z e e e A x x y z =+- 沿,x y 平面上的一个边长为2的正方形回 路的线积分,此正方形的两个边分别与x 轴和y 轴相重合。再求A ?? 对此回路

场论典型例题

场论典型例题 第一章 矢量分析 例题1、(基本矢量计算) 已知两个矢量j i 2+=A ,j i 34+=B ,求 (1)B A + (2)B A - (3)B A ?(4)B A ? (5)若A 和B 两矢量夹角为α,求αcos 。 解: (1)B A +=)34()2(j i j i +++=j i )32()41(+++=j i 55+ (2)B A -=)34()2(j i j i +-+=j i )32()41(-+-=j i --3 (3)B A ?=)34()2(j i j i +?+=)32()41(?+?=64+=10 (4)B A ?=)34()2(j i j i +?+= 0 3 4 0 2 1 k j i =k 5- (5)根据内积的定义有:B A ?=αcos B A ,其中A ,B 为矢量的模。 所以:B ΑB A ?=αcos 其中B A ?在(2)中已经得到B A ?=10, 而A =5021222= ++,B =50342 22=++ 因此B ΑB A ?= αcos = 5 510= 5 2 说明: 此题可以用于掌握矢量运算法则。 例题2、(矢性函数的极限) 设t t t cos sin )(B A F += )20(π<≤t ,式中A ,B 为矢量,分别为j i -=A , j i +=B 。求下列极限。 (1))(lim 3 /t F t π→ (2)|)(|lim 3 /t F t π→

解:(1)整理)(t F 。 t j i t j i t t t F cos )(sin )(cos sin )(++-=+=B A =j t t i t t )sin (cos )sin (cos -++ 而 3/|)sin (cos π→+t t t = 23 1+ 3/|)sin (cos π→-t t t = 231- 所以)(lim 3 /t F t π→= i 2 31+ + j 2 3 1- (2)|)(|t F =|j t t i t t )sin (cos )sin (cos -++| =22)sin (cos )sin (cos t t t t -++ =2 = →|)(|lim 3 /t F t π2 说明: 对矢性函数的极限,归结为对各坐标分量求极限,因此,需要温习高等数学中微积分中关于“函数极限”的内容,特别是一些常用极限的求法。 例题3、(求矢性函数的导数) 设矢性函数r 为},sin ,cos {ct t a t a , 2 2 c a s t += ,其中a 和c 都是常数,求 ds d r 、 ds d r 。 解:由复合函数的求导公式有 ds d r =dt d r . ds dt ds dt 为数性函数求导,根据微积分中的知识,求得:ds dt = 2 2 1c a + 另外,因为矢性函数的导数归结为三个数性函数的求导,所以 dt d r =},cos ,sin {c t a t a - 因此,ds d r =dt d r .ds dt =} ,cos ,sin {c t a t a -2 2 1c a +

第一章矢量分析与场论基础题解

第一章 矢量分析与场论基础 1-1 求下列温度场的等温线 1)T xy =,2)T x y = +12 2 解 求等温线即设定相关的方程为常数,因此可得 ⑴ C xy =,x C y = ;⑵ C y x =+2 2 1-2 求下列标量场的等值面 1)u a x b y cz = ++1 ,2) =- u z x y 2 2 +, 3)u x y z =ln(++) 2 2 2 解 据题意可得 ⑴ k cz by ax =++ ⑵ c y x z =+- 2 2 ,() 2 2 2 c z y x -=+ ⑶ ()c z y x =++222ln ,c e z y x =++222,2222k z y x =++ 1-3 求矢量场A e e e =++x y z x y z 2 经过点M (.,.,.)102030的矢量线方程。 解 根据矢量线的定义,可得 z z y y x x 2d d d == 解微分方程,可得 x c y 1=,22x c z = 将点M (.,.,.)102030的坐标代入,可得 21=c ,32=c 即 x y 2=,23x z = 为所求矢量线方程。 1-4 求矢量场A e e e =++y x x y y z x y z 222的矢量线方程。 解 根据矢量线的定义,可得 z y z y x y x y x 2 2 2 d d d = = 解微分方程,可得 122c y x =-,x c z 2= 为所求矢量线方程。 1-5 设u x z yz xz ()M =+-+32222,求: 1)u ()M 在点M 0102030(.,.,.)处沿矢量l e e e =++yx zx xy x y z 方向的方向 导数, 2)u ()M 在点M 0(.,.,.)102030处沿矢量 l e e e =+-+-+()()622222x z z z y x x y z 方向的方向导数。 解 l 的方向余弦为 1722 32 2 cos 2 22 = ++= α, 17 32 32 3 cos 2 22 = ++= β,17 22 32 2cos 2 22 = ++= γ ;

山东科技大学《矢量分析与场论》试卷

一、判断题 1、若一个矢量的大小和方向不变,则该矢量为常矢量。 ( ) 2、若穿过一个封闭曲面的通量为零,则该曲面内无源。 ( ) 3、平行平面矢量场中的所有矢量的大小和方向都相同。 ( ) 二、单项选择题 1、下列关于导矢()t 'r 的说法正确的是( ) A 、()t 'r 的几何意义为矢端曲线上的一个单位切向矢量。 B 、()t 'r 的物理意义为一个质点的加速度矢量。 C 、若()t =r 常数,则()t r 与()t 'r 互相平行。 D 、()t 'r 恒指向t 值增大的一方 2、下列关于环量面密度和旋度的各种说法,正确的是( ) A 、环量面密度和旋度都是矢量。 B 、矢量场中某一个点的环量面密度有无数个 ,其中最大的那个环量面密度就 是旋度。 C 、旋度是用矢量场来描述数量场。 D 、某个方向的环量面密度等于旋度在该方向上的投影。 3、下列关于拉普拉斯运算符、调和场和调和函数,说法错误的是( ) A 、若0u ?=,则u 为调和函数 B 、()u divgrad u ?= C 、调和场的散度和旋度都为0 D 、调和场是一个矢量场 三、填空题 1、已知曲线的矢量方程为sin sin cos t t t =++r i j k ,该曲线的参数方程是______。 2、矢性函数()t A 的导矢()t 'A 可分解为两个矢量,分解后的矢量一个与()t A 垂直,

另一个矢量与()t A ______。 3、数量场x y u z -=22 通过M (2,1,1)的等值面方程为______。 4、矢量场()22xz yz x y =+-+A i j k 的矢量线方程为______。 5、矢量场333x y z =++A i j k 穿出球面2221x y z ++=的通量为______。 6、在线单连域内,场有势,场无旋,______,P Q R ?=++A dl dx dy dz 为某个函数 的全微分是互相等价的。 7、平面调和场的力线又是矢量场的_____。 8、正交曲线坐标系中一般曲线弧微分ds 和坐标曲线弧微分1ds ,2ds ,3ds 的关系是 ______。 四、计算题(每题8分,共40分) 1、已知矢量()()232(2)424t t t t t t =-++-A i j k ,计算(1)()1 lim t t =A (2分), (2)()d dt t A (2分),(3)()dt t ?A (2分),(4)()11dt t -?A (2分)。 2、计算积分()()0a e b d a ???≠?e ,式中()b ?e 为圆函数。 3、求函数u xyz =在曲面20z xy -=上的点M (2,3,3)处沿曲面上侧法线方向的方向导数M u n ??。 4、求矢量场()2322(32)()3x yz y yz xyz xz =-+++-A i j k 所产生的散度场通过点 (2,1,1)M -的等值面方程及其在点M 处沿x 轴正向的变化率。 五、证明题 1、设n 为闭合曲面S 的向外单位法矢,证明 (1)dV u u dS u S )(A A n A ??+??=??????Ω 2、在球面坐标系中,证明2 1r r = A e 为有势场,并求其势函数v 。

矢量分析与场论_谢树艺习题答案清晰版

习题1 解答 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 ()1x a t y b t cos ,sin == () 2x t y t z t 3sin ,4sin ,3cos === 解: ()1r a ti b tj cos sin =+,其图形是xOy 平面上之椭圆。 ()2r ti tj tk 3sin 4sin 3cos =++,其图形是平面430x y -=与圆柱面 2223x z +=之交线,为一椭圆。 2.设有定圆O 与动圆c ,半径均为a ,动圆在定圆外相切而滚动,求动圆上一定点M 所描曲线的矢量方程。 解:设M 点的矢径为OM r xi yj ==+,AOC θ∠=,CM 与x 轴的夹角为 2θπ-;因OM OC CM =+有 ()()r xi yj a i a j a i a j θθθπθπ2cos 2sin cos 2sin 2=+=++-+- 则 .2sin sin 2,2cos cos 2θθθθa a y a a x -=-= 故j a a i a a r )2sin sin 2()2cos cos 2(θθθθ-+-= 4.求曲线3 2 3 2,,t z t y t x = ==的一个切向单位矢量τ。 解:曲线的矢量方程为k t j t ti r 3 2 3 2++= 则其切向矢量为k t tj i dt dr 2 22++= 模为24221441|| t t t dt dr +=++= 于是切向单位矢量为2 22122||/t k t tj i dt dr dt dr +++= 6.求曲线x a t y a t z a t 2 sin ,sin 2,cos ,===在t π 4 = 处的一个切向矢量。

矢量分析与场论第三版(谢树艺著)课后习题答案下载

矢量分析与场论第三版(谢树艺著)课后习题答案下载《矢量分析与场论(第3版)》由谢树艺编,是在《工程数学——矢量分析与场论》(第2版)的基础上修订而成的下面是由分享的矢量分析与场论第三版(谢树艺著)课后习题答案下载,希望对你有用。 ???点击此处下载???矢量分析与场论第三版(谢树艺著)课后习题答案 出版社:高等教育出版社;第4版(xx年5月1日) 平装:170页 语种:简体中文 开本:32 ISBN:7040348489,9787040348484 条形码:9787040348484 商品尺寸:19.6x13.6x0.8cm 商品重量:159g 品牌:高等教育出版社 ASIN:B0084XU730 本书各章包括:矢量分析,场论,哈密顿算子V,梯度、散度、旋度与调和量在正交曲线坐标系中的表示式。此外,考虑到某些学科领域的需要,作为本书的附录,增讲了若干正交曲线坐标系。《矢量分析与场论(第3版)》可作为一般工科院校本课程的教材使用。 第一章矢量分析 第一节矢性函数

1.矢性函数的概念 2.矢端曲线 3.矢性函数的极限和连续性 第二节矢性函数的导数与微分 1.矢性函数的导数 2.导矢的几何意义 3.矢性函数的微分 4.矢性函数的导数公式 5.导矢的物理意义 6.拉格朗日中值定理 第三节矢性函数的积分 1.矢性函数的不定积分 2.矢性函数的定积分 习题1 第二章场论 第一节场 1.场的概念 2.数量场的等值面 3.矢量场的矢量线 4.平行平面场 习题2 第二节数量场的方向导数和梯度

1.方向导数 2.梯度 习题3 第三节矢量场的通量及散度 1.通量 2.散度 3.平面矢量场的通量与散度 习题4 第四节矢量场的环量及旋度 1.环量 2.旋度 习题5 第五节几种重要的矢量场 1.有势场 2.管形场 3.调和场 习题6 第三章哈密顿算子▽ 习题7 第四章梯度、散度、旋度与调和量在正交曲线坐标系中的表示式 第一节曲线坐标的概念

相关主题
文本预览
相关文档 最新文档