当前位置:文档之家› 高中数学竞赛平面几何讲座(非常详细)

高中数学竞赛平面几何讲座(非常详细)

高中数学竞赛平面几何讲座(非常详细)
高中数学竞赛平面几何讲座(非常详细)

第一讲 注意添加平行线证题

在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁.

添加平行线证题,一般有如下四种情况.

1、为了改变角的位置

大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要.

例1 、设P 、Q 为线段BC 上两点,且BP =CQ,A 为BC 外一动点(如图1).当点A 运动到使

∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形.

证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D.连结DA.

在△DBP =∠AQC 中,显然∠DBP =∠AQC,∠DPB =∠C. 由BP =CQ,可知△DBP ≌△AQC.有DP =AC,∠BDP =∠QAC. 于是,DA ∥BP,∠BAP =∠BDP.则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP.所以AB =AC.

这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅.

例2、如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE.求证:∠EBA =∠ADE.

证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P,连PE. 由AB CD,易知△PBA ≌△ECD.有PA =ED,PB =EC. 显然,四边形PBCE 、PADE 均为平行四边形.有 ∠BCE =∠BPE,∠APE =∠ADE.由∠BAF =∠BCE,可知

∠BAF =∠BPE.有P 、B 、A 、E 四点共圆.于是,∠EBA =∠APE.所以,∠EBA =∠ADE. 这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙.

2、欲“送”线段到当处

利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题.

例3、在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂

线,M 、N 、Q 为垂足.求证:PM +PN =PQ.

证明:如图3,过点P 作AB 的平行线交BD 于F,过点F 作BC 的 平行线分别交PQ 、AC 于K 、G,连PG. 由BD 平行∠ABC,可知点F 到AB 、BC 两边距离相等.有KQ =PN. 显然,PD EP =FD EF =GD CG ,可知PG ∥EC. 由CE 平分∠BCA,知GP 平分∠FGA.有PK =PM.于是,PM +PN =PK +KQ =PQ.

这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK,就有PM +PN =PQ.证法非常简捷.

3 、为了线段比的转化

由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的. ∥=A D

B P Q

C 图1

P E D G A B F C 图2

A N E

B Q K G

C

D M F P 图3

例4 设M 1、M 2是△ABC 的BC 边上的点,且BM 1=CM 2.任作一直线分别交AB 、AC 、AM 1、AM 2于P 、Q 、N 1、N 2.试证:AP AB +AQ

AC =11AN AM +22AN AM . 证明:如图4,若PQ ∥BC,易证结论成立. 若PQ 与BC 不平行, 设PQ 交直线BC 于D.过点A 作PQ 的平行线交直线BC 于E.

由BM 1=CM 2,可知BE +CE =M 1E +M 2E,

易知

AP AB =DE BE ,AQ AC =DE CE ,11AN AM =DE E M 1,22AN AM =DE E M 2. 则AP AB +AQ AC =DE CE BE +=DE E M E M 21+=11AN AM +2

2AN AM . 所以,AP

AB +AQ AC =11AN AM +22AN AM . 这里,仅仅添加了一条平行线,将求证式中的四个线段比“通分”,使公分母为DE,于是问题迎刃而解.

例5、 AD 是△ABC 的高线,K 为AD 上一点,BK 交AC 于E,CK 交AB 于F.求证:∠FDA =∠EDA.

证明:如图5,过点A 作BC 的平行线,分别交直线DE 、DF 、 BE 、CF 于Q 、P 、N 、M.

显然,AN BD =KA KD =AM

DC .有BD ·AM =DC ·AN. (1) 由BD AP =FB AF =BC AM ,有AP =BC

AM BD ·. (2) 由DC AQ =EC AE =BC AN ,有AQ =BC AN DC ·. (3) 对比(1)、(2)、(3)有AP =AQ.

显然AD 为PQ 的中垂线,故AD 平分∠PDQ.所以,∠FDA =∠EDA.

这里,原题并未涉及线段比,添加BC 的平行线,就有大量的比例式产生,恰当地运用这些比例式,就使AP 与AQ 的相等关系显现出来.

4、为了线段相等的传递

当题目给出或求证某点为线段中点时,应注意到平行线等分线段定理,用平行线将线段相等的关系传递开去.

例6 在△ABC 中,AD 是BC 边上的中线,点M 在AB 边上,点N 在AC 边上,并且∠MDN =90°.如果BM 2+CN 2=DM 2+DN 2,求证:AD 2=41(AB 2+AC 2). 证明:如图6,过点B 作AC 的平行线交ND 延长线于E .连ME . 由BD =DC,可知ED =DN.有△BED ≌△CND. 于是,BE =NC. 显然,MD 为EN 的中垂线.有 EM =MN. 由BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2,可知△BEM 为直角三角形,∠MBE =90°.有∠ABC +∠ACB =∠ABC +∠EBC =90°.于是,∠BAC =90°. 所以,AD 2=2

21??

? ??BC =41(AB 2+AC 2). 这里,添加AC 的平行线,将BC 的以D 为中点的性质传递给EN,使解题找到出路. A P

E D M 2M 1B Q N 1N 2图4图5M P A Q N

F B D C

E K 图6

A

N C D

E B M

例7、如图7,AB 为半圆直径,D 为AB 上一点,分别在半圆上取点E 、F,使EA =DA,FB =DB.过D 作AB 的垂线,交半圆于C.求证:CD 平分EF. 证明:如图7,分别过点E 、F 作AB 的垂线,G 、H 为垂足,连FA 、EB.

易知DB 2=FB 2=AB ·HB,AD 2=AE 2=AG ·AB.

二式相减,得DB 2-AD 2=AB ·(HB -AG),或 (DB -AD)·AB =AB ·(HB -AG). 于是,DB -AD =HB -AG,或 DB -HB =AD -AG.

就是DH =GD.显然,EG ∥CD ∥FH.故CD 平分EF. 这里,为证明CD 平分EF,想到可先证CD 平分GH.为此添加CD 的两条平行线EG 、FH,从而得到G 、H 两点.证明很精彩.

经过一点的若干直线称为一组直线束.一组直线束在一条直线上截得的线段相等,在该直线的平行直线上截得的线段也相等.

如图8,三直线AB 、AN 、AC 构成一组直线束,DE 是与BC 平行的

直线.于是,有 BN DM =AN AM =NC ME ,即 BN DM =NC ME 或ME DM =NC BN . 此式表明,DM =ME 的充要条件是 BN =NC. 利用平行线的这一性质

,解决某些线段相等的问题会很漂亮. 例8 如图9,ABCD 为四边形,两组对边延长后得交点E 、F,对角线

BD ∥EF,AC 的延长线交EF 于G.求证:EG =GF. 证明:如图9,过C 作EF 的平行线分别交AE 、AF 于M 、N.由BD ∥EF ,

可知MN ∥BD.易知 S △BEF =S △DEF .有S △BEC =S △ⅡKG - *5ⅡDFC .

可得MC =CN. 所以,EG =GF. 例9 如图10,⊙O 是△ABC 的边BC 外的旁切圆,D 、E 、F 分别为⊙O 与BC 、CA 、AB

的切点.若OD 与EF 相交于K,求证:AK 平分BC. 证明:如图10,过点K 作BC 的行平线分别交直线AB 、AC 于Q 、P 两点,连OP 、OQ 、OE 、OF. 由OD ⊥BC,可知OK ⊥PQ. 由OF ⊥AB,可知O 、K 、F 、Q 四点共圆,有∠FOQ =∠FKQ.

由OE ⊥AC,可知O 、K 、P 、E 四点共圆.有∠EOP =∠EKP. 显然,∠FKQ =∠EKP,可知∠FOQ =∠EOP.由OF =OE,可知Rt △OFQ ≌Rt △OEP. 则OQ =OP.于是,OK 为PQ 的中垂线,故 QK =KP.所以,AK 平分BC.

综上,我们介绍了平行线在平面几何问题中的应用.同学们在实践中应注意适时添加平行线,让平行线在平面几何证题中发挥应有的作用.

练习题

1. 四边形ABCD 中,AB =CD,M 、N 分别为AD 、BC 的中点,延长BA 交直线NM 于E,延长CD 交直线NM 于F.求证:∠BEN =∠CFN.

(提示:设P 为AC 的中点,易证PM =PN.)

2. 设P 为△ABC 边BC 上一点,且PC =2PB.已知∠ABC =45°,∠APC =60°.求∠ACB. (提示:过点C 作PA 的平行线交BA 延长线于点D.易证△ACD ∽△PBA.答:75°)

3. 六边形ABCDEF 的各角相等,FA =AB =BC,∠EBD =60°,S △EBD =60cm 2.求六边形ABCDEF 的面积.

(提示:设EF 、DC 分别交直线AB 于P 、Q,过点E 作DC 的平行线交AB 于点M.所求面积与EMQD 面积相等.答:120cm 2)

A G D O H

B F

C E 图7图8A

D

B N

C E

M A B M E F N D C G O 图10

4. AD 为Rt △ABC 的斜边BC 上的高,P 是AD 的中点,连BP 并延长交AC 于E.已知AC:AB =k.求AE:EC.

(提示:过点A 作BC 的平行线交BE 延长线于点F.设BC =1,有AD =k,DC =k 2.答:211k

) 5. AB 为半圆直径,C 为半圆上一点,CD ⊥AB 于D,E 为DB 上一点,过D 作CE 的垂线交CB 于

F.求证:

DE AD =FB

CF .(提示:过点F 作AB 的平行线交CE 于点H.H 为△CDF 的垂心.) 6. 在△ABC 中,∠A:∠B:∠C =4:2:1,∠A 、∠B 、∠C 的对边分别为a 、b 、c.求证:a 1+b

1=c 1.(提示:在BC 上取一点D,使AD =AB.分别过点B 、C 作AD 的平行线交直线CA 、BA 于点E 、F.)

7. △ABC 的内切圆分别切BC 、CA 、AB 于点D 、E 、F,过点F 作BC 的平行线分别交直线DA 、DE 于点H 、G.求证:FH =HG.

(提示:过点A 作BC 的平行线分别交直线DE 、DF 于点M 、N.)

8. AD 为⊙O 的直径,PD 为⊙O 的切线,PCB 为⊙O 的割线,PO 分别交AB 、AC 于点M 、N.求证:OM =ON.

(提示:过点C 作PM 的平行线分别交AB 、AD 于点E 、F.过O 作BP 的垂线,G 为垂足.AB ∥GF.)

第二讲 巧添辅助 妙解竞赛题

在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路.

1、挖掘隐含的辅助圆解题

有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化.

1.1 作出三角形的外接圆 例1 如图1,在△ABC 中,AB =AC,D 是底边BC 上一点,E 是线段AD 上一

点且∠BED =2∠CED =∠A.求证:BD =2CD. 分析:关键是寻求∠BED =2∠CED 与结论的联系.容易想到作∠BED 的

平分线,但因BE ≠ED,故不能直接证出BD =2CD.若延长AD 交△ABC 的外接圆于F,则可得EB =EF,从而获取. 证明:如图1,延长AD 与△ABC 的外接圆相交于点F,连结CF 与BF,则∠

BFA =∠BCA =∠ABC =∠AFC,即∠BFD =∠CFD.故BF:CF =BD:DC.

又∠BEF =∠BAC,∠BFE =∠BCA,从而∠FBE =∠ABC =∠ACB =∠BFE.

故EB =EF. 作∠BEF 的平分线交BF 于G,则BG =GF.

因∠GEF =2

1∠BEF =∠CEF,∠GFE =∠CFE,故△FEG ≌△FEC.从而GF =FC. 于是,BF =2CF.故BD =2CD. 1.2 利用四点共圆 例2 凸四边形ABCD 中,∠ABC =60°,∠BAD =∠BCD =90°, AB =2,CD =1,对角线AC 、BD 交于点O,如图2.则sin ∠AOB =____. 分析:由∠BAD =∠BCD =90°可知A 、B 、C 、D 四点共圆,欲求sin ∠AOB,联想到托勒密定理,只须求出BC 、AD 即可.

A B G C D F

E 图1A B C

D

O

解:因∠BAD =∠BCD =90°,故A 、B 、C 、D 四点共圆.延长BA 、CD 交于P,则∠ADP =∠ABC =60°.

设AD =x ,有AP =3x ,DP =2x .由割线定理得(2+3x)3x =2x(1+2x).解得AD =x =23-2,BC =2

1BP =4-3. 由托勒密定理有 BD ·CA =(4-3)(23-2)+2×1=103-12. 又S ABCD =S △ABD +S △BCD =233. 故sin ∠AOB =26

3615+. 例3 已知:如图3,AB =BC =CA =AD,AH ⊥CD 于H,CP ⊥BC,CP 交AH 于P.求证:△ABC 的面积S =4

3AP ·BD. 分析:因S △ABC =43BC 2=43AC ·BC,只须证AC ·BC =AP ·BD, 转化为证△APC ∽△BCD.这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与AH 交点).

证明:记BD 与AH 交于点Q,则由AC =AD,AH ⊥CD 得∠ACQ =∠ADQ.又AB =AD,故∠ADQ =∠ABQ.

从而,∠ABQ =∠ACQ.可知A 、B 、C 、Q 四点共圆.

∵∠APC =90°+∠PCH =∠BCD,∠CBQ =∠CAQ,

∴△APC ∽△BCD. ∴AC ·BC =AP ·BD.于是,S =43AC ·BC =4

3AP ·BD. 2 、构造相关的辅助圆解题

有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决.

2.1 联想圆的定义构造辅助圆

例4 如图4,四边形ABCD 中,AB ∥CD,AD =DC =DB =p,BC =q.求对角线AC 的长. 分析:由“AD =DC =DB =p ”可知A 、B 、C 在半径为p 的⊙D 上.利

用圆的性质即可找到AC 与p 、q 的关系. 解:延长CD 交半径为p 的⊙D 于E 点,连结AE.显然A 、B 、C 在⊙D 上.

∵AB ∥CD,∴BC =AE. 从而,BC =AE =q.在△ACE 中,∠CAE =90°,CE =2p,AE =q,故

AC =22AE CE -=224q p -.

2.2 联想直径的性质构造辅助圆 例5 已知抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC.若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.

分析:由“∠BAC 为锐角”可知点A 在以定线段BC 为直径的圆外,又点A 在x 轴上侧,从

而可确定动点A 的范围,进而确定AD 的取值范围.

解:如图5,所给抛物线的顶点为A 0(1,9),对称轴为x =1,与x 轴交

于两点B(-2,0)、C(4,0).

分别以BC 、DA 为直径作⊙D 、⊙E,则两圆与抛物线均交于两点

P (1-22,1)、Q (1+22,1).

可知,

点A 在不含端点的抛物线PA 0Q 内时,∠BAC <90°.且有

A 图3

B P

Q

D H C

A E D C

B 图4

3=DP =DQ <AD ≤DA 0=9,即AD 的取值范围是3<AD ≤9.

2.3 联想圆幂定理构造辅助圆

例6 AD 是Rt △ABC 斜边BC 上的高,∠B 的平行线交AD 于M,交AC 于N.求证:AB 2-AN 2=BM ·BN.

分析:因AB 2-AN 2=(AB +AN)(AB -AN)=BM ·BN,而由题设易知AM =AN,联想割线定理,构造辅助圆即可证得结论. 证明:如图6, ∵∠2+∠3=∠4+∠5=90°,

又∠3=∠4,∠1=∠5,∴∠1=∠2.从而,AM =AN.

以AM 长为半径作⊙A ,交AB 于F ,交BA 的延长线于E . 则AE =AF =AN. 由割线定理有BM ·BN =BF ·BE =(AB +AE)(AB -AF)=(AB +AN)(AB -AN)

=AB 2-AN 2, 即 AB 2-AN 2=BM ·BN.

例7 如图7,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E,延长AB 和DC 相交于E,延长AD 和BC 相交于F,EP 和FQ 分别切⊙O 于P 、Q.求证:EP 2+

FQ 2=EF 2.

分析:因EP 和FQ 是⊙O 的切线,由结论联想到切割线定理,构造辅助圆使EP 、FQ 向EF 转化.

证明:如图7,作△BCE 的外接圆交EF 于G,连结CG. 因∠FDC =∠ABC =∠CGE,故F 、D 、C 、G 四点共圆.

由切割线定理,有EF 2=(EG +GF)·EF =EG ·EF +GF ·EF

=EC ·ED +FC ·FB =EC ·ED +FC ·FB =EP 2+FQ 2, 即 EP 2+FQ 2=EF 2. 2.4 联想托勒密定理构造辅助圆

例8 如图8,△ABC 与△A 'B 'C '的三边分别为a 、b 、c 与a '、b '、c B ',∠A +∠A '=180°.试证:aa '=bb '+cc '. 分析:因∠B =∠B ',∠A +∠A '=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明. 证明:作△ABC 的外接圆,过C 作CD ∥AB 交圆于D,连结AD 和BD,如图9所示. ∵∠A +∠A '=180°=∠A +∠D, ∠BCD =∠B =∠B ', ∴∠A '=∠D,∠B '=∠BCD. ∴△A 'B 'C '∽△DCB. 有

DC B A ''=CB C B ''=DB

C A '', 即 DC c '=a a '=DB b '. 故DC =''a ac ,DB =''a ab . 又AB ∥DC,可知B

D =AC =b,BC =AD =a.从而,由托勒密定理,得

AD ·BC =AB ·DC +AC ·BD,即 a 2=c ·''a ac +b ·'

'a ab . 故aa '=bb '+cc '. 练习题 1. 作一个辅助圆证明:△ABC 中,若AD 平分∠A,则

AC AB =DC BD . E

A N C D

B F M 12345图6(1)(2)图8A

C A'B'C'c b a'c'b'A B C

D a b b

c 图9

(提示:不妨设AB ≥AC,作△ADC 的外接圆交AB 于E,证△ABC ∽△DBE,从而

AC AB =DE BD =DC

BD .) 2. 已知凸五边形ABCDE 中,∠BAE =3a,BC =CD =DE,∠BCD =∠CDE =180°-2a.求证:∠BAC =∠CAD =∠DAE.

(提示:由已知证明∠BCE =∠BDE =180°-3a,从而A 、B 、C 、D 、E 共圆,得∠BAC =∠CAD =∠DAE.)

3. 在△ABC 中AB =BC,∠ABC =20°,在AB 边上取一点M,使BM =AC.求∠AMC 的度数. (提示:以BC 为边在△ABC 外作正△KBC,连结KM,证B 、M 、C 共圆,从而∠BCM =

21∠BKM =10°,得∠AMC =30°.)

4.如图10,AC 是ABCD 较长的对角线,过C 作CF ⊥AF,CE ⊥AE.求

证:AB ·AE +AD ·AF =AC 2.

(提示:分别以BC 和CD 为直径作圆交AC 于点G 、H.则CG =AH,由割

线定理可证得结论.)

5. 如图11.已知⊙O 1和⊙O 2相交于A 、B,直线

CD 过A 交⊙O 1和⊙O 2于C 、D,且AC =AD,EC 、ED 分别切两圆于C 、D.

求证:AC 2=AB ·AE.

(提示:作△BCD 的外接圆⊙O 3,延长BA 交⊙O 3于F,证E 在⊙O 3上,得△

ACE ≌△ADF,从而AE =AF,由相交弦定理即得结论.)

6.已知E 是△ABC 的外接圆之劣弧BC 的中点.求证:AB ·AC =AE 2-

BE 2.

(提示:以BE 为半径作辅助圆⊙E,交AE 及其延长线于N 、M,由△ANC ∽

△ABM 证AB ·AC =AN ·AM.)

7. 若正五边形ABCD E 的边长为a,对角线长为b,试证:a b -b

a =1. (提示:证

b 2=a 2+ab,联想托勒密定理作出五边形的外接圆即可证得.)

第三讲 点共线、线共点

在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。

1、点共线的证明

点共线的通常证明方法是:通过邻补角关系证明三点共线;证明两点的连线必过第三点;证明三点组成的三角形面积为零等。n(n ≥4)点共线可转化为三点共线。

例1、如图,设线段AB 的中点为C ,以AC 和CB 为对角线作平行四边形AECD ,BFCG 。又作平行四边形CFHD ,CGKE 。求证:H ,C ,K 三点共线。证:连AK ,DG ,HB 。 由题意,AD EC KG ,知四边形AKGD 是平行四边形,于是AK DG 。同样可证AK HB 。四边形AHBK 是平行四边形,其对角线AB ,KH 互相平分。而C 是AB 中点,线段KH 过C 点,故K ,C ,H 三点共线。

例2 如图所示,菱形ABCD 中,∠A=120

°,O 为△ABC 外接圆,M 为其上一点,连接MC 交AB 于E ,AM 交CB 延长线于F 。求证:D ,E ,F 三点共线。

F D A E C

图10图11

证:如图,连AC ,DF ,DE 。因为M

O 上, 则∠AMC=60°=∠ABC=∠ACB ,

有△AMC ∽△ACF ,得CD

CF CA CF MA MC ==。 又因为∠AMC=BAC ,所以△AMC ∽△EAC ,得

AE AD AE AC MA MC ==。 所以AE

AD CD CF =,又∠BAD=∠BCD=120°,知△CFD ∽△ADE 。所以∠ADE=∠DFB 。因为AD ∥BC ,所以∠ADF=∠DFB=∠ADE ,于是F ,E ,D 三点共线。

例3 四边形ABCD 内接于圆,其边AB 与DC 的延长线交于点P ,AD 与BC 的延长线交于点Q 。由Q 作该圆的两条切线QE 和QF ,切点分别为E ,F ;求证:P ,E ,F 三点共线。 证 :如图:连接PQ ,并在PQ 上取一点M ,使得B ,C ,M ,P 四点共圆,连CM ,PF 。设PF 与圆的另一交点为E ’,并作QG 丄PF ,垂足为G 。易如 QE 2=QM ·QP=QC ·QB ① ∠PMC=∠ABC=∠PDQ 。

从而C ,D ,Q ,M 四点共圆,于是PM ·PQ=PC ·PD ② 由①,②得PM ·PQ+QM ·PQ=PC ·PD+QC ·QB , 即PQ 2=QC ·QB+PC ·PD 。易知PD ·PC=PE ’·PF , 又QF 2=QC ·QB ,有PE ’·PF+QF 2=PD ·PC+QC ·AB=PQ 2, 即PE ’·PF=PQ 2-QF 2。又PQ2-QF 2=PG 2-GF 2=(PG+GF)·(PG -

GF)=PF ·(PG -GF),从而PE ’=PG -GF=PG -GE ’,即GF=GE ’,故E ’与E 重合。

所以P ,E ,F 三点共线。

例4 以圆O 外一点P ,引圆的两条切线PA ,PB ,A ,B 为切点。割线PCD 交圆O 于C ,D 。又由B 作CD 的平行线交圆O 于E 。若F 为CD 中点,求证:A ,F ,E 三点共线。

证:如图,连AF ,EF ,OA ,OB ,

OP ,BF ,OF ,延长FC 交BE 于G 。

易如OA 丄AP ,OB 丄BP ,OF 丄CP ,所以P ,A ,F ,O ,B

五点共圆,有∠AFP=∠AOP=∠POB=∠PFB 。

又因CD ∥BE ,所以有∠PFB=∠FBE ,∠EFD=∠FEB , 而FOG 为BE

的垂直平分线,故EF=FB ,∠FEB=∠EBF , 所以∠AFP=∠EFD ,A ,F ,E 三点共线。

2、线共点的证明 证明线共点可用有关定理(如三角形的3条高线交于一点),或证

明第3条直线通过另外两条直线的交点,也可转化成点共

线的问题给予证明。 例5 以△ABC 的两边AB ,AC 向外作正方形ABDE ,

ACFG 。△ABC 的高为AH 。求证:AH ,BF ,CD 交于一点。 证:如图。延长HA 到M ,使AM=BC 。连CM ,BM 。

设CM 与BF 交于点K 。 在△ACM 和△BCF 中,AC=CF ,AM=BC , ∠MAC+∠HAC=180°,∠HAC+∠HCA=90°,并且∠

BCF=90°+∠HCA , 因此∠BCF+∠HAC=180°∠MAC=∠BCF 。从而△MAC ≌△

C E (E ')A B

D F P M Q G M

E D

B H

C F K

G A

BCF ,∠ACM=∠CFB 。

所以∠MKF=∠KCF+∠KFC=∠KCF+∠MCF=90°,即 BF 丄MC 。

同理CD 丄MB 。AH ,BF ,CD 为△MBC 的3条高线,故AH ,BF ,CD 三线交于一点。 例6 设P 为△ABC 内一点,∠APB -∠ACB=∠APC -∠ABC 。又设D ,E 分别是△APB 及△APC 的内心。证明:AP ,BD ,CE 交于一点。

证:如图,过P 向三边作垂线,垂足分别为R ,S ,T 。连RS ,ST ,RT ,设BD 交AP 于M ,CE 交AP 于N 。

易知P ,R ,A ,S ;P ,T ,B ,R ;P ,S ,C ,T 分别四点共 圆,则∠APB -∠ACB=∠PAC+∠PBC=∠PRS+∠PRT=∠SRT 。 同理,∠APC -∠ABC=∠RST ,由条件知∠SRT=∠RST ,所以RT=ST 。 又RT=PBsinB ,ST=PCsinC ,所以PBsinB=PCsinC ,那么

AC

PC AB PB =。 由角平分线定理知MP

AM PB AB PC AC NP AN ===。故M ,N 重合,即AP ,BD ,CE 交于一点。 例

O 1

O 2外切于P 点,QR 为两圆的公切线,其中Q ,R

分别为O 1

O 2上的切点,过Q 且垂直于QO 2的直线与过R 且垂直于RO 1的直线交于点I ,IN 垂直于O 1O 2,垂足为N,IN 与QR 交于点M.证明:PM ,RO 1,QO 2三条直线交于一点。

证:如图,设RO 1与QO 2交于点O ,连MO ,PO 。 因为∠O 1QM=∠O 1NM=90°,所以Q ,O 1,N ,M 四点共圆,有∠

QMI=∠QO 1O 2。 而∠IQO 2=90°=∠RQO 1,所以∠IQM=∠O 2QO 1, 故△QIM ∽△QO 2O 1,得MI O O QM QO 211=同理可证MI

O O RM RO 212=。因此 21RO QO MR QM = ① 因为QO 1∥RO 2,所以有2

11RO QO OR O O = ② 由①,②得MO ∥QO 1。 又由于O 1P=O 1Q ,PO 2=RO 2,所以 2

1211PO P O RO Q O OR O O ==, 即OP ∥RO 2。从而MO ∥QO 1∥RO 2∥OP ,故M ,O ,P 三点共线,所以PM ,RO 1,QO 2三条直线相交于同一点。

3、 塞瓦定理、梅涅劳斯定理及其应用

定理1 (塞瓦(Ceva)定理):

设P ,Q ,R 分别是△ABC 的BC ,CA ,AB 边上的点。若AP ,BQ ,CR 相交于一点M ,则 1=??RB AR QA CQ PC BP 。

证:如图,由三角形面积的性质,有 BMC AMC S S RB

AR

??=, AMC AMB S S PC BP ??=, AMB BMC S S QA CQ ??=.以上三式相乘,得1=??RB AR QA CQ PC BP

. 定理2 (定理1的逆定理

):

O 1O 2N P I

Q R M

O

A R Q

B

P 设P ,Q ,R 分别是△ABC 的BC ,CA ,AB 上的点。若1=??RB

AR QA CQ PC BP ,则AP ,BQ ,CR 交于一点。

证:如图,设AP 与BQ 交于M ,连CM ,交AB 于R ’。

由定理1有1''=??B R AR QA CQ PC BP . 而1=??RB AR QA CQ PC BP ,所以RB

AR B R AR =''. 于是R ’与R 重合,故AP ,BQ ,CR 交于一点。

定理3 (梅涅劳斯(Menelaus)定理):

一条不经过△ABC 任一顶点的直线和三角形三边BC ,CA ,AB(或它们的延长线)分别交于

P ,Q ,R ,则1=??RB

AR QA CQ PC BP 证:如图,由三角形面积的性质,有 BRP ARP S S RB

AR

??=, CPR BRP S S PC BP ??=, ARP CRP S S QA CQ ??=.将以上三式相乘,得1=??RB AR QA CQ PC BP

. 定理4 (定理3的逆定理):

设P ,Q ,R 分别是△ABC 的三边BC ,CA ,AB 或它们延长线上的3点。若

1=??RB

AR QA CQ PC BP ,则P ,Q ,R 三点共线。 定理4与定理2的证明方法类似。

塞瓦定理和梅涅劳斯定理在证明三线共点和三点共线以及与之有关的题目中有着广泛的应用。

例8 如图,在四边形ABCD 中,对角线AC 平分∠BAD 。在CD 上取一点E ,BE 与AC 相交于F ,延长DF 交BC 于G 。求证:∠GAC=∠EAC 。

证:如图,连接BD 交AC 于H ,过点C 作AB 的平行线交AG 的延长线于I ,过点C 作AD 的平行线交AE 的延长线于J 。

对△BCD 用塞瓦定理,可得1=??EC

DE HD BH GB CG ① 因为AH 是∠BAD 的角平分线, 由角平分线定理知

AD AB HD BH =,代入①式1=??EC DE AD AB GB CG ② 因为CI ∥AB ,CJ ∥AD ,则AB CI GB CG =,CJ AD EC DE =。代入②式得1=??CJ AD AD AB AB CI .从而CI=CJ 。又由于∠ACI=180°-∠BAC=180°-∠DAC=∠ACJ ,

所以△ACI ≌△ACJ ,故∠IAC=∠JAC ,即∠GAC=∠EAC.

例9 ABCD 是一个平行四边形,E 是AB 上的一点,F 为CD 上

的一点。AF 交ED 于G ,EC 交FB 于H 。连接线段GH 并延长

交AD 于L ,交BC 于M 。求证:DL=BM. H

C

A D

B

G I J

E F

G A E B

J L

M H

证:如图,设直线LM 与BA 的延长线交于点J ,与DC 的延长线交于点I 。

在△ECD 与△FAB 中分别使用梅涅劳斯定理,得

1=??HE CH IC DI GD EG , 1=??JA

BJ HB FH GF AG . 因为AB ∥CD ,所以GF AG GD EG =, HB FH HE CH =.从而JA

BJ IC DI =,即=+CI CI CD AJ AJ AB +,故CI=AJ. 而LA DL AJ DI CI BJ MC BM ===, 且BM+MC=BC=AD=AL+LD. 所以BM=DL 。

例10 在直线l 的一侧画一个半圆T ,C ,D 是T 上的两点,T 上过C 和D 的切线分别交l 于B 和A ,半圆的圆心在线段BA 上,E 是线段AC 和BD 的交点,F 是l 上的点,EF 垂直l 。求证:EF 平分∠CFD 。

证:如图,设AD 与BC 相交于点P ,用O 表示半圆T 的圆

心。过P 作PH 丄l 于H ,连OD ,OC ,OP 。

由题意知Rt △OAD ∽Rt △PAH ,于是有DO

HP AD AH =. 类似地,Rt △OCB ∽Rt △PHB , 则有CO

HP BC BH =. 由CO=DO ,有BC BH AD AH =,从而1=??DA PD CP BC HB AH . 由塞瓦定理的逆定理知三条直线AC ,BD ,PH 相交于一点,即E 在PH 上,点H 与F 重合。

因∠ODP=∠OCP=90°,所以O ,D ,C ,P 四点共圆,直径为

OP. 又∠PFC=90°,从而推得点F 也在这个圆上,因此∠

DFP=∠DOP=∠COP=∠CFP ,所以EF 平分∠CFD 。

例11 如图,四边形ABCD 内接于圆,AB ,DC 延长线交于

E ,AD 、BC 延长线交于

F ,P 为圆上任意一点,PE ,PF 分别

交圆于R ,S. 若对角线AC 与BD 相交于T. 求证:R ,T ,S 三

点共线。

先证两个引理。

引理1:A 1B 1C 1D 1E 1F 1为圆内接六边形,若A 1D 1,B 1E 1,C 1F 1交于一点,则有1111111111111=??A F F E E D D C C B B A .如图,设A 1D 1,B 1E 1,C 1F 1交于点O ,根据圆内接多边形的性质易知

△ OA 1B 1∽△OE 1D 1,△OB 1C 1∽△OF 1E 1,△OC 1D 1∽△OA 1F 1,从而有

O D O B E D B A 111111=, O B O F C B F E 111111=,O F O D A F D C 111111=.将上面三式相乘即得11

11111111111=??A F F E E D D C C B B A , 引理2:

圆内接六边形A 1B 1C 1D 1E 1F 1,若满足11

11111111111=??A F F E E D D C C B B A 则其三条对角线A 1D 1,B 1E 1,C 1F 1交于一点。

该引理与定理2的证明方法类似,留给读者。

D l

A B O F(H)E C P E B R C T A P S D F

例11之证明如图,连接PD ,AS ,RC ,BR ,AP ,SD.由△EBR ∽△EPA ,△FDS ∽△FPA ,知

EP EB PA BR =,FD FP DS PA =.两式相乘,得FD

EP FP EB DS BR ??=. ① 又由△ECR ∽△EPD ,△FPD ∽△FAS ,知EP EC PD CR =,FA FP AS PD =. 两式相乘,得FA EP FP EC AS CR ??= ② 由①,②得FD

EC FA EB CR DS AS BR ??=??. 故=??AB SA DS CD RC BR CE

DC FD AF BA EB ??. ③ 对△EAD 应用梅涅劳斯定理,有1=??CE

DC FD AF BA EB ④ 由③④得1=??AB SA DS CD RC BR .由引理2知BD ,RS ,AC 交于一点,所以R ,T ,S 三点共线。

练 习

A 组

1. 由矩形ABCD 的外接圆上任意一点M 向它的两对边引垂线MQ 和MP ,向另两边延长线引垂线MR ,MT 。证明:PR 与QT 垂直,且它们的交点在矩形的一条对角线上。

2. 在△ABC 的BC 边上任取一点P ,作PD ∥AC ,PE ∥AB ,PD ,PE 和以AB ,AC 为直径而在三角形外侧所作的半圆的交点分别为D ,E 。求证:D ,A ,E 三点共线。

3. 一个圆和等腰三角形ABC 的两腰相切,切点是D ,E ,又和△ABC 的外接圆相切于F 。求证:△ABC 的内心G 和D ,E 在一条直线上。

4. 设四边形ABCD 为等腰梯形,把△ABC 绕点C 旋转某一角度变成△A ’B ’C ’。证明:线段A ’D, BC 和B ’C 的中点在一条直线上。

5. 四边形ABCD 内接于圆O ,对角线AC 与BD 相交于P 。设三角形ABP ,BCP ,CDP 和DAP 的外接圆圆心分别是O 1,O 2,O 3,O 4。求证:OP ,O 1O 3,O 2O 4三直线交于一点。

6. 求证:过圆内接四边形各边的中点向对边所作的4条垂线交于一点。

7. △ABC 为锐角三角形,AH 为BC 边上的高,以AH 为直径的圆分别交AB ,AC 于M ,N ;M ,N 与A 不同。过A 作直线l A 垂直于MN 。类似地作出直线l B 与l C 。证明:直线l A ,l B ,l C 共点。

8. 以△ABC 的边BC ,CA ,AB 向外作正方形,A 1,B 1,C 1是正方形的边BC ,CA ,AB 的对边的中点。求证:直线AA 1,BB 1,CC 1相交于一点。

B 组

9. 设A 1,B 1,C 1是直线l 1上的任意三点,A 2,B 2,C 2是另一条直线l 2上的任意三点,A 1B 2和B 1A 2交于L ,A 1C 2和A 2C 1交于M ,B 1C 2和B 2C 1交于N 。求证:L ,M ,N 三点共线。

10. 在△ABC ,△A ’B ’C ’中,连接AA ’,BB ’,CC ’,使这3条直线交于一点S 。求证:AB 与A ’B ’、BC 与B ’C ’、CA 与C ’A ’的交点F ,D ,E 在同一条直线上(笛沙格定理)。

11. 设圆内接六边形ABCDEF 的对边延长线相交于三点P ,Q ,R ,则这三点在一条直线上(帕斯卡定理)。

B F A E 1O

C

D 11111

第四讲 四点共圆问题

“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.判定“四点共圆”的方法,用得最多的是统编教材《几何》二册所介绍的两种(即P89定理和P93例3),由这两种基本方法推导出来的其他判别方法也可相机采用.

1、“四点共圆”作为证题目的

例1.给出锐角△ABC ,以AB 为直径的圆与AB 边的高CC ′及其延长线交于M ,N.以AC 为直径的圆与AC 边的高BB ′及其延长线将于P ,Q.求证:M ,N ,P ,Q 四点共圆. (第19届美国数学奥林匹克) 分析:设PQ ,MN 交于K 点,连接AP ,AM. 欲证M ,N ,P ,Q 四点共圆,须证MK ·KN =PK ·KQ , 即证(MC ′-KC ′)(MC ′+KC ′)=(PB ′-KB ′)·(PB ′+KB ′)

或MC ′2-KC ′2=PB ′2-KB ′2 . ① 不难证明 AP=AM ,从而有AB ′2+PB ′2=AC ′2+MC ′2. 故 MC ′2-PB ′2=AB ′2-AC ′2 =(AK 2-KB ′2)-(AK 2-KC ′2)=KC ′2-KB ′2②

由②即得①,命题得证. 例2.A 、B 、C 三点共线,O 点在直线外,O 1,O 2,O 3分别为△

OAB ,△OBC ,△OCA 的外心.求证:O ,O 1,O 2,O 3四点共圆. (第27届莫斯科数学奥林匹克) 分析:作出图中各辅助线.易证O 1O 2垂直平分OB ,O 1O 3垂直平分OA.观察△OBC 及其外接圆,立得∠OO 2O 1=

21∠OO 2B=∠OCB.观察△OCA 及其外接圆,立得∠OO 3O 1=2

1∠OO 3A=∠OCA.由∠OO 2O 1=∠OO 3O 1?O ,O 1,O 2,O 3共圆.利用对角互补,也可证明O ,O 1,O 2,O 3四点共圆,请同学自证.

2、以“四点共圆”作为解题手段

这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面.

(1)证角相等

例3.在梯形ABCD 中,AB ∥DC ,AB >CD ,K ,M 分别在AD ,BC 上,∠DAM =∠CBK.求证:∠DMA =∠CKB.(第二届袓冲之杯初中竞赛) 分析:易知A ,B ,M ,K 四点共圆.连接KM ,有∠DAB =∠CMK.

∵∠DAB+∠ADC =180°,∴∠CMK+∠KDC =180°.

故C ,D ,K ,M 四点共圆?∠CMD =∠DKC.

但已证∠AMB =∠BKA ,∴∠DMA =∠CKB. (2)证线垂直 例4.⊙O 过△ABC 顶点A ,C ,且与AB ,BC 交于K ,N(K 与N 不同).△ABC

外接圆和△BKN 外接圆相交于B 和M.求证:∠BMO=90°.

(第26届IMO 第五题) 分析:这道国际数学竞赛题,曾使许多选手望而却步.其实,

只要把握已知条件和图形特点,借助“四点共圆”,问题是不难解决的. 连接OC ,OK ,MC ,MK ,延长BM 到G.易得∠GMC=∠BAC=∠BNK=∠BMK.而∠COK=2·∠BAC=∠GMC+∠BMK=180°-∠CMK , ∴∠COK+∠CMK=180°?C ,O ,K ,M 四点共圆.

A B C K M N P Q B ′C ′A B C

O O O O 1

23

??A B C D K M ··A B O K N C

M G

A B C D E F K G ······在这个圆中,由OC=OK ? OC=OK ?∠OMC=∠OMK.但∠GMC=∠BMK ,故∠BMO=90°.

(3)判断图形形状

例5.四边形ABCD 内接于圆,△BCD ,△ACD ,△ABD ,△ABC 的内心依次记为I A ,I B ,I C ,I D .试证:I A I B I C I D 是矩形.(第一届数学奥林匹克国家集训选拔试题) 分析:连接AI C ,AI D ,BI C ,BI D 和DI B .易得∠AI C B=90°

+21∠ADB=90°+2

1∠ACB=∠AI D B ?A ,B ,I D ,I C 四点共圆. 同理,A ,D ,I B ,I C 四点共圆.此时 ∠AI C I D =180°-∠ABI D =180°-21∠ABC ,∠AI C I B =180°-∠ADI B =180°-2

1∠ADC , ∴∠AI C I D +∠AI C I B =360°-21(∠ABC+∠ADC)=360°-21×180°=270°.故∠I B I C I D =90°.

同样可证I A I B I C I D 其它三个内角皆为90°.该四边形必为矩形. (4)计算 例6.正方形ABCD 的中心为O ,面积为1989㎝2.P 为正方形内一

点,且∠OPB=45°,PA:PB=5:14.则PB=__________(1989,全国初中联赛)

分析:答案是PB=42㎝.怎样得到的呢?连接OA ,OB.易知O ,P ,A ,B 四点共圆,有∠APB=∠AOB=90°. 故PA 2+PB 2=AB 2=1989.由于PA:PB=5:14,可求PB.

(5)其他

例7.设有边长为1的正方形,试在这个正方形的内接正三角形中找出面积最大的和一个面积最小的,并求出这两个面积(须证明你的论

断).(1978,全国高中联赛)

分析:设△EFG 为正方形ABCD 的一个内接正三角形,由于正三角形的三个顶点至少必落在正方形的三条边上,所以不妨令F ,G 两点在正方形的一组对边上.

作正△EFG 的高EK ,易知E ,K ,G ,D 四点共圆?

∠KDE=∠KGE=60°.同理,∠KAE=60°.故△KAD 也是一个正三角形,K 必为一个定点. 又正三角形面积取决于它的边长,当KF 丄AB 时,边长为1,这时边长最小,而面积S=4

3也最小.当KF 通过B 点时,边长为2·32-,这时边长最大,面积S=23-3也最大.

例8.NS 是⊙O 的直径,弦AB 丄NS 于M ,P 为ANB 上异于N 的任一点,PS 交AB 于R ,PM 的延长线交⊙O 于Q.求证:RS >MQ.(1991,江苏省初中竞赛)

分析:连接NP ,NQ ,NR ,NR 的延长线交⊙O 于Q ′.连接MQ ′,SQ ′.易证N ,M ,R ,P 四点共圆,从而,∠SNQ ′=∠MNR=∠MPR=∠SPQ=∠SNQ.

根据圆的轴对称性质可知Q 与Q ′关于NS 成轴对称?MQ ′=MQ.

又易证M ,S ,Q ′,R 四点共圆,且RS 是这个圆的直径(∠RMS=90°),MQ ′是一条弦(∠MSQ ′<90°),故RS >MQ ′.但MQ=MQ ′,所以,RS >MQ.

练习题

1.⊙O 1交⊙O 2 于A ,B 两点,射线O 1A 交⊙O 2 于C 点,射线O 2A 交⊙O 1于D 点.求证:点A 是△BCD 的内心.(提示:设法证明C ,D ,O 1,B 四点共圆,再证C ,D ,B ,O 2

A B C D I C I D A I I B ·

·

P O A B C

D

四点共圆,从而知C ,D ,O 1,B ,O 2五点共圆.)

2.△ABC 为不等边三角形.∠A 及其外角平分线分别交对边中垂线于A 1,A 2;同样得到B 1,B 2,C 1,C 2.求证:A 1A 2=B 1B 2=C 1C 2.

(提示:设法证∠ABA 1与∠ACA 1互补造成A ,B ,A 1,C 四点共圆;再证A ,A 2,B ,C 四点共圆,从而知A 1,A 2都是△ABC 的外接圆上,并注意∠A 1AA 2=90°.)

3.设点M 在正三角形三条高线上的射影分别是M 1,M 2,M 3(互不重合).求证:△M 1M 2M 3也是正三角形.

4.在Rt △ABC 中,AD 为斜边BC 上的高,P 是AB 上的点,过A 点作PC 的垂线交过B 所作AB 的垂线于Q 点.求证:PD 丄QD.

(提示:证B ,Q ,E ,P 和B ,D ,E ,P 分别共圆)

5.AD ,BE ,CF 是锐角△ABC 的三条高.从A 引EF 的垂线l 1,从B 引FD 的垂线l 2,从C 引DE 的垂线l 3.求证:l 1,l 2,l 3三线共点.(提示:过B 作AB 的垂线交l 1于K ,证:A ,B ,K ,C 四点共圆)

第五讲 三角形的五心

三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心.

一、外心.

三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理.

例1.过等腰△ABC 底边BC 上一点P 引PM ∥CA 交AB 于M ;引PN ∥BA 交AC 于N.作点P 关于MN 的对称点P ′.试证:P ′点在△ABC 外接圆上.(杭州大学《中学数学竞赛习题》) 分析:由已知可得MP ′=MP=MB ,NP ′=NP=NC ,故点M 是△P ′BP 的外心,点

N 是△P ′PC 的外心.有 ∠BP ′P=21∠BMP=21∠BAC , ∠PP ′C=21∠PNC=2

1∠BAC. ∴∠BP ′C=∠BP ′P+∠P ′PC=∠BAC. 从而,P ′点与A ,B ,C 共圆、即P ′在△ABC 外接圆上.

由于P ′P 平分∠BP ′C ,显然还有 P ′B:P ′C=BP:PC.

例2.在△ABC 的边AB ,BC ,CA 上分别取点P ,Q ,S.证明以△APS ,△BQP ,△CSQ 的外心为顶点的三角形与△ABC 相似.(B ·波拉索洛夫《中学数学奥林匹克》)

分析:设O 1,O 2,O 3是△APS ,△BQP ,△CSQ 的外心,作出六边形 O 1PO 2QO 3S 后再由外心性质可知 ∠PO 1S=2∠A , ∠QO 2P=2∠B ,∠SO 3Q=2∠C. ∴∠PO 1S+∠QO 2P+∠SO 3Q=360°.从而又知∠O 1PO 2+∠O 2QO 3+∠O 3SO 1=360° 将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△O 2PO 1,同时可得△O 1O 2O 3≌△O 1KO 3.

∴∠O 2O 1O 3=∠KO 1O 3=21∠O 2O 1K=21(∠O 2O 1S+∠SO 1K)=21(∠O 2O 1S+∠PO 1O 2)=21∠PO 1S=∠A ; 同理有∠O 1O 2O 3=∠B.故△O 1O 2O 3∽△ABC.

二、重心

三角形三条中线的交点,叫做三角形的重心.掌握重心将每条中线都分成定比2:1及中线长度公式,便于解题.

例3.AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点.证明:

在△PAD ,△PBE ,△PCF 中,其中一个面积等于另外两个面积的和.(第26届莫斯科数学奥林匹克)

A

B C P P M N 'A B C Q K P O O O ....S 123A A 'F F 'G E E 'D '

.O A A A A 1234

H H 12分析:设G 为△ABC 重心,直线PG 与AB ,BC 相交.从A ,C ,D ,E ,F 分别

作该直线的垂线,垂足为A ′,C ′,D ′,E ′,F ′.

易证AA ′=2DD ′,CC ′=2FF ′,2EE ′=AA ′+CC ′,∴EE ′=DD ′+FF ′.有S △PGE =S △PGD +S △PGF .两边各扩大3倍,有S △PBE =S △PAD +S △PCF .

例4.如果三角形三边的平方成等差数列,那么该三角形和由它的三条中线围成的新三角形相似.其逆亦真.

分析:将△ABC 简记为△,由三中线AD ,BE ,CF 围成的三角形简记为△′.G 为重心,连DE 到H ,使EH=DE ,连HC ,HF ,则△′就是△HCF.

(1)a 2,b 2,c 2成等差数列?△∽△′.若△ABC 为正三角形,易证△∽△′. 不妨设a ≥b ≥c ,有CF=

2222221c b a -+,BE=2222221b a c -+, AD=222222

1a c b -+. 将a 2+c 2=2b 2,分别代入以上三式,得CF=

a 23,BE=

b 23,AD=

c 23. ∴CF:BE:AD =

a 23:

b 23:

c 2

3=a:b:c. 故有△∽△′. (2)△∽△′?a 2,b 2,c 2成等差数列. 当△中a ≥b ≥c 时,△′中CF ≥BE ≥AD. ∵△∽△′,∴??S S '=(a

CF )2. 据“三角形的三条中线围成的新三角形面积等于原三角形面积的43”,有?

?S S '=43. ∴22a

CF =43?3a 2=4CF 2=2a 2+b 2-c 2?a 2+c 2=2b 2. 三、垂心

三角形三条高的交战,称为三角形的垂心.由三角形的垂心造成的四个等(外接)圆三角形,给我们解题提供了极大的便利.

例5.设A 1A 2A 3A 4为⊙O 内接四边形,H 1,H 2,H 3,H 4依次为△A 2A 3A 4,△A 3A 4A 1,△A 4A 1A 2,△A 1A 2A 3的垂心.求证:H 1,H 2,H 3,H 4四点共圆,并确定出该圆的圆心位置. (1992,全国高中联赛)

分析:连接A 2H 1,A 1H 2,H 1H 2,记圆半径为R.由△A 2A 3A 4知 13212sin H A A H A ∠=2R ?A 2H 1=2Rcos ∠A 3A 2A 4;由△A 1A 3A 4得A 1H 2=2Rcos ∠A 3A 1A 4.但∠A 3A 2A 4=∠A 3A 1A 4,故A 2H 1=A 1H 2.易证A 2H 1∥A 1A 2,于是,A 2H 1 A 1H 2, 故得H 1H 2 A 2A 1.设H 1A 1与H 2A 2的交点为M ,故H 1H 2与A 1A 2关于M 点成中心对称. 同理,H 2H 3与A 2A 3,H 3H 4与A 3A 4,H 4H 1与A 4A 1都关于M 点成中心对称.故四边形H 1H 2H 3H 4与四边形A 1A 2A 3A 4关于M 点成中心对称,两者是全等四边形,H 1,H 2,H 3,H 4在同一个圆上.后者的圆心设为Q ,Q 与O 也关于M 成中心对称.由O ,M 两点,Q 点就不难确定了.

例6.H 为△ABC 的垂心,D ,E ,F 分别是BC ,CA ,AB 的中心.一个以H 为圆心的⊙H 交直线EF ,FD ,DE 于A 1,A 2,B 1,B 2,C 1,C 2.求证:AA 1=AA 2=BB 1=BB 2=CC 1=CC 2. ∥=∥=

A B C D O O O 234O 1

(1989,加拿大数学奥林匹克训练题)

分析:只须证明AA 1=BB 1=CC 1即可.设BC=a , CA=b ,AB=c ,

△ABC 外接圆半径为R ,⊙H 的半径为r.

连HA 1,AH 交EF 于M.

A A 12=AM 2+A 1M 2=AM 2+r 2-MH 2=r 2+(AM 2-MH 2), ①

又AM 2-HM 2=(

21AH 1)2-(AH-2

1AH 1)2=AH ·AH 1-AH 2=AH 2·AB-AH 2=cosA ·bc-AH 2,② 而ABH AH ∠sin =2R ?AH 2=4R2cos2A,A a sin =2R ?a 2=4R2sin2A.∴AH 2+a 2=4R 2,AH 2=4R 2-a 2.③

由①、②、③有A 21A =r 2+

bc

a c

b 22

22-+·bc-(4R 2-a 2)=21(a 2+b 2+c 2)-4R 2+r 2. 同理,21BB =21(a 2+b 2+c 2)-4R 2+r 2,21CC =21(a 2+b 2+c 2)-4R 2+r 2.故有AA 1=BB 1=CC 1. 四、内心

三角形内切圆的圆心,简称为内心.对于内心,要掌握张角公式,还要记住下面一个极为有用的等量关系:

设I 为△ABC 的内心,射线AI 交△ABC 外接圆于A ′,则有A ′I=A ′B=A ′C.换言之,点A ′必是△IBC 之外心(内心的等量关系之逆同样有用). 例7.ABCD 为圆内接凸四边形,取△DAB ,△ABC ,△BCD ,△CDA 的内心O 1,O 2,O 3,O 4.求证:O 1O 2O 3O 4为矩形.(1986,中国数学奥林匹克集训题),证明见《中等数学》1992;4

例8.已知⊙O 内接△ABC ,⊙Q 切AB ,AC 于E ,F 且与⊙O 内切.试证:EF 中点P 是△ABC 之内心.(B ·波拉索洛夫《中学数学奥林匹

克》) 分析:在第20届IMO 中,美国提供的一道题实际上是例8的一种

特例,但它增加了条件AB=AC.当AB ≠AC ,怎样证明呢?

如图,显然EF 中点P 、圆心Q ,BC 中点K 都在∠BAC 平分线上.

易知AQ=αsin r .∵QK ·AQ=MQ ·QN , ∴QK=AQ QN MQ ?=α

sin /)2(r r r R ?-=)2(sin r R -?α. 由Rt △EPQ 知PQ=r ?αsin . ∴PK=PQ+QK=r ?αsin +)2(sin r R -?α=R 2sin ?α. ∴PK=BK.

利用内心等量关系之逆定理,即知P 是△ABC 这内心.

五、旁心

三角形的一条内角平分线与另两个内角的外角平分线相交于

一点,是旁切圆的圆心,称为旁心.旁心常常与内心联系在一

起,旁心还与三角形的半周长关系密切.

例9.在直角三角形中,求证:r+r a +r b +r c =2p.

式中r ,r a ,r b ,r c 分别表示内切圆半径及与a ,b ,c 相切的旁

切圆半径,p 表示半周. A ααM B C N E R O Q F

r P

K r r r r O O O 213A O E C B

a

b c

(杭州大学《中学数学竞赛习题》)

分析:设Rt △ABC 中,c 为斜边,先来证明一个特性:p(p-c)=(p-a)(p-b).

∵p(p-c)=

21(a+b+c)·21(a+b-c) =41[(a+b)2-c 2] =2

1ab ; (p-a)(p-b)=21(-a+b+c)·21(a-b+c)=41[c 2-(a-b)2]=2

1ab.∴p(p-c)=(p-a)(p-b).① 观察图形,可得r a =AF-AC=p-b ,r b =BG-BC=p-a ,r c =CK=p.而r=21(a+b-c)=p-c. ∴r+r a +r b +r c =(p-c)+(p-b)+(p-a)+p=4p-(a+b+c)=2p.由①及图形易证.

例10.M 是△ABC 边AB 上的任意一点.r 1,r 2,r 分别是△AMC ,△BMC ,△ABC 内切圆的半径,q 1,q 2,q 分别是上述三角形在∠ACB 内部的旁切圆半径.证明:

11q r ·22q r =q

r .(IMO-12) 分析:对任意△A ′B ′C ′,由正弦定理可知OD=OA ′·2

'sin A =A ′B ′·'''sin 2'sin B O A B ∠·2'sin A =A ′B ′·2''sin 2'sin 2'sin B A B A +?, O ′E= A ′B ′·2

''sin 2'cos 2'cos B A B A +.∴2'2''B tg A tg E O OD =. 亦即有11q r ·22q r =2222B tg CNB tg CMA tg A tg ∠∠=22B tg A tg =q r . 六、众心共圆

这有两种情况:(1)同一点却是不同三角形的不同的心;(2)同一图形出现了同一三角形的几个心.

例11.设在圆内接凸六边形ABCDFE 中,AB=BC ,CD=DE ,EF=FA.试证:(1)AD ,BE ,CF 三条对角线交于一点;(2)AB+BC+CD+DE+EF+FA ≥AK+BE+CF.(1991,国家教委数学试验班招生试题)

分析:连接AC ,CE ,EA ,由已知可证AD ,CF ,EB 是△ACE 的三条内角平分线,I 为△ACE 的内心.从而有ID=CD=DE ,IF=EF=FA , IB=AB=BC.

再由△BDF ,易证BP ,DQ ,FS 是它的三条高,I 是它的垂心,利用Erdos 不等式有: BI+DI+FI ≥2·(IP+IQ+IS). 不难证明IE=2IP ,IA=2IQ ,IC=2IS.

∴BI+DI+FI ≥IA+IE+IC. ∴AB+BC+CD+DE+EF+FA =2(BI+DI+FI)≥(IA+IE+IC)+(BI+DI+FI) =AD+BE+CF. I 就是一点两心. 例12.△ABC 的外心为O ,AB=AC ,D 是AB 中点,E 是△ACD 的重心.

证明OE 丄CD.(加拿大数学奥林匹克训练题) 分析:设AM 为高亦为中线,取AC 中点F ,E 必在DF 上且DE:EF=2:1.设 CD 交AM 于G ,G 必为△ABC 重心.连GE ,MF ,MF 交DC 于K. A ...

'B 'C 'O

O '

E D I P A B C D

E F Q S

A D E

F G

易证:DG:GK=3

1DC:(

3

121-)DC=2:1. ∴DG:GK=DE:EF ?GE ∥MF. ∵OD 丄AB ,MF ∥AB ,

∴OD 丄MF ?OD 丄GE.但OG 丄DE ?G 又是△ODE 之垂心.易证OE 丄CD. 例13.△ABC 中∠C=30°,O 是外心,I 是内心,边AC 上的D 点与边BC 上的E 点使得AD=BE=AB.求证:OI 丄DE ,OI=DE.(1988,中国数学奥林匹克集训题)

分析:辅助线如图所示,作∠DAO 平分线交BC 于K.

易证△AID ≌△AIB ≌△EIB ,∠AID=∠AIB=∠EIB. 利用内心张角公式,有∠AIB=90°+2

1∠C=105°, ∴∠DIE=360°-105°×3=45°.

∵∠AKB=30°+

21∠DAO=30°+21(∠BAC-∠BAO)=30°+21(∠BAC-60°) =2

1∠BAC=∠BAI=∠BEI.∴AK ∥IE. 由等腰△AOD 可知DO 丄AK ,∴DO 丄IE ,即DF 是△DIE 的一条高.

同理EO 是△DIE 之垂心,OI 丄DE.由∠DIE=∠IDO ,易知OI=DE.

例14.锐角△ABC 中,O ,G ,H 分别是外心、重心、垂心.设外心到三边距离和为d 外,重心到三边距离和为d 重,垂心到三边距离和为d 垂. 求证:

1·d 垂+2·d 外=3·d 重.

分析:这里用三角法.设△ABC 外接圆半径为1,三个内角记

为A ,B ,C. 易知d 外=OO 1+OO 2+OO 3=cosA+cosB+cosC , ∴2d 外=2(cosA+cosB+cosC). ①

∵AH 1=sinB ·AB=sinB ·(2sinC)=2sinB ·sinC , 同样可得BH 2·CH 3.∴3d 重=△ABC 三条高的和 =2·(sinB ·sinC+sinC ·sinA+sinA ·sinB) ②

∴BCH

BH ∠sin =2,∴HH 1=cosC ·BH=2·cosB ·cosC. 同样可得HH 2,HH 3. ∴d 垂=HH 1+HH 2+HH 3

=2(cosB ·cosC+cosC ·cosA+cosA ·cosB) ③

欲证结论,观察①、②、③,

须证(cosB ·cosC+cosC ·cosA+cosA ·cosB)+( cosA+ cosB+

sinB ·sinC+sinC ·sinA+sinA ·sinB.即可.

练 习 题

1.I 为△ABC 之内心,射线AI ,BI ,CI 交△ABC 外接圆于A ′,B ′,C ′.则AA ′+BB ′+CC ′>△ABC 周长.(1982,澳大利亚数学奥林匹克)

2.△T ′的三边分别等于△T 的三条中线,且两个三角形有一组角相等.求证这两个三角形相似.(1989,捷克数学奥林匹克)

3.I 为△ABC 的内心.取△IBC ,△ICA ,△IAB 的外心O 1,O 2,O 3.求证:△O 1O 2O 3与△ABC 有公共的外心.(1988,美国数学奥林匹克)

4.AD 为△ABC 内角平分线.取△ABC ,△ABD ,△ADC 的外心O ,O 1,O 2.则△OO 1O 2是等腰三角形.

O A B C D E F I K 30°B C O I A O G H O G H G O G H 123112233

5.△ABC 中∠C <90°,从AB 上M 点作CA ,CB 的垂线MP ,MQ.H 是△CPQ 的垂心.当M 是AB 上动点时,求H 的轨迹.(IMO-7)

6.△ABC 的边BC=2

1(AB+AC),取AB ,AC 中点M ,N ,G 为重心,I 为内心.试证:过A ,M ,N 三点的圆与直线GI 相切.(第27届莫斯科数学奥林匹克)

高中数学竞赛讲义(16)平面几何

高中数学竞赛讲义(十六) ──平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三点共线,则 梅涅劳斯定理的逆定理条件同上,若 则三点共线。 塞瓦定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三线平行或共点, 则 塞瓦定理的逆定理设分别是ΔABC的三边 BC,CA,AB或其延长线上的点,若则三线共点或互相平行。 角元形式的塞瓦定理分别是ΔABC的三边BC,CA,AB所在直线上的点,则平行或共点 的充要条件是 广义托勒密定理设ABCD为任意凸四边形,则AB?CD+BC?AD≥AC?BD,当且仅当A,B,C,D四点共圆时取等号。

斯特瓦特定理设P为ΔABC的边BC上任意一点,P不同于B,C,则有 AP2=AB2?+AC2?-BP?PC. 西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴)欧拉定理ΔABC的外心O,垂心H,重心G三点共线,且 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC中,∠ABC=700,∠ACB=300,P,Q为ΔABC内部两点,∠QBC=∠QCB=100,∠PBQ=∠PCB=200,求证:A,P,Q三点共线。 [证明] 设直线CP交AQ于P1,直线BP交AQ于P2,因为∠ACP= ∠PCQ=100,所以,①在ΔABP,ΔBPQ,ΔABC中由正弦定理有

初中数学竞赛辅导几何变换(旋转)

第2讲几何变换——旋转 典型例题 【例1】C是线段AE上的点,以AC、CE为边在线段AE的同侧作等边三角形ABC、CDE, △是等设AD的中点是M,BE的中点是N,连结MN、MC、NC,求证:CMN 边三角形.Array【例2】如图,两个正方形ABCD和AKLM有一个公共点A.求证:这两个正方形的中心以 及线段BM,DK的中点是某正方形的顶点. L

【例3】 已知:如图,ABC △、CDE △、EHK △都在等边三角形,且A 、D 、K 共线, AD DK =.求证:HBD △也是等边三角形. 【例4】 ABC △是等边三角形,P 是AB 边的中点,Q 是AC 边的中点,R 为BC 边的中点, M 为RC 上任意一点,且PMS △是等边三角形,S 与Q 在PM 的同侧,求证: RM QS =. E C H D B A Q ? S M P C B A R

【例5】 ABCD 是正方形,P 是ABCD 内一点,1PA =,3PB = ,PD =求正方形ABCD 的面积. 【例6】 P 是等边三角形ABC 内的一点,6PA =,8PB =,10PC =.求ABC △的边长. D

【例7】 设O 是等边ABC △内一点,已知115AOB ?∠=,125BOC ?∠=,求以线段OA 、OB 、 OC 为边所构成的三角形的各内角大小. 【例8】 如图,在ABC △中,90ACB ?∠=,AC BC =,P 是ABC △内一点,3PA =,1PB =, 2PC =,求BPC ∠. A P C

如图,已知ABC △中,90A =,AB AC =,D 为BC 上一点,求证:2222BD DC AD +=. 【例9】 如图,在等腰直角ABC △中,90ACB ?∠=,CA CB =,P 、Q 在斜边AB 上,且 45PCQ ?∠=,求证:222PQ AP BQ =+. A D C B A Q B C P

数学竞赛平面几何重要知识点绝对精华

数学竞赛平面几何重要知识点 梅涅劳斯定理: 设D 、E 、F 分别是ABC ?三边(或其延长线)上的三点,则D 、E 、F 三点共线的充要条件是1=??EA CE FC BF DB AD 。 斯德瓦特定理:设P 是ABC ?的边BC 边上的任一点,则 BC PC BP AP BC AB PC AC BP ??+?=?+?222 西摩松定理: 设P 是ABC ?外接圆上任一点,过P 向ABC ?的三边分别作垂线,设垂足为D 、E 、F ,则D 、E 、F 三点共线。

6、共角定理:设ABC ?和C B A '''?中有一个角相等或互补(不妨设A=A ')则 C A B A AC AB S S C B A ABC ' '?''?='''?? 与圆有关的重要定理 4.四点共圆的主要判定定理 (1)若∠1=∠2,则A 、B 、C 、D 四点共圆; (2)若∠EAB=∠BCD ,则A 、B 、C 、D 四点共圆; (3)若PA ?PC=PB ?PD ,则A 、B 、C 、D 四点共圆; 三角形的五心 三角形的三条中线共点,三条角平分线共点,三条高线共点,三条中垂线共点。三角形的垂心、重心、外心共线(欧拉线),并且重心把连结垂心和外心的线段分成2∶1的两段。三角形的外心和内心的距离)2(r R R d -=。此公式称为欧拉式,由此还得到r R 2≥。当且仅当△ABC 为正三角形时,d=0,此时R=2r.其中R 和r 分别是三角形外接圆半径和内切圆半径。 与△的一边及另两边的延长线均相切的圆称为△的旁切圆,旁切圆的圆心称为旁心。

重要例题 例1.设M 是任意ABC ?的边BC 上的中点,在AB 、AC 上分别取点E 、F,连EF 与AM 交于N ,求证:)(21AF AC AE AB AN AM +=(1978年辽宁省中学数学竞赛) 例 2. 已知点O 在ABC ?内部,022=++OC OB OA .OCB ABC ??与的面积之比为_________________. 例3. 如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点. ⑴如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点. ⑵在△ABC 中,∠A <∠B <∠C . ①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 是该三角形的自相似点,求该三角形三个内角的度数.

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,错角相等,同旁角互补.利用这些 性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . ∥= A D B P Q 图1 P E D G A B F C 图2

高中复习数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。 如图所示,若AM平分∠BAC,则AB AC =BM MC 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则BD DC =AB AC 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足BD DC =AB AC ,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则BD DC =AB AC =BE EC 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

数学初中竞赛大题训练:几何专题(包含答案)

数学初中竞赛大题训练:几何专题 1.阅读理解: 如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.证明“四点共圆”判定定理有:1、若线段同侧两点到线段两端点连线夹角相等,那么这两点和线段两端点四点共圆;2、若平面上四点连成的四边形对角互补,那么这四点共圆.例:如图1,若∠ADB=∠ACB,则A,B,C,D四点共圆;或若∠ADC+∠ABC=180°,则A,B,C,D四点共圆. (1)如图1,已知∠ADB=∠ACB=60°,∠BAD=65°,则∠ACD=55°; (2)如图2,若D为等腰Rt△ABC的边BC上一点,且DE⊥AD,BE⊥AB,AD=2,求AE 的长; (3)如图3,正方形ABCD的边长为4,等边△EFG内接于此正方形,且E,F,G分别在边AB,AD,BC上,若AE=3,求EF的长. 解:(1)∵∠ADB=∠ACB=60°, ∴A,B,C,D四点共圆, ∴∠ACD=∠ABD=180°﹣∠ADB﹣∠BAD=180°﹣60°﹣65°=55°, 故答案为:55°; (2)在线段CA取一点F,使得CF=CD,如图2所示: ∵∠C=90°,CF=CD,AC=CB, ∴AF=DB,∠CFD=∠CDF=45°, ∴∠AFD=135°, ∵BE⊥AB,∠ABC=45°, ∴∠ABE=90°,∠DBE=135°, ∴∠AFD=∠DBE, ∵AD⊥DE,

∴∠ADE=90°, ∵∠FAD+∠ADC=90°,∠ADC+∠BDE=90°, ∴∠FAD=∠BDE, 在△ADF和△DEB中,, ∴△ADF≌△DEB(ASA), ∴AD=DE, ∵∠ADE=90°, ∴△ADE是等腰直角三角形, ∴AE=AD=2; (3)作EK⊥FG于K,则K是FG的中点,连接AK,BK,如图3所示:∴∠EKG=∠EBG=∠EKF=∠EAF=90°, ∴E、K、G、B和E、K、F、A分别四点共圆, ∴∠KBE=∠EGK=60°,∠EAK=∠EFK=60°, ∴△ABK是等边三角形, ∴AB=AK=KB=4,作KM⊥AB,则M为AB的中点, ∴KM=AK?sin60°=2, ∵AE=3,AM=AB=2, ∴ME=3﹣2=1, ∴EK===, ∴EF===.

人教版九年级数学竞赛专题:平面几何的定值问题(含答案)

人教版九年级数学竞赛专题:平面几何的定值问题(含答案) 【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧上任意一点.求证:为定值. AD ⌒ PA PC PB P A B C D 【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦 CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A.到CD 的距离保持不变 B.位置不变 C.等分 D.随C 点的移动而移动 DB ⌒ A

【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂 线的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角. B 【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是上异于A ,B 的动点,过点C AB ⌒ 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE .(1)求证:四边形OGCH 是平行四边形; (2)当点C 在上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段AB ⌒ 的长度; (3)求证:CD 2+3CH 2是定值. B O A C E H G D 【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8.

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利 用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . 显然,四边形PBCE 、PADE 均为平行四边形.有 ∠BCE =∠BPE ,∠APE =∠ADE . 由∠BAF =∠BCE ,可知 ∠BAF =∠BPE . 有P 、B 、A 、E 四点共圆. 于是,∠EBA =∠APE . 所以,∠EBA =∠ADE . 这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙. 2 欲“送”线段到当处 利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题. 例3 在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ . 证明:如图3,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC 两边距离相等.有KQ =PN . 显然,PD EP =FD EF =GD CG ,可知PG ∥EC . 由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是, PM +PN =PK +KQ =PQ . 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷. 3 为了线段比的转化 ∥= A D B P Q 图1P E D G A B F C 图2 A N E B Q K G C D M F P 图3

初中数学竞赛 几何专题:点共线问题(含答案)

初中数学竞赛 几何专题:点共线问题(含答案) 1. 锐角三角形ABC 中,45BAC ∠=?,BE 、CF 是两条高,H 为ABC △的垂心,M 、K 分别是BC 、 AH 的中点.证明:MK 、EF 和OH 共点,这里O 为ABC △的外心. 解析 如图,由条件45BAE ∠=?,可知AEB △和AFC △都是等腰直角三角形,而O 为AB 、BC 的中垂线上的点,故EO AB ⊥,FO AC ⊥,于是EO CF ∥,FO BE ∥,从而四边形EOFH 为平行四边形.故EF 与OH 的交点为EF 的中点. 另一方面,M 、K 为BC 、AH 的中点,结合直角三角形斜边上的中线等于斜边的一半,可知 12EM MF BC ==,1 2 EK KF AH ==.即四边形EKFM 为菱形,所以EF 与KM 的交点亦是EF 的中点. 从而命题获证. 2. 四边形SPNM 与PFET 都是正方形,且点S 、P 、T 共线,点N 、P 、F 共线,连结MT 、SE , 点S 在MT 上的射影是点A ,点T 在SE 上的射影是点B ,求证:点A 、P 、B 共线. 解析 设AB 与ST 交于点P ',又设ATS α∠=,TSE β∠=.于是由180ASB ATB ∠+∠=?,有 tan cot ASB ATB S SP AS BS P T S AT BT αβ'?===?'?△△ MS ST MS SP ST TE TE PT = ?== , 即点P 与点P '重合. 3. 在矩形ABCD 的边AB 、BC 、CD 、DA 上分别取异于顶点的K 、L 、M 、N ,已知KL MN ∥.证明KM 与LN 的交点O 在矩形的对角线BD 上. 解析 连结OB 、OD . B M N A S P T F E D M C N O L A K B

初中数学竞赛专题复习第二篇平面几何第18章整数几何试题新人教版

第18章 整数几何 ABC △,第三条高的长数,求这条高之长的所有可能值. 解析 由面积知,三条高的倒数可组成三角形三边,这是它们的全部条件. 设第三条高为h ,则 解得1515 45 h <<,h 可取4、5、6、7这四个值. ABC △3AB n x =+,2BC n x =+,CA n x =+,且BC 边上的高AD 的长为n ,其中n 为正整数,且01x <≤,问:满足上述条件的三角形有几个? 解析 注意AB 为ABC △之最长边,故90B ∠,而z 可正可负. 由2y z n x +=+,及()()()2 2 223242y z n x n x n x x -=+-+=+?,得4y z x -=,32 n y x = +,由勾股定理,知()2 22332n x n n x ?? ++=+ ??? ,展开得12n x =,由01x <≤及n 为正整数,知 1n =,2,…,12,这样的三角形有12个. ,其中一条直角边不超过20,其外接圆半径与内切圆半径之比为52∶,求此三角形周长的最大值. 解析 设该直角三角形直角边长为a 、b ,斜边为c ,则外接圆半径2 c R = ,内切圆半径2 a b c r +-= ,不妨设20a ≤. 由条件知 5 2 c a b c =+-,557a b c +=,平方,得()() 222225249a b ab a b ++=+,即 ()2212250a b ab +-=, ()()34430a b a b --=, 于是3a k =,4b k =,5c k =,或4a k =,3b k =,5c k =,周长为12k ,k 为正整数.k 的最大值为6,此时各边为18、24、30,周长最大值为72. ABC △,60A ∠=?,7BC =,其他两边长均为整数,求ABC △的面积. 解析 设AB x =,AC y =,则由余弦定理,有 2249x y xy +-=. 由条件x y ≠,不妨设x y <,则AB 为ABC △之最小边,x 只能取值1、2、3、4、5、6,分别代入,发现当3x =或5时,8y =,其余情形均无整数解. 于是1 sin 602 ABC S xy = ?=△. P ,求经过P 且长为整数的弦的条数. 解析 如图,O 半径为15,9OP =,过P 的弦ST 长为整数,APB 为直径,6AP =,24PB =,则144SP TP PA PB ?=?=,因此 24ST SP TP =+≥.

人教版 初三数学竞赛专题:平面几何的定值问题(包含答案)

人教版 初三数学竞赛专题:平面几何的定值问题(含答案) 【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧AD ⌒上任意一点.求证:PA PC PB 为定值. 【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A.到CD 的距离保持不变 B.位置不变 C.等分DB ⌒ D.随C 点的移动而移动 【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线 的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角. 【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是AB ⌒上异于A ,B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE . (1)求证:四边形OGCH 是平行四边形; (2)当点C 在AB ⌒上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段的长度; (3)求证:CD 2+3CH 2是定值. P A B C D A P B

【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8. (1)求点C 的坐标; (2)连接MG ,BC ,求证:MG ∥BC ; (3)如图2,过点D 作⊙M 的切线,交x 轴于点P .动点F 在⊙M 的圆周上运动时, PF OF 的比值是否发 生变化?若不变,求出比值;若变化,说明变化规律. (图1) (图2) 【例6】 如图,已知等边△ABC 内接于半径为1的圆O ,P 是⊙O 上的任意一点.求证:P A 2+PB 2+PC 2为定值. 【能力训练】 1.如图,点A ,B 是双曲线x y 3 上的两点,分别经过A ,B 两点向x 轴,y 轴作垂线段.若S 阴影=1,则B O A C E H G D A

初中数学竞赛第二十三讲平面几何的定值与最值问题(含解答)

第二十三讲平面几何的定值与最值问题 【趣题引路】 传说从前有一个虔诚的信徒,他是集市上的一个小贩.??每天他都要从家所在的点A出发,到集市点B,但是,到集市之前他必须先拐弯到圆形古堡朝拜阿波罗神像.古堡是座圣城,阿波罗像供奉在古堡的圆心点O,?而周围上的点都是供信徒朝拜的顶礼地点如图1. 这个信徒想,我怎样选择朝拜点,才能使从家到朝拜点,?然后再到集市的路程最短呢? (1) (2) 解析在圆周上选一点P,过P作⊙O的切线MN,使得∠APK=∠BPK,即α=β.那么朝圣者沿A→P→B的路线去走,距离最短. 证明如图2,在圆周上除P点外再任选一点P′. 连结BP?′与切线MN?交于R,AR+BR>AP+BP. ∵RP′+AP′>AR. ∴AP′+BP′=AP′+RP′+RB>AR+BP>AP+BP. 不过,用尺规作图法求点P的位置至今没有解决.?“古堡朝圣问题”属于数学上“最短路线问题”,解决它的方法是采用“等角原理”. 【知识延伸】 平面几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题.?所谓几何定值问题就是要求出这个定值. 在解决这类问题的过程中,可以直接通过计算来求出定值;也可以先考虑某一个特殊情形下的该相关值,然后证明当相应几何元素变化时,此值保持不变. 例1如果△ABC的外接圆半径R一定,求证: abc S 是定值.(S表示△ABC的面积)

解析 由三角形面积S=12 absinC 和正弦定理sin c C =2R, ∴c=2RsinC. ∴ abc S =2sin c C =4sin sin R C C =4R 是定值. 点评 通过正弦定理和三角形面积公式经过变形,计算出结果是4R,即为定值. 平面几何中不仅有等量关系,还有不等关系,例如在变动一些几何元素时,?某一相关的值保持不大于(或不小于)某个定值,如果这个定值在某个情形下可以取得,?这就是一个几何极值.确定几何极值的问题称为几何极值问题,解决这些问题总要证明相关的几何不等式,并指明不等式成为等式的情形(或者至少证明不等式可以成为等式). 例2 如图,已知⊙O 的半径 为⊙O 上一点,过A 作一半径为r=3的⊙O ′, 问OO ′何时最长?最长值是多少?OO ′何时最短?最短值是多少? 解析 当O ′落在OA 的连线段上(即⊙A 与线段OA 的交点B 时)OO ′最短,且最短长度为 当O ′落在OA 的延长线上(即⊙O 与OA 的延长线交点C 时)OO ′最长,且最长的长度为 点评 ⊙O ′是一个动圆,满足条件的⊙O ′有无数个,但由 于⊙O ′过A 点,所以⊙O ′的圆心O ′在以A 为圆心半径为3的⊙A 上. 【好题妙解】 佳题新题品味 例1 如图,已知P 为定角O 的角平分线上的定点,过O 、P?两点任作一圆与角的两边分别交于A 、B 两点. 求证:OA+OB 是定值. 证明 连结AP 、BP,由于它们为有相同圆周角的弦,AP=PB,不妨记为r.?另记x 1=OA,x 2=OB. 对△POA 应用余弦定理, 得x 12+OP 2-2OP ·cos ∠AOP ·x 1=r 2. 故x 1为方程x 2-2OP ·cos 1 2 ∠AOB ·x+(O P 2-r 2)=0的根,同理x 2亦为其根. 因此x 1,x 2为此方程的两根,由韦达定理,得x 1+x 2=2OP(1 2 ∠AOB)是定值.

初中数学竞赛平面几何常用公式及例题讲解

面积公式A bc B ac C ab S ABC sin 2 1sin 21sin 21===? ))()((c p b p a p p S ABC ---=? 2/)(c b a p ++= 和角公式 A B B A B A cos sin cos sin )sin(+=+ A B B A B A sin sin cos cos )cos(-=+ B A B A B A tan tan 1tan tan )tan(-+=+ 差角公式 A B B A B A cos sin cos sin )sin(-=- A B B A B A sin sin cos cos )cos(+=- B A B A B A tan tan 1tan tan )tan(+-=-

常用角度的三角比

相关练习题: 1.已知ABC ?中,,75 =∠B ,60 =∠C ,10=BC 求AB 与AC 的长及三角形的面积 2.求证面积公式A bc B ac C ab S ABC sin 2 1sin 21sin 21===? 3.求证海伦公式 ))()((c p b p a p p S ABC ---=? 2/)(c b a p ++= 4. 已知ABC ?中,,7=AB ,8=BC ,9=AC 求sinA , sinB , sinC 5.在等腰三角形ABC 中,AB=1,∠A=900,点E 为腰AC 中点,点F 在底边BC 上,且FE ⊥BE ,求△CEF 的面积。 6.已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点是P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长. 7.在△ABC 中,∠ABC =600,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB = 。 A B C E F A B C P

平面几何中的几个著名定理

平面几何中的几个著名定理 文章来源:全国初中数学竞赛辅导作者:孙瑞清 几何学起源于土地测量,几千年来,人们对几何学进行了深入的研究,现已发展成为一门具有严密的逻辑体系的数学分支.人们从少量的公理出发,经过演绎推理得到不少结论,这些结论一般就称为定理.平面几何中有不少定理,除了教科书中所阐述的一些定理外,还有许多著名的定理,以这些定理为基础,可以推出不少几何事实,得到完美的结论,以至巧妙而简捷地解决不少问题.而这些定理的证明本身,给我们许多有价值的数学思想方法,对开阔眼界、活跃思维都颇为有益.有些定理的证明方法及其引伸出的结论体现了数学的美,使人们感到对这些定理的理解也可以看作是一种享受.下面我们来介绍一些著名的定理. 1.梅内劳斯定理 亚历山大里亚的梅内劳斯(Menelaus,约公元100年,他和斯巴达的Menelaus是两个人)曾著《球面论》,着重讨论球面三角形的几何性质.以他的名子命名的“梅内劳斯定理”现载在初等几何和射影几何的书中,是证明点共线的重要定理. 定理一直线与△ABC的三边AB,BC,CA或延长线分别相交于X,Y,Z,则 证过A,B,C分别作直线XZY的垂线,设垂足分别为Q,P,S,见图3-98.由△AXQ ∽△BXP得 同理

将这三式相乘,得 说明(1)如果直线与△ABC的边都不相交,而相交在延长线上,同样可证得上述结论,但一定要有交点,且交点不在顶点上,否则定理的结论中的分母出现零,分子也出现零,这时定理的结论应改为 AX×BY×CZ=XB×YC×ZA, 仍然成立. (2)梅内劳斯定理的逆定理也成立,即“在△ABC的边AB和AC上分别取点X,Z,在BC的延长线上取点Y,如果 那么X,Y,Z共线”.梅内劳斯定理的逆定理常被用来证明三点共线. 例1 已知△ABC的内角∠B和∠C的平分线分别为BE和CF,∠A的外角平分线与BC的延长线相交于D,求证:D,E,F共线. 证如图3-99有 相乘后得

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三 点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得 ADC ADP BDP BDC S S AD DB S S ????== . 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、E 、F 均不是? ABC 的顶点,若 1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. A B C D F P

证明:设直线AE 与直线BF 交于点P ,直线CP 交 AB 于点D /,则据塞瓦定理有 // 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理 A B C D E F P D /

高中数学竞赛讲义_平面几何

平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则 .1''''''=??B C AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=??B C AC A B CB C A BA 则',','C B A 三点共线。 塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=??B C AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=??B C AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。 角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠?∠∠?∠∠BA B CBB CB C ACC AC A BAA 广义托勒密定理 设ABC D 为任意凸四边形,则AB ?CD+BC ?AD ≥AC ?BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。 斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有 AP 2=AB 2?BC PC +AC 2?BC BP -BP ?PC. 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理 三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴) 欧拉定理 ΔABC 的外心O ,垂心H ,重心G 三点共线,且.2 1GH OG = 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC 中,∠ABC=700,∠ACB=300,P ,Q 为ΔABC 内部两点,∠QBC=∠QCB=100,∠ PBQ=∠PCB=200,求证:A ,P ,Q 三点共线。 [证明] 设直线CP 交AQ 于P 1,直线BP 交AQ 于P 2,因为∠ACP=∠PCQ=100,所以 CQ AC QP AP =1 ,①在ΔABP ,ΔBPQ ,ΔABC 中由正弦定理有

2018-2019初中数学竞赛专题复习 极限几何100题

1. 如图,在△ABC 中,AB =2AC ,AD 是角平分线,E 是 BC 边的中点,EF ⊥AD 于点 F ,CG ⊥AD 于点 G , 3 若 tan ∠CAD= 4 ,AB =20,则线段 EF 的长为 C F 2. 如图,在△ABC 中,tan ∠ACB=3,点D 、E 在 BC 边上,∠DAE = 1 ∠BAC ,∠ACB =∠DAE +∠B ,点 2 F 在线段 AE 的延长线上,AF =AD ,若 CD =4,CF =2,则 AC 边的长为 3. 如图,在△ABC 中,∠A=30°,点 D 、E 分别在 AB 、AC 边上,BD=CE=BC ,点 F 在 BC 边上,DF 与 BE 1 交于点 G 。若 BG=1,∠BDF= 2 ∠ACB ,则线段 EG 的长为

4. 如图,在△ABC 中,∠A =60°,角平分线 BD 、CE 交于点 F ,若 BC =3CD ,BF =2,则 BC 边的长为 E B 5. 如图,在△ABC 中,AB =AC ,∠ACD =45°,点 E 在射线 BD 上,AE//CD ,AE =DE ,若 BD =1,CD = 5,则 AE 的长为 6. 如图,△ABC 中,∠AB =90°,CD 是 AB 边上的中线,点 F 在线段 AD 上,点 F 在 CD 延长线上,AE = DF ,连接 CE 、BF ,若∠AEC =∠DFB ,AC = 2 3 ,DF = 1,则线段 CE 的长为 A B 7. 如图,在等边△ABC 中,D 为 AB 边上一点,连接 CD ,在 CD 上取一点E ,连接BE ,∠BED =60°,若 3

全国高中数学联赛平面几何题

全国高中数学联赛平面几何题 1.(2000) 如图,在锐角三角形ABC 的BC 边上有两点E 、F ,满足∠BAE =∠CAF ,作FM ⊥AB ,FN ⊥AC (M 、N 是垂足),延长AE 交三角形ABC 的外接圆于D .证明:四边形AMDN 与三角形ABC 的面积相等. 2. (2001) 如图,△ABC 中,O 为外心,三条高AD 、BE 、CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N . 求证:(1) OB ⊥DF ,OC ⊥DE ; (2) OH ⊥MN . 3.(2002) 4.(2003) 过圆外一点P 作圆的两条切线和一条割线,切点为A ,B 所作割线交圆于C ,D 两点,C 在P ,D 之间,在弦CD 上取一点Q ,使∠DAQ =∠PBC .求证:∠DBQ =∠PAC . A B C D E F M N

5.(2004)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K 。已知BC=25,BD=20,BE=7,求AK 的长。 6.(2005) 7.(2006)以B 0和B 1为焦点的椭圆与△AB 0B 1的边AB i 交于点 C i (i =0,1). 在AB 0的延长线上任取点P 0,以B 0为圆心,B 0P 0 为半径作圆弧P 0Q 0⌒ 交C 1B 0的延长线于Q 0;以C 1为圆心,C 1Q 0 为半径作圆弧Q 0P 1⌒ 交B 1A 的延长线于点P 1;以B 1为圆心,B 1P 1 为半径作圆弧P 1Q 1⌒ 交B 1C 0的延长线于Q 1;以C 0为圆心,C 0Q 1 为半径作圆弧Q 1P 0'⌒ ,交AB 0的延长线于P 0'. 试证: ⑴ 点P 0'与点P 0重合,且圆弧P 0Q 0⌒与P 0Q 1⌒ 相切于点P 0; ⑵ 四点P 0,Q 0,Q 1,P 1共圆. P B 1 B 0 C 1P 1 P 0 Q 1Q 0 A C 0

数学竞赛常用平面几何名定理

高中数学常用平面几何名定理 定理1 Ptolemy定理托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 定理2 Ceva定理 定理3 Menelaus定理 定理4 蝴蝶定理定理 内容:圆O中的弦PQ的中点M,任作两弦AB,CD,弦AD与BC分别交PQ 于X,Y,则M为XY之中点。 定理5 张角定理 在△ABC中,D是BC上的一点。连结AD。张角定理指出:sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 定理6 Simon line西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 定理7 Eular line: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半 定理8 到三角形三定点值和最小的点——费马点 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。 定理9 三角形内到三边距离之积最大的点是三角形的重心 定理10到三角形三顶点距离的平方和最小的点是三角形的重心 在几何里,平面是无限延展的,是无大小的,是不可度量的,是无厚度的,通常画平行四边形来表示平面

0、勾股定理,即直角三角形两直角边的平方和等于斜边的平方。这是平面几何中一个最基本、最重要的定理,国外称为毕达哥拉斯定理。 1、欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半 2、九点圆: 任意三角形三边的中点.三条高线的垂足.垂心与各顶点连线的中点,这9点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。 3、费尔马点: 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。 4、海伦(Heron)公式: 在△ABC中,边BC、CA、AB的长分别为a、b、c,若p=0.5*(a+b+c),则△ABC的面积S=√ p*(p-a)(p-b)(p-c) 5、塞瓦(Ceva)定理: 在△ABC中,过△ABC的顶点作相交于一点P的直线,分别交边BC、CA、AB 与点D、E、F,则;其逆亦真 6、密格尔(Miquel)点: 若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点,构成四个三角形,它们是△ABF、△AED、△BCE、△DCF,则这四个三角形的外接圆共点,这个点称为密格尔点。 7、葛尔刚(Gergonne)点: △ABC的内切圆分别切边AB、BC、CA于点D、E、F,则AE、BF、CD三线共点,这个点称为葛尔刚点。 8、西摩松(Simson)线: 已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F 为垂足,则D、E、F三点共线,这条直线叫做西摩松线。

相关主题
文本预览
相关文档 最新文档