当前位置:文档之家› 月球最优软着陆两点边值问题的数值解法_赵吉松

月球最优软着陆两点边值问题的数值解法_赵吉松

月球最优软着陆两点边值问题的数值解法_赵吉松
月球最优软着陆两点边值问题的数值解法_赵吉松

常微分方程初值问题数值解法.

常微分方程初值问题数值解法 朱欲辉 (浙江海洋学院数理信息学院, 浙江舟山316004) [摘要]:在常微分方程的课程中讨论的都是对一些典型方程求解析解的方法.然而在生产实 际和科学研究中所遇到的问题往往很复杂, 在很多情况下都不可能给出解的解析表达式. 本篇文章详细介绍了常微分方程初值问题的一些数值方法, 导出了若干种数值方法, 如Euler法、改进的Euler法、Runge-Kutta法以及线性多步法中的Adams显隐式公式和预测校正 公式, 并且对其稳定性及收敛性作了理论分析. 最后给出了数值例子, 分别用不同的方法计算出近似解, 从得出的结果对比各种方法的优缺点. [关键词]:常微分方程;初值问题; 数值方法; 收敛性; 稳定性; 误差估计 Numerical Method for Initial-Value Problems Zhu Yuhui (School of Mathematics, Physics, and Information Science, Zhejiang Ocean University, Zhoushan, Zhejiang 316004) [Abstract]:In the course about ordinary differential equations, the methods for analytic solutions of some typical equations are often discussed. However, in scientific research, the problems are very complex and the analytic solutions about these problems can’t be e xpressed explicitly. In this paper, some numerical methods for the initial-value problems are introduced. these methods include Euler method, improved Euler method, Runge-Kutta method and some linear multistep method (e.g. Adams formula and predicted-corrected formula). The stability and convergence about the methods are presented. Some numerical examples are give to demonstrate the effectiveness and accuracy of theoretical analysis. [Keywords]:Ordinary differential equation; Initial-value problem; Numerical method; Convergence; Stability;Error estimate

月球探测器软着陆

月球探测器软着陆动力学分析综述在月球探测器的研制过程中,软着陆动力学分析是其关键环节之一,它是通过探测器的着陆冲击过程进行模拟,来预测探测器的动力学特性。月球探测器软着陆动力学分析的内容主要有以下两个方面: 1)着陆稳定性分析。确定不同着陆条件下探测器着陆稳定性的包络边界,保证探测器在一定姿态范围内不翻到、不陷落,并为探测器系统的工作提供牢固的支撑。它是在系统层次上进行的动力学分析,主要关心整体结构的全局动力学响应。 2)动力学响应分析。预测不同着陆条件下探测器上有效载荷处的加速度响应,进而确定其最大期望力学环境,为探测器结构设计和环境模拟试验提供依据,保证搭载人员和设备的安全。它是对探测器局部响应进行的动力学分析,主要关心细节处的动力学响应。

第 1 章国外研究历史 自20世纪60年代以来,由于“阿波罗”计划的需求推动,美国宇航局(National Aeronautics and Space Administration,NASA)针对月球探测器的软着陆动力学分析展开了一系列研究工作[1]。在此期间,NASA的载人飞船中心(Manned Spacecraft Center,MSC。1973年更名为约翰逊航天中心:Johnson Space Center,JSC)、兰利研究中心(Langley Research Center,LRC)、马歇尔太空飞行中心(George C. Marshall Space Flight Center,MSFC),及其合同商——班迪克斯公司(Bendix Corporation)与格鲁曼飞机工程公司(Grumman Aircraft Engineering Corporation,GAEC)分别建立了各自的探测器简化模型并针对各自的模型提出了相应的软着陆动力学分析方法。 1963年,MSFC的Lavender[2]将月球探测器简化为二维刚体模型,并提出了一种考虑了缓冲器的刚度、阻尼和压溃特性的软着陆动力学仿真算法。 同年,Cappelli[3]提出了一种用于分析三维月球探测器软着陆动力学的算法,并采用该算法得到了月球探测器的稳定性边界。Lavender就该算法中对摩擦力和压溃力不恰当的假设与Cappelli进行了多次交流[4,5]。 1964年Lavender[6]在文献[2]的基础上考虑了足垫在月面上的滑移,研究了月面倾角、摩擦系数、初始着陆速度、探测器质量、着陆腿伸展半径、探测器质心高度、质心与探测器中轴线距离、主制动火箭推力、缓冲器压溃力以及着陆腿数量对探测器着陆稳定性的影响。指出月面倾角、摩擦系数和初始着陆速度对着陆稳定性的影响最大。 同年,Bendix公司的Black[7]针对“勘测者”号月球探测器建立了软着陆动力学模型,并利用量纲分析原理建立了一系列试验模型。研究了月面坡度、缓冲器压溃力和着陆腿数量对探测器着陆稳定性的影响,得出四腿探测器的稳定性最优等结论。 同年,兰利研究中心的Walton[8,9]针对“阿波罗”号飞船登月舱建立了软着陆动力学模型,基于非弹性碰撞理论,分析了探测器在四种不同着陆姿态情况下的着陆稳定性,得出非对称着陆相对于对称着陆更加危险的结论。另外,兰利研究中心的Carden[10]和Blanchard[11]也对探测器的着陆稳定性进行了类似的研究。 1965年,MSFC的Admir[12]对以往的二维月球探测器软着陆动力学分析方法进行了重大改进,新的方法可以考虑足垫的三维运动和缓冲系统中包含任意数量

实现人类探测器首次月背软着陆高中阅读

实现人类探测器首次月背软着陆材料一: 2019年1月3日10时26分,嫦娥四号探测器自主着陆在月球背面南极—艾特肯盆地内的冯?卡门撞击坑内,实现人类探测器首次月背软着陆。 “月球背面是一片难得的宁静之地,屏蔽了来自地球的无线电信号干扰。这次探测可以填补射电天文领域在低频观测段的空白,将为研究恒星起源和星云演化提供重要资料。”探月工程嫦娥四号任务新闻发言人于国斌说。 落月后,通过“鹊桥”中继星的“牵线搭桥”,嫦娥四号探测器进行了太阳翼和定向天线展开等多项工作,建立了定向天线高码速率链路,实现了月背和地面稳定通信的“小目标”。 15时7分,科技人员发送指令,两器分离开始。22时 22分,巡视器玉兔二号月球车踏上月球表面。 中国探月工程总设计师、中国工程院院士吴伟仁表示:“飞几十万公里,关键是着陆,要不翻车,月球车要安全走下来。苏联连续失败16次,主要是下去的瞬间翻车了。” (摘编自《半月谈》 2019年1月3日)

材料二: 嫦娥四号登月是一个重要时刻,因为它不只涉及技术,嫦娥四号的成功就像伴随登月向世界分发的中国政治制度的一张名片。只有坚定地自上而下制定目标和指挥实施项目和推进进程,才可能成功。 中国人隐忍而系统地为这次成功做了准备。他们先发射了绕月运行的探测卫星。成功后,又于5年前将嫦娥三号探测器送上了月球面向地球的一面。嫦娥三号甚至还携带了名为玉兔的月球车。 航天业迄今的重要参与者美国、俄罗斯和欧洲正是这种持之以恒行动的反面教材。它们费力地说服政府提供太空任务所需的预算,因此,美国航空航天局、欧洲航天局和俄罗斯航空航天署只能惊讶地旁观中国人的太空行动。虽然单纯从技术角度看,它们也能做到。 (摘编自德国《明镜》周刊网站 2019年1月3日)材料三: 欧阳自远是我国月球探测工程的首席科学家,曾成功推动中国第一颗探月卫星“嫦娥一号”的发射升空。此后,“嫦娥计划”从一号到五号探测卫星,全都离不开他的参与和推动。 中国的探月准备工作做了35年,其中仅是论证,就整整10年,但对于欧阳自远来说,更难的是如何赢得国人的理解和支持。他最初

常微分方程初值问题的数值解法

第七章 常微分方程初值问题的数值解法 --------学习小结 一、本章学习体会 通过本章的学习,我了解了常微分方程初值问题的计算方法,对于解决那些很难求解出解析表达式的,甚至有解析表达式但是解不出具体的值的常微分方程非常有用。在这一章里求解常微分方程的基本思想是将初值问题进行离散化,然后进行迭代求解。在这里将初值问题离散化的方法有三种,分别是差商代替导数的方法、Taylor 级数法和数值积分法。常微分方程初值问题的数值解法的分类有显示方法和隐式方法,或者可以分为单步法和多步法。在这里单步法是指计算第n+1个y 的值时,只用到前一步的值,而多步法则是指计算第n+1个y 的值时,用到了前几步的值。通过对本章的学习,已经能熟练掌握如何用Taylor 级数法去求解单步法中各方法的公式和截断误差,但是对线性多步法的求解理解不怎么透切,特别是计算过程较复杂的推理。 在本章的学习过程中还遇到不少问题,比如本章知识点多,公式多,在做题时容易混淆,其次对几种R-K 公式的理解不够透彻,处理一个实际问题时,不知道选取哪一种公式,通过课本里面几种方法的计算比较得知其误差并不一样,,这个还需要自己在往后的实际应用中多多实践留意并总结。 二、本章知识梳理 7.1 常微分方程初值问题的数值解法一般概念 步长h ,取节点0,(0,1,...,)n t t nh n M =+=,且M t T ≤,则初值问题000 '(,),()y f t y t t T y t y =≤≤??=?的数值解法的一般形式是 1(,,,...,,)0,(0,1,...,)n n n n k F t y y y h n M k ++==- 7.2 显示单步法 7.2.1 显示单步法的一般形式 1(,,),(0,1,...,1)n n n n y y h t y h n M ?+=+=-

传热学导热问题的数值解法

导热问题的数值解法 1 、重点内容:① 掌握导热问题数值解法的基本思路; ② 利用热平衡法和泰勒级数展开法建立节点的离散方程。 2 、掌握内容:数值解法的实质。 3 、了解内容:了解非稳态导热问题的两种差分格式及其稳定性。 由前述3 可知,求解导热问题实际上就是对导热微分方程在定解条件下的积分求解,从而获得分析解。但是,对于工程中几何形状及定解条件比较复杂的导热问题,从数学上目前无法得出其分析解。随着计算机技术的迅速发展,对物理问题进行离散求解的数值方法发展得十分迅速,并得到广泛应用,并形成为传热学的一个分支——计算传热学(数值传热学),这些数值解法主要有以下几种:(1)有限差分法( 2 )有限元方法( 3 )边界元方法 数值解法能解决的问题原则上是一切导热问题,特别是分析解方法无法解决的问题。如:几何形状、边界条件复杂、物性不均、多维导热问题。 分析解法与数值解法的异同点: 相同点:根本目的是相同的,即确定① t=f(x ,y ,z) ;②。不同点:数值解法求解的是区域或时间空间坐标系中离散点的温度分布代替连续的温度场;分析解法求解的是连续的温度场的分布特征,而不是分散点的数值。§4-1 导热问题数值求解的基本思想及内节点离散方程的建立 实质

对物理问题进行数值解法的基本思路可以概括为:把原来在时间、空间坐标系中连续的物理量的场,如导热物体的温度场等,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。该方法称为数值解法。 这些离散点上被求物理量值的集合称为该物理量的数值解。 2 、基本思路:数值解法的求解过程可用框图4-1 表示。 由此可见: 1 )物理模型简化成数学模型是基础; 2 )建立节点离散方程是关键; 3 )一般情况微分方程中,某一变量在某一坐标方向所需边界条件的个数等于该变量在该坐标方向最高阶导数的阶数。 一数值求解的步骤 如图4-2 (a ),二维矩形域内无内热源、稳态、常物性的导热问题采用数值解法的步骤如下: 1 建立控制方程及定解条件 控制方程:是指描写物理问题的微分方程 针对图示的导热问题,它的控制方程(即导热微分方程)为:(a )边界条件:x=0 时, x=H 时, 当y=0 时, 当y=W 时, 区域离散化(确立节点)

常微分方程边值问题的数值解法

第8章 常微分方程边值问题的数值解法 引 言 第7章介绍了求解常微分方程初值问题的常用的数值方法;本章将介绍常微分方程的边值问题的数值方法。 只含边界条件(boundary-value condition)作为定解条件的常微分方程求解问题称为常微分方程的边值问题(boundary-value problem). 为简明起见,我们以二阶边值问题为 则边值问题(8.1.1)有唯一解。 推论 若线性边值问题 ()()()()()(),, (),()y x p x y x q x y x f x a x b y a y b αβ'''=++≤≤?? ==? (8.1.2) 满足 (1) (),()p x q x 和()f x 在[,]a b 上连续; (2) 在[,]a b 上, ()0q x >, 则边值问题(8.1.1)有唯一解。 求边值问题的近似解,有三类基本方法: (1) 差分法(difference method),也就是用差商代替微分方程及边界条件中的导数,最终化为代数方程求解; (2) 有限元法(finite element method);

(3) 把边值问题转化为初值问题,然后用求初值问题的方法求解。 差分法 8.2.1 一类特殊类型二阶线性常微分方程的边值问题的差分法 设二阶线性常微分方程的边值问题为 (8.2.1)(8.2.2) ()()()(),,(),(), y x q x y x f x a x b y a y b αβ''-=<

月球软着陆控制系统综合仿真及分析

月球软着陆控制系统综合仿真及分析(课程设计) 在月球探测带来巨大利益的驱使下,世界各国纷纷出台了自己的探月计划,再一次掀起了新一轮探月高潮。在月球上着陆分为两种,一种称为硬着陆,顾名思义,就是探测器在接近月球时不利用制动发动机减速而直接撞击月球。另一种称为软着陆,这种着陆方式要求探测器在距月面一定高度时开启制动系统,把探测器的速度抵消至零,然后利用小推力发动机把探测器对月速度控制在很小的范围内,从而使其在着陆时的速度具有几米每秒的数量级。显然,对于科学研究,对探测器实施月球软着陆的科学价值要大于硬着陆。 1月球软着陆过程分析 目前月球软着陆方式主要有以下两种方式: 第一种就是直接着陆的方式。探测器沿着击中轨道飞向月球,然后在适当的月面高度实施制动减速,最终使探测器软着陆于月球表面。采用该方案时,探测器需要在距离目标点很远时就选定着陆点,并进行轨道修正。不难发现,该方法所选的着陆点只限于月球表面上接近轨道能够击中的区域,所以能够选择的月面着陆点的区域是相当有限的。 第二种方法就是先经过一条绕月停泊轨道,然后再伺机制动下降到月球表面,如图17-1所示。探测器首先沿着飞月轨道飞向月球,在距月球表面一定高度时,动力系统给探测器施加一制动脉冲,使其进入一条绕月运行的停泊轨道;然后根据事先选好的着陆点,选择霍曼变轨起始点,给探测器施加一制动脉冲,使其进入一条椭圆形的下降轨道,最后在近月点实施制动减速以实现软着陆。 主制动段 开始点 图17-1 月球软着陆过程示意图 与第一种方法相比,第二种方法有以下几个方面较大的优越性: 1)探测器可以不受事先选定着陆点的约束,可以在停泊轨道上选择最佳的着陆点,具有很大的选择余地。

偏微分方程边值问题的数值解法论文

求解偏微分方程的边值问题 本实验学习使用MATLAB 的图形用户命令pdetool 来求解偏微分方程的边值问题。这个工具是用有限元方法来求解的,而且采用三角元。我们用个例题来说明它的用法。 一、MATLAB 支持的偏微分方程类型 考虑平面有界区域D 上的二阶椭圆型PDE 边值问题: ()c u u f α-??+=g (1.1) 其中 (1) , (2) a,f D c x y ?????=? ????? 是上的已知函数(3)是标量或22的函数方阵 未知函数为(,) (,)u x y x y D ∈。它的边界条件分为三类: (1)Direchlet 条件: hu f = (1.2) (2)Neumann 条件: ()n c u qu g ?+=g (1.3) (3)混合边界条件:在边界D ?上部分为Direchlet 条件,另外部分为Neumann 条件。 其中,,,,h r q g c 是定义在边界D ?的已知函数,另外c 也可以是一个2*2的函数矩阵,n 是沿边界的外法线的单位向量。 在使用pdetool 时要向它提供这些已知参数。 二、例题 例题1 用pdetool 求解 22D 1 D: 10u x y u ??-?=+≤??=?? (1.4)

解:首先在MATLAB 的工作命令行中键入pdetool ,按回牟键确定,于是出现PDE Toolbox 窗口,选Genenic Scalar模式. ( l )画区域圆 单击椭圆工具按钮,大致在(0,0)位置单击鼠标右键,拖拉鼠标到适当位置松开。为了保证所绘制的圆是标准的单位园,在所绘园上双击,打开 Object Dialog 对话框,精确地输入

月球软着陆着陆轨道控制策略敏感性分析

月球软着陆控制系统综合仿真及分析 摘要:月球探测特别是着陆探测已成为航天任务中的热门话题,本文针对月球软着陆的控制系统问题进行讨论分析,并利用仿真软件进行仿真验证。首先建立了月球软着陆的动力学模型,然后采用多项式制导律确定径向最优轨迹和燃耗次优控制方向角,最后利用MATLAB,Simulink验证方法的可行性。通过改变初始状态,讨论了参数偏差对最终着陆状态的影响。分析表明除着陆平面外法线方向的速度w偏差可能导致状态发散外,多项式制导律可以较好的应对其他参数造成的偏差,保证探测器实现软着陆。 关键词:软着陆,最优轨迹,多项式制导律,燃耗次优 1. 引言 在月球探测带来巨大利益的驱使下,世界各国纷纷出台了自己的探月计划,再一次掀起了新一轮探月高潮。在月球上着陆分为两种,一种称为硬着陆,顾名思义,就是探测器在接近月球时不利用制动发动机减速而直接撞击月球。另一种称为软着陆,这种着陆方式要求探测器在距月面一定高度时开启制动系统,把探测器的速度抵消至零,然后利用小推力发动机把探测器对月速度控制在很小的范围内,从而使其在着陆时的速度具有几米每秒的数量级。显然,对于科学研究,对探测器实施月球软着陆的科学价值要大于硬着陆。 图1 月球软着陆过程示意图 在月球表面成功实施软着陆是进行月球探测的关键性技术,更是进行航天员登月、建立月球基地必不可少的一个环节,深入地研究和掌握月球软着陆技术、方法也正是为了达到这个目的。软着陆是相对于硬着陆来说的。硬着陆就是飞行器在重力作用下不采取任何减速措施,相当于“掉下来”。这是一种破坏性的着陆方式,一般用在一次性的飞行器上,比如月球探测卫星,完成任务后就扔到月球上去,不用管了。软着陆就是在落地之前通过一定的手段减小垂直速度,使之以一个可以接受的速度落地,以保护飞行器和航天员。 目前月球软着陆方式主要有以下两种方式: 第一种就是直接着陆的方式。探测器沿着击中轨道飞向月球,然后在适当的月面高度实施制动减速,最终使探测器软着陆于月球表面。采用该方案时,探测器需要在距离目标点很远时就选定着陆点,并进行轨道修正。不难发现,该方法所选的着陆点只限于月球表面上接近轨道能够击中的区域,所以能够选择的月面着陆点的区域是相当有限的。 第二种方法就是先经过一条绕月停泊轨道,然后再伺机制动下降到月球表面,如图1所示。探测器首先沿着飞月轨道飞向月球,在距月球表面一定高度时,动力系统给探测器施加一制动脉冲,使其进入一条绕月运行的停泊轨道;然后根据事先选好的着陆点,选择霍曼

实验报告七常微分方程初值问题的数值解法

实验报告七常微分方程 初值问题的数值解法 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

浙江大学城市学院实验报告 课程名称 数值计算方法 实验项目名称 常微分方程初值问题的数值解法 实验成绩 指导老师(签名 ) 日期 2015/12/16 一. 实验目的和要求 1. 用Matlab 软件掌握求微分方程数值解的欧拉方法和龙格-库塔方法; 2. 通过实例学习用微分方程模型解决简化的实际问题。 二. 实验内容和原理 编程题2-1要求写出Matlab 源程序(m 文件),并有适当的注释语句;分析应用题2-2,2-3,2-4,2-5要求将问题的分析过程、Matlab 源程序和运行结果和结果的解释、算法的分析写在实验报告上。 2-1 编程 编写用向前欧拉公式和改进欧拉公式求微分方程数值解的Matlab 程序,问题如下: 在区间[],a b 内(1)N +个等距点处,逼近下列初值问题的解,并对程序的每一句添上注释语句。 Euler 法 y=euler(a,b,n,y0,f,f1,b1) 改进Euler 法 y=eulerpro(a,b,n,y0,f,f1,b1) 2-2 分析应用题 假设等分区间数100n =,用欧拉法和改进欧拉法在区间[0,10]t ∈内求解初值问题 ()()20(0)10y t y t y '=-??=? 并作出解的曲线图形,同时将方程的解析解也画在同一张图上,并作比较,分析这两种方法的精度。 2-3 分析应用题 用以下三种不同的方法求下述微分方程的数值解,取10h = 画出解的图形,与精确值比较并进行分析。 1)欧拉法; 2)改进欧拉法; 3)龙格-库塔方法; 2-4 分析应用题 考虑一个涉及到社会上与众不同的人的繁衍问题模型。假设在时刻t (单位为年), 社会上有人口()x t 人,又假设所有与众不同的人与别的与众不同的人结婚后所生后代也是与众不同的人。而固定比例为r 的所有其他的后代也是与众不同的人。如果对所有人来说出生率假定为常数b ,又如果普通的人和与众不同的人的婚配是任意的,则此问题可以用微分方程表示为:

2021届东北三省三校高三下学期3月第一次联合模拟考试语文试卷参考答案

2021届东北三省三校高三下学期3月第一次联合模拟考试 语文参考答案 1. D【解析】(A项,在第1段中,强加因果。 B项,在第2段中,“往往”的限定属无中生有,偷换了“彰显”的主语“儒家伦理道德的说教”。C项,第3段中,在“更易于被感受和理解”和“这促使……盛行”均于文无据) 2. B【解析】(“善恶格”不是一种善书) 3. C【解析】(第2段中“也会告诫人们迟早必遭报应”的推断错误,应为告诫和提醒人们要“以过除功”“以功折过”) 4. B【解析】(“2013年……实现了月球背面软着陆”错。由材料一“2013年发射的“嫦娥三号”实现了月球软着陆”和“相关链接”中“2019年1月3日,“嫦娥四号”成功登陆月球背面,全人类首次实现月球背面软着陆”可知。) 5. B【解析】(材料二说的是“将探测器送入预定轨道”) 6.⑴探月工程:标志着我国探月工程“绕落回”三步走规划如期完成,体现中国航天科技实力的进一步提高 ⑵深空探测:对于中国开启月球和深空探测新征程,具有里程碑的意义 ⑶科学研究:助力深化月球成因和演化历史等科学研究。 7. C【解析】原因解说错误。为了一兜海参“我”如此不要命,老疯头惊愕于“我”宁可死在水里也不上岸。 8.合理:(1)情节上:我与老疯头斗争了一天,“我”与他的冲突激烈而持久,但在冲突中,他们被对方的坚持与倔强打动,这样的结尾出人意料,又在情理之中。(2)人物上:老疯头坚持原则,保护公司财产是他的信念,但他也有善良、宽容的一面,结尾,他“转身走了”,突出了人物形象。(3)主题上:反差之中丰富了小说的主题,展现出人性的温暖。(其他答案,言之成理,可酌情给分。) 9.(1)故事场景具有浓郁的地域风貌,充满海味。语言充满地域特色,北方化、口语化。如:我吭哧吭哧地拖着一网兜海参,他那野猪蹄子般的脚掌呱唧呱唧地跺着水花。(2)人物形象充满阳刚之气。小说中我和老疯头都很倔强甚至有些偏执,永不屈服。比如,“我”宁可死在海里也不上岸,老疯头对我穷追不舍。(其他答案,言之成理,可酌情给分。) 10.B 11.D【解析】(“礼部的长官为尚书,副职为郎中”错,副职是“侍郎”。) 12.A【解析】(“闻名当时”不对,只是受到宰相和肃宗的赏识。“投奔肃宗”也不对,是奉上皇之命去见肃宗) 13.(1)当时唐玄宗有玩乐的愿望,多次到各地巡视,把温泉宫扩大为华清宫,围绕该宫设置百官部门。(“逸志”“巡幸”“环”各1分,句意2分) (2)详细说明了太上皇让位的意愿,趁机谈到眼前有利和不利的情况,言辞谈吐典雅流畅,皇帝为之改变容色(动容)。(“具”“传付”“改容”各1分,句意2分) 14. D【解析】(诗中并未具体描写竹的姿态) 15.①表达了诗人洁身自好的隐逸思想,视富贵如浮云的志趣追求。②诗人身处三径之中,向主人祝酒,在与友人相聚、在清风竹林中,心驰物外,向往归隐。③最后两句意蕴丰富,诗人在醉眠中竟连石根也煮烂,且不以品评声名之事为重,表达了愿长醉而不醒、不慕功名的追求。(其他答案,言之成理,可酌情给分。) 16.①不畏浮云遮望眼②自缘身在最高层③不吾知其亦已兮④苟余情其信芳⑤(而)神明自得 ⑥圣心备焉 17. B【解析】文中和B项省略号的作用都是列举的省略,表示引文的省略;C表示语意未尽;D表示说话时断断续续。 18. B【解析】有声有色:形容说话或表演精彩生动。风生水起:形容事情做得有生气,蓬勃兴旺。这里形容“直播带货”的事业蓬勃兴旺,所以用“风生水起”更合适。触目皆是:眼睛所看到的地方,到处都是。比比皆是:到处都是,形容极其常见。这里

实验报告七 常微分方程初值问题的数值解法

课程名称 数值计算方法 实验项目名称 常微分方程初值问题的数值解法 实验成绩 指导老师(签名 ) 日期 2015/12/16 一. 实验目的和要求 1. 用Matlab 软件掌握求微分方程数值解的欧拉方法和龙格-库塔方法; 2. 通过实例学习用微分方程模型解决简化的实际问题。 二. 实验内容和原理 编程题2-1要求写出Matlab 源程序(m 文件),并有适当的注释语句;分析应用题2-2,2-3,2-4,2-5要求将问题的分析过程、Matlab 源程序和运行结果和结果的解释、算法的分析写在实验报告上。 2-1 编程 编写用向前欧拉公式和改进欧拉公式求微分方程数值解的Matlab 程序,问题如下: 在区间[],a b 内(1)N +个等距点处,逼近下列初值问题的解,并对程序的每一句添上注释语句。 0(,)()y f x y a x b y a y '=≤≤= Euler 法 y=euler(a,b,n,y0,f,f1,b1) 改进Euler 法 y=eulerpro(a,b,n,y0,f,f1,b1) 2-2 分析应用题 假设等分区间数100n =,用欧拉法和改进欧拉法在区间[0,10]t ∈内求解初值问题 ()()20 (0)10 y t y t y '=-?? =? 并作出解的曲线图形,同时将方程的解析解也画在同一张图上,并作比较,分析这两种方法的精度。 2-3 分析应用题 用以下三种不同的方法求下述微分方程的数值解,取10h =

201 (0)1 y y x x y '=+≤≤?? =? 画出解的图形,与精确值比较并进行分析。 1)欧拉法; 2)改进欧拉法; 3)龙格-库塔方法; 2-4 分析应用题 考虑一个涉及到社会上与众不同的人的繁衍问题模型。假设在时刻t (单位为年),社会上有人口()x t 人,又假设所有与众不同的人与别的与众不同的人结婚后所生后代也是与众不同的人。而固定比例为r 的所有其他的后代也是与众不同的人。如果对所有人来说出生率假定为常数b ,又如果普通的人和与众不同的人的婚配是任意的,则此问题可以用微分方程表示为: () (1())dp t rb p t dt =- 其中变量()()()i p t x t x t =表示在时刻t 社会上与众不同的人的比例,()i x t 表示在时刻t 人口中与众不同的人的数量。 1)假定(0)0.01,0.02p b ==和0.1r =,当步长为1h =年时,求从0t =到50t =解()p t 的近似值,并作出近似解的曲线图形。 2)精确求出微分方程的解()p t ,并将你当50t =时在分题(b)中得到的结果与此时的精确值进行比较。 【MATLAB 相关函数】 求微分方程的解析解及其数值的代入 dsolve(‘egn1’, ‘egn2’,L ‘x ’) subs (expr, {x,y,…}, {x1,y1,…} ) 其中‘egn i ’表示第i 个方程,‘x ’表示微分方程中的自变量,默认时自变量为t 。 subs 命令中的expr 、x 、y 为符合型表达式,x 、y 分别用数值x1、x2代入。 >> syms x y z >> subs('x+y+z',{x,y,z},{1,2,3}) ans = 6 >> syms x >> subs('x^2',x,2) ans = 4 >> s=dsolve(‘12Dy y ∧=+’, ‘(0)1y =’, ‘x ’) ans = tan(14)x pi -*

第十一章 常微分方程边值问题的数值解法汇总

第十一章 常微分方程边值问题的数值解法 工程技术与科学实验中提出的大量问题是常微分方程边值问题.本章将研究常微分方程边值问题的数值求解方法.主要介绍三种边界条件下的定解问题和两大类求解边值问题的数值方法,打靶法算法和有限差分方法. 11.1 引言 在很多实际问题中都会遇到求解常微分方程边值问题. 考虑如下形式的二阶常微分方程 ),,(y y x f y '='', b x a <<, (11.1.1) 在如下三种边界条件下的定解问题: 第一种边界条件: α=)(a y , β=)(b y (11.1.2) 第二种边界条件: α=')(a y , β=')(b y (11.1.2) 第三种边界条件: ? ? ?=-'=-'101 0)()()()(b b y b y a a y a y βα, (11.1.13) 其中0 0, ,00000>+≥≥b a b a . 常微分方程边值问题有很多不同解法, 本书仅介绍打靶方法和有限差分方法. 11.2 打靶法 对于二阶非线性边值问题 ()()().,,βα==≤≤'=''b y a y b x a y y x f y ,,, (11.2.1) 打靶法近似于使用初值求解的情况. 我们需要利用一个如下形式问题初值解的序列: ()()v a w a w b x a w w x f w ='=≤≤'='')(,,,,,α, (11.2.2) 引进参数v 以近似原边界值问题的解.选择参数k v v =,以使: ()()β==∞ →b y v b w k k ,lim , (11.2.3)

其中),(k v x w 定义为初值问题(11.2.2)在k v v =时的解,同时()x y 定义为边值问题(11.2.1)的解. 首先定义参数0v ,沿着如下初值问题解的曲线,可以求出点),(αa 对应的初始正视图 ()()v a w a w b x a w w x f w ='=≤≤'='')(,,,,,α. (11.2.4) 如果),(0v b w 不严格收敛于β,那么我们选择1v 等值以修正近似值,直到),(0v b w 严格逼近β. 为了取得合适的参数k v ,现在假定边值问题(11.2.1)有唯一解,如果),(v x w 定义为初始问题(11.2.2)的解,那么v 可由下式确定: 0),(=-βv b w . (11.2.5) 由于这是一个非线性方程,我们可以利用Newton 法求解.首先选择初始值0v ,然后由下式生成序列 ),)(()),((111----- =k k k k v b dv dw v b w v v β,此处),(),)(( 11--=k k v b dv dw v b dv dw , (11.2.6) 同时要求求得),)(( 1-k v b dv dw ,因为),(v b w 的表达式未知,所以求解这个有一点难度;我们只能得到这么一系列的值。 ,,,),(),(),(),(1210-??k v b w v b w v b w v b w 假如我们如下改写初值问题(11.2.2),使其强调解对x 和v 的依赖性 ()()v v a w v a w b x a v x w v x w x f w ='=≤≤'=''),(,),(),,(,,,,α,(11.2.7) 保留初始记号以显式与x 的微分相关.既然要求当k v v =时),)((v b dv dw 的值,那么我们需要求出表达式(11.2.7)关于v 的偏导数.过程如下: )),(),,(,(),(v x w v x w x v f v x v w '??=?''? ),()),(),,(,()),(),,(,(v x v w v x w v x w x w f v x v x w v x w x x f ??'??+??'??= ) ,()),(),,(,(v x v w v x w v x w x w f ?'?''??+ 又因为x 跟v 相互独立,所以当b x a ≤≤上式如下;

中国成为继苏联、美国之后第三个实现月球软着陆国家

中国成为继苏联、美国之后第三个实现月球软着 陆国家 中国成为继苏联、美国之后第三个实现月球软着陆国家。各国迄今共探月129次成功率仅51%自1958年以来,世界各国迄今共进行了129次月球探测活动,包括美国59次,前苏联64次,日本和中国各2次,欧空局和印度各1次;其中成功或基本成功66次,失败63次,成功率仅有51%。迄今只有美国实现了载人登月,苏联开展了两次月面无人巡视探测任务。美苏两国成功共实施了13次无人月球表面软着陆。1958年至1976年冷战期间,美国和前苏联曾展开一场以月球探测为中心的空间科学技术竞赛,美国共发射先驱者等7个系列54个月球探测器,成功35次,成功率65%;苏联共发射4个系列64个月球探测器,成功21次,成功率32.8%。1959年,前苏联的无人登月器“月球2号”成为第一个到达月球的人造物体。1964年,美国的“徘徊者7号”月球探测器在月球上成功硬着陆。1969年7月20日,美国宇航员阿姆斯特朗和同伴奥尔德林成功登上了月球,并留下了人类在外层空间的第一个脚印。1970年9月12日,前苏联发射“月球16号”探测器,这是第一个实现在月球上自动取样并送回地球的探测器。1970年11月10日,前苏联发射“月球17号”探测器,该探测器携带的第一辆无人驾驶月球车“月球车1号”第一次在月球表面行驶并进行科学探测,最终在月球上工作了11个月。1977年至1993年间,人类没有成功发射过一颗专门用于探测月球的卫星,使这20多年成为探月的寂静期。自1976年美国与前苏联的探月工程告一段落以后,没有国家再到月球上进行落月探测。“嫦娥三号”如果成功完成既定任务,将是多年之后人类首次实现落月探测。90年代以来人类再掀探月热潮中国强势入围20世纪90年代以后,日本、欧洲、中国与印度等国家或地区加入到第二轮探月活动中来,美国与俄罗斯等老牌航天强国也提出新的探月计划。在第二轮探月高峰中,各国迄今共实施11次探月计划,其中1次失败,1次部分成功,其余全部成功,成功率大大提高,显示出人类的探月技术已经获得极大提高。1990年1月,日本发射“缪斯A”号卫星,进入太空后更名“飞天号”,向月球轨道释放一颗小型探测卫星,成为第三个探月的国家。但“飞天”号接近月球后与地面失去联系,未获得探测成果,最终于1993年4月坠毁在月球上。1994年1月与1998年1月,美国先后发射“克莱门汀”号、“月球勘探者”号,对月球形貌、资源、水冰等进行了探索。2003年9月27日,欧洲成功发射首个月球探测器“智慧1号”(“SMART-1”),进入月球轨道绕月飞行,成功完成预期月球探测任务,并于2006年9月撞月。2007年9月14日,日本发射首个月球探测器“月亮女神”号,包括一个主轨道器和两颗小卫星。2009年6月,“月亮女神”受控撞月,结束为期2年左右的探测任务。2007年10月与2010年10月,中国先后成功发射首颗月球探测卫星“嫦娥一号”,以及探月工程二期技术先导星“嫦娥二号”,进入世界上具有深空探测能力的国家行列。2008年10月,印度发射“月船一号”卫星,获得一批科学成果,对月球进行了全球成像。2009年8月,“月船1号”在轨工作312天后,与地面失去联系。2009年6月,美国一箭双星发射“月球勘测轨道器”和“月球坑观测和传感卫星”。10月9日“月球陨坑观测与遥感卫星”成功撞击月球,发现了水。2011年9月,美国发射“圣杯号”月球探测器,对月球重力场系统进行精细探测。2013年9月7日,美国发射“月球大气与尘埃环境探测器”(LADEE),以探测月球大气层的散逸层和周围的尘埃,携带了尘埃探测器、中性质谱仪、紫外与可见光光谱仪,还进行激光通讯技术验证试验。前苏联:首个进行绕月探测的国家在人类探月初期,前苏联领先于其它各国。1959年1月2日,前苏联成功发射“月球1号”,9月12日,再次发射“月球2号”,受控首次撞击月球,成为第一个到达月球的人造物体。1959年10月,前苏联又发射“月球3号”,首次拍摄到月球背面照片。从1958到1976年,前苏联先后发射“月球

两点边值问题的两种数值解法

常微分方程组两点边值问题的数值解法 ----张亚苗2011年9月 3)1(1)0(04===-''y y y y 可化为微分方程组3 )1(1)0(41221==='='y y y y y y 方法一:配置法 Matlab 程序: function bvcollation clc solinit = bvpinit(linspace(0,1,20),[100 600]);% sol = bvp4c(@twoode,@twobc,solinit); x = linspace(0,1,20); y = deval(sol,x); y' plot(x,y(1,:),x,y(2,:)); end %微分方程组 function dydx = twoode(x,y) dydx = [ y(2) 4*y(1)]; end %边值条件 function res = twobc(ya,yb) res = [ ya(1)-1 yb(1)-3]; end 运行结果: 1.0000 -0.4203 0.9834 -0.2117 0.9777 -0.0055 0.9828 0.2007 0.9988 0.4091 1.0259 0.6220 1.0644 0.8419 1.1147 1.0710 1.1774 1.3121 1.2531 1.5677 1.3427 1.8407 1.4472 2.1341 1.5678 2.4512 1.7057 2.7954 1.8626 3.1707 2.0401 3.5811 2.2402 4.0313 2.4652 4.5261 2.7175 5.0712 3.0000 5.6724

嫦娥三号软着陆关键技术

嫦娥三号软着陆关键看避障最后几米最危险 2013年12月02日 03:13来源:新快报 原标题:四腿六轮“三姑娘” 软着陆关键看避障(2) 构型设计——四腿六轮“三姑娘”有四条腿六个轮子,是着陆器和巡视器(俗称“月球车”,官方称为“玉兔号”)的组合体。与嫦娥一号、二号不同,嫦娥三号在名称上不叫卫星而叫器,是我国第一个“有腿”的航天器。 航天科技集团主任设计师杨建中介绍,这样的组合构型,是由其任务特点决定的。嫦娥三号任务主要有两个,一是实现月面软着陆,二是实施月面巡视勘察。这需要它既能落到月面上,还能自主动起来。将任务分解给两个探测器,有助于加快研制进度。 落月之前,巡视器作为一个载荷被安装在着陆器上,本身并不工作。整个前期飞行、动力下降以及实施软着陆过程,都是由着陆器完成的。到月面后,二者互相配合,将巡视器释放到月面上,成为两个独立的探测器,各自在月面开展探测任务。 着陆器包含11个分系统,其中最有特色的当属着陆缓冲分系统,又集中体现在四条“中国腿”的外形上。据了解,其他国家的软着陆方式主要有三种:一是气囊弹跳式,二是着陆腿式,三是空中吊车式。每种方案都有优缺点。就嫦娥三号软着陆任务来讲,气囊式不能满足重量要求,吊车式又比较复杂,腿式能满足任务需要,保证着陆的稳定性。综合之下,嫦娥三号选用了腿式着陆。 巡视器包含8个分系统,其中最有特色的当属移动分系统。从外形上看,就是巡视器的6个轮子。 中国航天科技集团巡视器副总设计师贾阳介绍,国外巡视器的移动方案主要有三种:履带式、腿式和轮式。履带式最大的优点是压强小、通过性强,弱点是遇到石块等容易被卡住不能动弹。腿式巡视器在平缓的地面行走尚可,但控制起来比较复杂,弄不好一下子就坐到地上。轮式则能避免上述方式的缺点。 路径设计——前所未有 嫦娥三号的路径设计还要嫦娥一号、二号的基础上更进一层,且难度和风险大大增强。它要在近月点15公里处进行动力下降,接着实现月面软着陆,然后再进行月面巡视勘察。 这15公里的动力下降,是以抛物线下降。探测器的相对速度要从1.7公里/秒逐渐减为0,过程主要靠探测器自主来完成,人工干预的可能性几乎为零。距月面100米处时,探测器还要悬停,对月面进行拍照,避开障碍物,寻找着陆点。 对于地面工程人员来说,这一过程尚属首次,存在两大风险。一是关键设备都是新研制的,包括GNC系统(制导、导航与控制系统)和我国首台全新的7500牛变推力空间发动机。二是软着陆区域的地形地貌存在一定程度的不确定性。 等到探测器在月面实现软着陆后,着陆器和巡视器还要进行分离,实现互相拍摄。着陆器基本固定在一个位置,巡视器则需要从着陆器上“走”下来,进行月面巡视勘察。在月面路径中,还涉及到“地面遥操作”和“巡视器自主控制”相结合的技术手段。 除了地面遥操作外,巡视器也可以利用计算机,对图像进行处理、识别障碍,规划出相对较近的局部路径,控制自身的移动。这时候,巡视器就是一个自主移动的机器人了。 功能设计——确保月面生存 月球表面昼夜温差较大,温度高时有120摄氏度,温度低时在零下180摄氏度。而且,月球的昼夜交替周期也较长,这给“三姑娘”的月面生存带来了很大的难度。

相关主题
文本预览
相关文档 最新文档