当前位置:文档之家› 实验二 传热学

实验二 传热学

实验二 传热学
实验二 传热学

中国石油大学 传热学 实验报告

实验二 横管自然对流传热规律实验研究

一、实验目的

1.了解空气沿横管表面自然对流传热规律的实验研究方法,巩固课堂上学过的传热学知识。

2.测定横管的自然对流传热系数h 。

3.通过数据处理,整理出自然对流传热准则方程式。 二、实验原理

对横管进行电加热,热量应是以对流和辐射两种方式来散发的,所以对流换热量为总热量与辐射热换量之差,即:

r c Φ+Φ=Φ, )(∞-=Φt t hA w c ,???

?

??????? ??-??? ??=Φ∞440100100T T A C w r ε

IV =Φ (W) ???

???????? ??-??? ??--

-=

-Φ-

-Φ=

∞∞∞440

100100)

()

()

(T T t t C t t A IV t t A t t A h w w w w r w ε

式中:Φ一加热功率,W ; r Φ一辐射换热量,W ;

c Φ一对流换热量,W ; ε一管表面黑度;

0C 一黑体的辐射系数;67.50=C (W/m 2·K 4) w t 一管壁平均温度, ℃; ∞t 一室内空气温度,℃; A 一管表面积,m 2;

h 一自然对流传热系数,W/(m 2·℃);

根据相似理论,对于自然对流传热,努谢尔特数Nu 是葛拉晓夫数Gr 、普朗特数Pr 的函数,可表示成:

n

Gr C Nu Pr)(?=

其中C 、n 是通过实验所确定的常数。为了确定上述关系式的具体形式,根据所测的数据,求出准则数:

λ

hd

Nu =

3

3

ν

βtd

g Gr ?=

式中,Pr 、α、λ、ν为空气的物性参数,由定性温度t m 从教科书中查出。2

+=

t t t w m ,

d 为定型尺寸,取管外径,∞-=?t t t w 。w t 为横管平均壁温,取各测点温度平均值,即

n

t t t t n

w +??++=

21。

测出稳定状态下四根横管的管壁温度、加热功率和空气温度,即可求得4组Nu 、 Gr ·Pr 数,把4组数据取对数绘在直角坐标纸上,得到以lnNu 为纵坐标,以ln(Gr ·Pr)为横坐标的一系列点,画一条直线,使大多数点落在这条直线上或周围,根据:

Pr)ln(ln ln ?+=Gr n C Nu ,这条直线的斜率即为n ,截距为ln C 。因此可以求出常数C 和

n 。

三、实验装置及测量仪表

实验装置有实验管(四种类型),支架、测量仪表电控箱等组成。(见简图)

实验装置示意图

实验管内有加热丝,通一恒定电流可加热,产生的热量通过自然对流传热、辐射传热和轴向导热向周围传递,由于管长径比较大,轴向导热可忽略不计,只考虑自然对流传热、辐 射传热,为了减少辐射传热量,管壁采用电镀,使其黑度系数减小,辐射传热量的比例减小,在总加热功率中减掉辐射传热量,则是自然对流传热量。经过一段时间后,管壁温度趋于稳定,实验管上有热电偶安装在管壁上,可以测出出管壁的温度,由安装在电控箱上的测温数显表通过转换开关读取温度值。电加热功率则可用数显电压表、电流表读取,并计算出加热

功率。

四、实验步骤

1.熟悉实验装置的组成、各部分的作用、测量线路和加热线路。

2.实验装置已提前加热基本趋于稳定,实验时不要调节加热电压。

3.开始测量各参数。管壁温度通过数显仪表和按键开关依此测量,其中1#、2# 管有6个测温点,3#、4# 管有4个测温点,室内空气温度

t用数显温度计测量,加热电流和加热电压直接从数显仪表上读取。

4.间隔20分钟再测一次,若两次数据误差小于1%,则说明达到稳态,即不再测量。用最后一次测的数据进行数据处理。若误差较大,可过20分钟再测一次。

5.测量完结束实验,但不要关闭电源,以备后面的同学进行实验。

6.测试数据记录表

岸标测量管壁温度t w1,T w2,t w3…t wn室内空气温度t∞、电流I、电压V。记录在表中。

管号

测量

次数

管壁各点温度t wi

(℃)

空气

温度

t∝

平均壁

t w

加热电

流I

(A)

加热电

压V

(V)t w1t w2t w3t w4t w5t w6

1#

1 82.9 83.

2 87.4 78.1 73.9 69.0 36.0 79.08 1.0 54

2 82.7 83.4 87.

3 78.3 74.2 69.1 36.0 79.17 1.0 53 2#

1 78.7 82.6 78.

2 74.1 66.4 70.7 36.0 75.12 0.54 30

2 78.7 82.2 78.0 74.4 66.4 70.6 36.0 75.05 0.56 31

3# 1 82.1 84.3 81.7 78.5 36.0 81.65 0.38 36

2 82.7 84.7 81.8 78.7 36.0 81.98 0.38 36

4#

1 61.8 71.

2 68.8 65.4 36.0 66.8 0.16 29

2 62.

3 72.3 70.0 66.5 36.0 67.78 0.16 28

五、实验数据处理

1.已知数据

管号管径d(m) 管长l(m) 黑度ε

1# 0.08 1.6 0.11

2# 0.06 1.2 0.15

3# 0.04 0.8 0.15

4# 0.02 0.5 0.15

2.数据处理

(1) 计算加热的热量Φ=IV (W)、平均壁温、定性温度,定性温度取管壁温度和空气温度的平均值2

+=

t t t w m 。

计算举例:以第一组为例。Φ=IV=1.0×54=54(w ) 平均壁温n

t t t t n

w +??++=

216

1

.692.743.783.874.837.82+++++=

=79.17

2

+=

t t t w m 2

.3617.79+=

=57.59

则所有数据处理后如下表 管号 平均壁温t w 定性温度m t 加热的热量Φ 1 79.17 57.59 53 2 75.05 55.53 17.36 3 81.98 59.00 12.96 4

67.78

51.89

4.48

(2) 计算自然对流传热系数

???

?

??????? ??-???

??---=-Φ--Φ

=∞∞∞∞∞4

40100100)()()(T T t t C t t A IV

t t A t t A h w w w w r

w ε 以管1数据为例: =???

?

??????? ??-??? ??--

-=

∞440

100100)

(T T t t C t t A IV h w w w ε???

???????? ??+-??? ??+-?--??+??4

42

1002730.3610027317.790.3617.7967.511.0)0.3617.79()04.014.36.108.014.3(53

=3.017-0.905 =2.112

同理可以求取其他管数据如下: 管号 1 2 3 4 h

2.112

0.732

1.520

3.275

(3) 查出物性参数

在教科书的附录中查得空气的导热系数λ、热膨胀系数β、运动粘度ν和普朗特数Pr 。 管号 导热系数λ 热膨胀系数β 运动粘度ν 普朗特数Pr 1 0.0287 0.00302 0.0000189 0.6975 2 0.0285 0.00304 0.0000188 0.6970 3 0.0289 0.00301 0.00001895 0.6965 4

0.0283

0.00308

0.0000180

0.6979

(4) 整理准则方程

四根管的数据代入准则方程,可求出四组Nu 、GrPr 的数值,取对数后绘在直角坐标纸上,以lnNu 为纵坐标,ln(Gr ·Pr)为横坐标。把数据点连成一条最佳的直线,求出直线的斜率n 和截距ln C ,再反求出C 。即可求出准则方程式:

n Gr C Nu Pr)(?=

以1号管为例进行计算:

λhd

Nu =

=0287

.008.011.2?==5.882

2

3

ν

βtd

g Gr ?=

2

3

0000189

.008

.0)0.3617.79(00302.08.9?-??=

=1831308

Gr ·Pr=1831308×0.6975=1277337

同理可得其他管数据: 管号 Nu Gr Gr ·Pr lnNu

ln(Gr ·Pr)

1 5.88

2 1831308

1277337 1.772765 14.06029 2 1.540 710982.2 495554.6 0.432466 13.11343 3 2.104 241725.84 168362 0.743748 12.03387 4 2.314

23685.12

16529.85

0.839188

9.712923

利用数据进行拟合得:

y = 0.3635x - 3.3761

00.511.525

7

9

11

13

15

ln(GrPr)

l n (N u )

lnNu =0.36351ln(Gr?Pr) – 3.3766

求出直线的斜率n= 0.3635和截距ln C= – 3.3766 C=0.034

n

Gr C Nu Pr)(?==2651

.0Pr)

(09.0?Gr

陶文铨 数值传热学 第二版 第五章 5-2

精确解: p=[1,5,10]; x=0:1/19:1; for i=1:1:3 for j=1:1:20 y(i,j)=(exp(p(1,i)*19*x(1,j))-1)/(exp(p(1,i)*19)-1); end plot(x,y(i,:)); hold on ; end 由题对中心差分、一阶迎风、混合格式进行模块编程: 他们之间可以通用,只需更改ae 关于p 的函数即可: 程序如下: (1)中心差分 p=[1,5,10]; for i=1:1:3 ae=1-0.5*p(1,i); x/L (Φ-ΦL )/(Φ0-ΦL ) 精确解图像

aw=p(1,i)+ae; ap=ae+aw; for i=1:1:18 for j=1:1:20 a(i,j)=0; end end for i=1:1:18 j=i; a(i,j)=aw; a(i,j+1)=-ap; a(i,j+2)=ae; end for i=1:1:17 n=i+1; for m=i:-1:1 b(1,1)=a(m,n); a(m,n)=-a(i+1,n)/a(i+1,n)*b(1,1)+a(m,n); a(m,n+1)=-a(i+1,n+1)/a(i+1,n)*b(1,1)+a(m,n+1); a(m,n+2)=-a(i+1,n+2)/a(i+1,n)*b(1,1)+a(m,n+2); end end F(1)=0; F(20)=1; F(19)=(-a(1,20)*F(20)-a(1,1)*F(1))/a(1,19); for i=2:1:18 F(i)=(-a(i,20)*F(20)-a(i,19)*F(19))/a(i,i); end x=0:1/19:1; y(1,:)=F; plot(x,y); hold on end

传热实验实验报告

传热实验 一、实验目的 1、了解换热器的结结构及用途。 2、学习换热器的操作方法。 3、了解传热系数的测定方法。 4、测定所给换热器的传热系数K。 5、学习应用传热学的概念和原理去分析和强化传热过程,并实验之。 二、实验原理 根据传热方程Q=KA△tm,只要测得传热速率Q,冷热流体进出口温度和传热面积A,即可算出传热系数K。在该实验中,利用加热空气和自来水通过列管式换热器来测定K,只要测出空气的进出口温度、自来水进出口温度以及水和空气的流量即可。 在工作过程中,如不考虑热量损失,则加热空气释放出的热量Q1与自来水得到的热量Q2应相等,但实际上因热损失的存在,此两热量不等,实验中以Q2为准。 三、实验流程和设备 实验装置由列管换热器、风机、空气电加热器、管路、转子流量计、温度计等组成。空气走管程,水走壳程。列管式换热器的传热面积由管径、管数和管长进行计算。 实验流程图: 四、实验步骤及操作要领 1、熟悉设备流程,掌握各阀门、转子流量计和温度计的作用。 2、实验开始时,先开水路,再开气路,最后再开加热器。 3、控制所需的气体和水的流量。 4、待系统稳定后,记录水的流量、进出口温度,记录空气的流量和进出口温度,记录设备的

有关参数。重复一次。 5、保持空气的流量不变,改变自来水的流量,重复第四步。 6、保持第4步水的流量,改变空气的流量,重复第四步。 7、实验结束后,关闭加热器、风机和自来水阀门。 五、实验数据记录和整理 1、设备参数和有关常数 换热流型错流;换热面积㎡

六、实验结果及讨论 1、求出换热器在不同操作条件下的传热系数。 计算数据如上表,以第一次记录数据序号1为例计算说明: 2、对比不同操作条件下的传热系数,分析数值,你可得出什么结论? 答:比较一、二、三组可知当空气流量不变,水的流量改变时,传热系数变化不大,比较四、五组可知空气流量改变而水的流量不改变时,传热系数有很大变化,且空气流量越大,传热系数越大,传热效果越好;综上可知,K值总是接近热阻大的流体侧的α值,实验中,提高空气侧的α值以提高K值。。 3、转子流量计在使用时应注意什么问题?应如何校正读数? 答:转子流量计不能用于流量过大的流体测量,使用时流量计必须安装在垂直走向的管段上,流体介质自下而上地通过转子流量计。 读数时应读转子的最大截面与玻璃管刻线相交处的数值,可以读初始值和最终值,取两者之差来校正读数。 4、针对该系统,如何强化传热过程才能更有效,为什么? 答:该系统传热效果主要取决于热流体,所以可以通过增加空气流量,提高其所占比例来强化传热效果;减小水的流量;内管加入填充物或采用螺纹管,加热面在上,制冷面在下。因为由实验可知提高热阻大的流体的传热系数可以更有效的强化传热过程。 5、逆流换热和并流换热有什么区别?你能用实验装置加以验证吗? 答:①逆流换热时热流体是冷热流体流动方向相反;而并流传热时,其冷热流体流动方向相同;②在相同操作条件下,逆流换热器比并流换热器所需传热面积小。可以改变冷热流体进出口方向,测得在相同传热效果下,逆并流所需传热面积大小,从而加以验证。 6、传热过程中,哪些工程因素可以调动? t ;④换热过程的流型(并流,逆答:①增大传热面积S;②提高传热系数α;③提高平均温差 m 流,错流)。 7、该实验的稳定性受哪些因素的影响? 答:①冷凝水流通不畅,不能及时排走;②空气成分不稳定,导致被冷凝效果不稳定;③冷热流体流量不稳定;④传热器管表面的相对粗糙度。 8、你能否对此实验装置作些改进,使之能够用于空气一侧对流传热系数的测定? 答:让空气走壳程,水走管程,根据流体在管外的强制对流公式,可提出空气一侧的对流传热系数α值。

传热实验实验报告

一、 实验名称: 传热实验 二、实验目的: 1.熟悉套管换热器的结构; 2.测定出K 、α,整理出e R N -u 的关系式,求出m A 、. 三、实验原理: 本实验有套管换热器4套,列管式换热器4套,首先介绍套管换热器。 套管换热器管间进饱和蒸汽,冷凝放热以加热管内的空气,实验设备如图2-2-5-1(1)所示。 传热方式为:冷凝—传导—对流 1、传热系数可用下式计算: ]/[2m k m W t A q K m ???= (1) 传热实验

图2-2-5-1(1) 套管换热器示意图 式中:q ——传热速率[W] A ——传热面积[m 2] △t m —传热平均温差[K] ○ 1传热速率q 用下式计算: ])[(12W t t C V q p S -=ρ (2) 式中:3600/h S V V =——空气流量[m 3/s] V h ——空气流量[m 3/h] ρ——空气密度[kg/m 3 ],以下式计算: ]/)[273(4645.031 m kg t R p P a ++=ρ (3) Pa ——大气压[mmHg] Rp ——空气流量计前表压[mmHg] t 1——空气进换热器前的温度[℃] Cp ——空气比热[K kg J ?/],查表或用下式计算: ]/[04.01009K kg J t C m p ?+= (4) t m =(t 1+t 2)/2——空气进出换热器温度的平均值(℃) t 2——空气出口温度[℃] ②传热平均面积A m :

][2m L d A m m π= (5) 式中:d m =传热管平均直径[m] L —传热管有效长度[m ] ③传热平均温度差△t m 用逆流对数平均温差计算: T ←——T t 1——→t 2 )(),(2211t T t t T t -=?-=? 2 1 2 1ln t t t t t m ???-?= ? (6) 式中:T ——蒸汽温度[℃] 2、传热膜系数(给热系数)及其关联式 空气在圆形直管内作强制湍流时的传热膜系数可用下面准数关联式表示: n r m e P AR Nu = (7) 式中:N u ——努塞尔特准数 R e ——雷诺准数 P r ——普兰特准数 A ——系数,经验值为0.023

传热学实验指导书22页

[实验一]用球体法测定粒状材料的导热系数 一、实验目的 1、巩固和深化稳态导热的基本理论,学习测定粒状材料的热导率的方法。 2、确定热导率和温度之间的函数关系。 二、实验原理 热导率是表征材料导热能力的物理量,其单位为W/(m ·K),对于不同的材料,热导率是不同的。对于同一种材料,热导率还取决于它的化学纯度,物理状态(温度、压力、成分、容积、重量和吸湿性等)和结构情况。各种材料的热导率都是专门实验测定出来的,然后汇成图表,工程计算时,可以直接从图表中查取。 球体法就是应用沿球半径方向一维稳态导热的基本原理测定粒状和纤维状材料导热系数的实验方法。 设有一空心球体,若内外表面的温度各为t 1和t 2并维持不变,根据傅立叶导热定律: dr dt r dr dt A λπλφ24-=-= (1) 边界条件 2 211t t r r t t r r ====时时 (2) 1、若λ= 常数,则由(1)(2)式求得 1 22121122121) (2)(4d d t t d d r r t t r r --=--=πλπλφ[W] ) (2) (212112t t d d d d --= πφλ [W/(m ·K)] (3) 2、若λ≠ 常数,(1)式变为 dr dt t r ) (42λπφ-= (4) 由(4)式,得 将上式右侧分子分母同乘以(t 2-t 1),得 )()(412122 2 1 2 1 t t t t dt t r dr t t r r ---=?? λπφ (5) 式中 1 22 1 )(t t dt t t t -?λ项显然就是λ在t 1和t 2范围内的积分平均值,用m λ表示即

传热学第2章答案

第二章 思考题 1 试写出导热傅里叶定律的一般形式,并说明其中各个符号的意义。 答:傅立叶定律的一般形式为: n x t gradt q ??-=λλ=-,其中:gradt 为空间某点的温度梯度;n 是通过该点的等温线上的法向单位矢量,指向温度升高的方向;q 为该处的热流 密度矢量。 2 已知导热物体中某点在x,y,z 三个方向上的热流密度分别为y x q q ,及z q ,如何获得该点的 热密度矢量? 答:k q j q i q q z y x ?+?+?=,其中k j i ,,分别为三个方向的单位矢量量。 3 试说明得出导热微分方程所依据的基本定律。 答:导热微分方程式所依据的基本定律有:傅立叶定律和能量守恒定律。 4 试分别用数学语言将传热学术语说明导热问题三种类型的边界条件。 答:① 第一类边界条件:)(01ττf t w =>时, ② 第二类边界条件: ) ()( 02τλτf x t w =??->时 ③ 第三类边界条件:) ()( f w w t t h x t -=??-λ 5 试说明串联热阻叠加原则的内容及其使用条件。 答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各串联环节热阻的和。使用条件是对于各个传热环节的传热面积必须相等。 7.通过圆筒壁的导热量仅与内、外半径之比有关而与半径的绝对值无关,而通过球壳的导热量计算式却与半径的绝对值有关,怎样理解? 答:因为通过圆筒壁的导热热阻仅和圆筒壁的内外半径比值有关,而通过球壳的导热热阻却和球壳的绝对直径有关,所以绝对半径不同时,导热量不一样。 6 发生在一个短圆柱中的导热问题,在下列哪些情形下可以按一维问题来处理? 答:当采用圆柱坐标系,沿半径方向的导热就可以按一维问题来处理。 8 扩展表面中的导热问题可以按一维问题来处理的条件是什么?有人认为,只要扩展表面细长,就可按一维问题来处理,你同意这种观点吗? 答:只要满足等截面的直肋,就可按一维问题来处理。不同意,因为当扩展表面的截面不均时,不同截面上的热流密度不均匀,不可看作一维问题。 9 肋片高度增加引起两种效果:肋效率下降及散热表面积增加。因而有人认为,随着肋片高度的增加会出现一个临界高度,超过这个高度后,肋片导热热数流量反而会下降。试分析这一观点的正确性。 答:错误,因为当肋片高度达到一定值时,通过该处截面的热流密度为零。通过肋片的热流已达到最大值,不会因为高度的增加而发生变化。 10 在式(2-57)所给出的分析解中,不出现导热物体的导热系数,请你提供理论依据。 答:由于式(2-57)所描述的问题为稳态导热,且物体的导热系数沿x 方向和y 方向的数值相等并为常数。 11 有人对二维矩形物体中的稳态无内热源常物性的导热问题进行了数值计算。矩形的一个 边绝热,其余三个边均与温度为f t 的流体发生对流换热。你能预测他所得的温度场的解吗? 答:能,因为在一边绝热其余三边为相同边界条件时,矩形物体内部的温度分布应为关于绝热边的中心线对称分布。 习题

旋风分离器参考文献

参考文献 [1]金国淼等.除尘设备[M].北京:化学工业出版社,2002:1-300 [2]Louis E. Stein, Alex. C. Hoffmann.旋风分离器-原理、设计和工程应用 [M].北京,化学工业出版社,2004:1-78 [3]国家环保局标准处.中华人民共和国国家标准环境空气质量标准[J],油气田环境保护,1996(04 ) [4]姚玉英,黄凤廉,陈常贵等.化工原理[M].天津:天津大学出版社,1999:138 [5]舒帆.影响旋风除尘器除尘效率的因素分析[J],粮食加工.2008, 33 (3):73-75 [6]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004:20 [7]魏志军,张平.旋风分离器气相流场的数值模拟[J].北京理工大学学报.2000, 20 (5):19-21 [8]嵇鹰,张红波,田耀鹏等.进口位置对旋风分离器特性影响的数值模拟[J].金属矿山,2008, 387 (3):127-129 [9]岑可法,倪明江,骆仲泱等.循环流化床锅炉理论设计与运行[M].北京:中国电力出版社, 2002:511-540 [10]陈明绍,吴光兴,张大中等.除尘技术的基本原理与应用[M].北京:中国建筑工业出版社,1981:333-518 [11]钱付平,章名耀.基于边界层理论旋风分离器分离效率的改进模型[J],中国电机工程学报.2007, 27 (5):71-74 [12]Hoffmann A C, Stein L E. Gas cyclones and twirl tubes:principles,design and operation [M]. Springer-Verlag,Berlin,Heidelberg,2002,169. [13]Leith D, Licth W. The collection efficiency of cyclone type particle collector. A new theoretical approach[J]. AIChE Symp Series,1972,126 (68):196-206. [14]Obermair S,Woisetschlager J,Staudinger G.Investigation of the flow pattern in different dust outlet geometries of a gas cyclone by laser Doppler anemometry[J].Powder Technology,2003,2-3 (138):239-251 [15]Zhao Bingtao.Development of a new method for evaluating cyclone

传热膜系数实验报告

化工原理实验报告 实验三 传热膜系数测定实验 实验日期:2015年12月30日 班级: 学生姓名: 学号: 同组人: 报告摘要 本实验选用牛顿冷却定律作为对流传热实验的测试原理,通过建立不同体系的传热系统,即水蒸汽—空气传热系统、分别对普通管换热器和强化管换热器进行了强制对流传热实验研究。确定了在相应条件下冷流体对流传热膜系数的关联式。此实验方法可以测出蒸汽冷凝膜系数和管内对流传热系数。采用由风机、孔板流量计、蒸汽发生器等组成的自动化程度较高的装置,让空气走内管,蒸汽走环隙,用计算机在线采集与控制系统测量了孔板压降、进出口温度和两个壁温,计算了传热膜系数α,并通过作图确定了传热膜系数准数关系式中的系数A 和指数m (n 取0.4),得到了半经验关联式。实验还通过在内管中加入混合器的办法强化了传热,并重新测定了α、A 和m 。 二、 目的及任务 1.掌握传热膜系数α及传热系数K 的测定方法; 2.通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m 的方法; 3.了解工程上强化传热的措施。 三、基本原理 对流传热的核心问题是求算传热膜系数α,当流体无相变时对流传热准数关 系式的一般形式为:p n m Gr A Nu Pr Re 对于强制湍流而言。Gr 数可忽略,即

n m A Nu Pr Re = 本实验中,可用图解法和最小二乘法计算上述准数关系式中的指数m 、n 和系数A 。 用图解法对多变量方程进行关联时,要对不同变量Re 和Pr 分别回归。本实验可简化上式,即取n=0.4(流体被加热)。这样,上式即变为单变量方程,在两边取对数,得到直线方程为 Re lg lg Pr lg 4.0m A Nu += 在双对数坐标中作图,求出直线斜率,即为方程的指数m 。在直线上任取一点函数值带入方程中,则可得系数A ,即 m Nu A Re Pr 4.0= 用图解法,根据实验点确定直线位置有一定人为性。而用最小二乘法回归,可得到最佳关联结果。应用计算机辅助手段,对多变量方程进行一次回归,就能的道道A 、m 、n 。 对于方程的关联,首先要有Nu 、Re 、Pr 的数据组。其特征数定义式分别为 μρ du = Re , λμ Cp = Pr , λαd Nu = 实验中改变空气的流量,以改变Re 值。根据定性温度(空气进、出口温度的算数平均值)计算对应的Pr 值。同时,由牛顿冷却定律,求出不同流速下的传热膜系数值,进而求得Nu 值。 牛顿冷却定律为 Q=αA △t m 式中α——传热膜系数,W/(m 2.℃);

化工原理实验传热实验报告

传热膜系数测定实验(第四组) 一、实验目的 1、了解套管换热器的结构和壁温的测量方法 2、了解影响给热系数的因素和强化传热的途径 3、体会计算机采集与控制软件对提高实验效率的作用 4、学会给热系数的实验测定和数据处理方法 二、实验内容 1、测定空气在圆管内作强制湍流时的给热系数α1 2、测定加入静态混合器后空气的强制湍流给热系数α1’ 3、回归α1和α1’联式4 .0Pr Re ??=a A Nu 中的参数A 、a *4、测定两个条件下铜管内空气的能量损失 二、实验原理 间壁式传热过程是由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三个传热过程所组成。由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。 1)寻找影响因素 物性:ρ,μ ,λ,c p 设备特征尺寸:l 操作:u ,βgΔT 则:α=f (ρ,μ,λ,c p ,l ,u ,βgΔT ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1],λ[ML T -3 Q -1],c p [L 2 T -2 Q -1],l [L] ,u [LT -1], βg ΔT [L T -2], α[MT -3 Q -1]] 3)选基本变量(独立,含M ,L ,T ,Q-热力学温度) ρ,l ,μ, λ 4)无量纲化非基本变量 α:Nu =αl/λ u: Re =ρlu/μ c p : Pr =c p μ/λ βgΔT : Gr =βgΔT l 3ρ2/μ2 5)原函数无量纲化 ??? ? ???=223,,μρβλμμρλαtl g c lu F l p 6)实验 Nu =ARe a Pr b Gr c 强制对流圆管内表面加热:Nu =ARe a 圆管传热基本方程: m t A K t T t T t T t T A K Q ???=-----?=111 22112211 1ln ) ()( 热量衡算方程: )()(12322111t t c q T T c q Q p m p m -=-= 圆管传热牛顿冷却定律: 2 2112211 22211221121 1ln ) ()(ln )()(w w w w w w w w T T T T T T T T A t t t t t t t t A Q -----?=-----?=αα 圆筒壁传导热流量:)] /()ln[)()()/ln(11221122121 2w w w w w w w w t T t T t T t T A A A A Q -----?-?=δλ 空气流量由孔板流量测量:54 .02.26P q v ??= [m 3h -1,kPa] 空气的定性温度:t=(t 1+t 2)/2 [℃]

传热学答案+第五版+章熙民(完整版)

绪论 1.冰雹落体后溶化所需热量主要是由以下途径得到: Q λ——与地面的导热量 f Q——与空 气的对流换热热量 注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的 总失热量减少。(T T? 外内 ) 冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分 热量,最终的总失热量增加。(T T? 外内 )。挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。 7.热对流不等于对流换热,对流换热 = 热对流 + 热传导热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。以热传导和热对流的方式。 9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层两侧均镀锌,其间的系统辐射系数 降低,故能较长时间地保持热水的温度。 当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性

能变得很差。 10.t R R A λλ = ? 1t R R A λ λ = = 221 8.331012 m --=? 11.q t λσ =? const λ=→直线 const λ≠ 而为λλ=(t ) 时→曲线 12. i R α 1 R λ 3 R λ 0 R α 1 f t ??→ q 首先通过对流换热使炉子内壁温度升高,炉子内壁通过热传导,使内壁温度生高,内壁与空气夹层通过对流换热继续传递热量,空气夹层与外壁间再通过热传导,这样使热量通过空气夹层。(空气夹层的厚度对壁炉的保温性能有影响,影响a α的大小。) 13.已知:360mm σ=、0.61()W m K λ=? 1 18f t =℃ 2187() W h m K =? 2 10f t =-℃ 22124() W h m K =? 墙高2.8m ,宽3m 求:q 、1 w t 、2 w t 、φ 解:12 11t q h h σλ?= ++= 18(10) 45.9210.361 870.61124 --=++2W m

传热学上机实验

传热学上机实验 班级: 学号: 姓名:

一:实验问题 一个长方形截面的冷空气通道的尺寸如附图所示。假设在垂直于纸面的方向上冷空气及通道墙壁的温度变化很小,可以忽略。试用数值方法计算下列两种情况下通道壁面中的温度分布及每米长度上通过壁面的冷量损失: (1)内、外壁面分别维持在10℃及30℃; (2)内、外壁面与流体发生对流传热,且有λ=0.53W/(m·K),t f1=10°C、h1=20W/(m2·K), t f2=30°C、h2=4W/(m2·K)。

二:问题分析与求解 本题采用数值解法,将长方形截面离散成31×23个点,用有限个离散点的值的集合来代替整个截面上温度的分布,通过求解按傅里叶导热定律、牛顿冷却公式及热平衡法建立的代数方程,来获得整个长方形截面的温度分布,进而求出其通过壁面的冷量损失。 1. 建立控制方程及定解条件 对于第一问,其给出了边界上的温度,属于第一类边界条件。 ????? ??? ??=?==??+??C C y t x t 301002222外壁温内壁温 对于第二问,其给出了边界上的边界上物体与周围流体间的表面传热系数h 及周围流体的温度 t f ,属于第三类边界条件。 ()?????? ?-=??? ????-=??+??f w w t t h n t y t x t λ02222 2. 确定节点(区域离散化) 用一系列与坐标轴平行的网格线把长方形截面划分为31×23个节点。则步长为0.1m ,记为△x=△y=0.1m 。

3. 建立节点物理量的代数方程 对于第一问有如下离散方程: ()()()()()()()()()()? ??? ???? ? ????? ???+++==?==?==?==?==?==?==?==?=+-+-代表内部点,,点41 26~6,1018,26~6,106,18~6,10,2618~6,10,631~1,3023,31~1,301,23~1,30,3123~1,30,11,1,,1,1,n m t t t t t n C m t n C m t n C n t n C n t n C m t n C m t n C n t n C n t n m n m n m n m n m 对于第二问有如下离散方程: 对于外部角点(1,1)、(1,23)、(31,1)、(31,,23)有: ()()02 222,1,,22,,1,22 =??-+-?+??-+-?±±x y t t t t x h y x t t t t y h n m n m n m f n m n m n m f λλ 得到: ()()()()????? ??? ?? ? ++ =++=++=++=22,3123,3023,312,311,301,3122 ,123,223,12,11,21,11865331400186533140018653314001865331400t t t t t t t t t t t t 同理可得: 对于内部角点(6,6)(6,18)(26,6)(26,18) ,有 ()() ()()()()()()????? ??? ??? ++++ =++++ =++++=++++=7,2618,2518,2719,2618,267,266,256,275,266,2618 ,717,619,618,518,67,66,75,66,56,671853359533592000718533595335920007185335953359200071853359533592000t t t t t t t t t t t t t t t t t t t t

传热学第二章热传导习题

传热学第二章热传导习题 一、名词解释 1.温度场:某一瞬间物体内各点温度分布的总称。一般来说,它是空间坐标和时间坐标的函数。 2.等温面(线):由物体内温度相同的点所连成的面(或线)。 3.温度梯度:在等温面法线方向上最大温度变化率。 4.热导率:物性参数,热流密度矢量与温度降度的比值,数值上等于1 K/m的温度梯度作用下产生的热流密度。热导率是材料固有的热物理性质,表示物质导热能力的大小。 5.导温系数:材料传播温度变化能力大小的指标。 6.稳态导热:物体中各点温度不随时间而改变的导热过程。 7.非稳态导热:物体中各点温度随时间而改变的导热过程。 8.傅里叶定律:在各向同性均质的导热物体中,通过某导热面积的热流密度正比于该导热面法向温度变化率。 9.保温(隔热)材料:λ≤0.12 W/(m·K)(平均温度不高于350℃时)的材料。10.肋效率:肋片实际散热量与肋片最大可能散热量之比。 11.接触热阻:材料表面由于存在一定的粗糙度使相接触的表面之间存在间隙,给导热过程带来额外热阻。 12.定解条件(单值性条件):使微分方程获得适合某一特定问题解的附加条件,包括初始条件和边界条件。 二、填空题 1.导热基本定律是_____定律,可表述为。 (傅立叶,) 2.非稳态导热时,物体内的_____场和热流量随_____而变化。 (温度,时间) 3.导温系数的表达式为_____,单位是_____,其物理意义为_____。 (a=λ/cρ,m2/s,材料传播温度变化能力的指标) 4.肋效率的定义为_______。 (肋片实际散热量与肋片最大可能散热量之比。) 5.按照导热机理,水的气、液、固三种状态中_______态下的导热系数最小。 (气) 6.一般,材料的导热系数与_____和_____有关。 (种类,温度) 7.保温材料是指_____的材料. (λ≤0.12 W/(m·K)(平均温度不高于350℃时)) 8.已知材料的导热系数与温度的关系为λ=λ0(1+bt),当材料两侧壁温分别为t1、t2时,其平均导热系数可取下的导热系数。 ((t1+t2)/2) 9.发电机水冷、氢冷、空冷三种方式中,以方式的效果最好,

传热学实验

一、实验目的 1、了解对流换热的实验研究方法; 2、测定空气横向流过管束表面时的平均放热系数α,并将实验数据整理成准数方程式; 3、学习测量风速、温度、热量的基本技能。 二、主要实验设备 本对流实验在一实验风洞中进行。实验风洞主要由风洞本体、风机、构架、实验管及其加热器、水银温度计、倾斜式微压计、皮托管、电位差计、功率表以及调压变压器等组成。 三、实验原理 根据相似理论,流体强制流过物体时的放热系数α与流体流速、物体几何参数、物体间的相对几何位置以及物性等的关系可用下列准数方程式描述: Pr)(Re,f Nu = 实验研究表明,空气横向流过管束表面时,由于空气普郎特数(Pr=0.7)为常数,故一般可将上式整理成下列的指数形式, n C Nu Re = 式中 C,n 均为常数,由实验确定, Nu ——努塞尔特准数 λ ad Nu = Re ——雷诺准数 v d ω= Re 上述各准则中,α——壁面平均对流换热系数[?2/m W ℃] d ——实验管外径,作为定性尺寸,[m] λ——空气导热系数,[?2/m W ℃] ω——空气流过实验管外最窄截面处流速,[m/s] ν——空气运动粘度,]/[2s m 定性温度:空气边界层平均温度)(2 1 f w m t t t +=。 式中:m t ——实验管壁面平均温度[℃]

f t ——空气平均温度本实验的任务在于确定C 与 n 的数值,首先使空气流速一定,然后测定有关的数据:电流I 、电压 V 、管壁温度w t 、空气温度f t 、微压计动压头h 。至于α和ω在实验中无法直接测得,可通过计算求得,而物性参数可在有关书中查得。得到一组数据后,可得一组 Re 、Nu 值;改变空气流速,又得到一组数据,再得一组 Nu 、Re 值;改变几次空气流速,就可得到一系列的实验数据。 四、实验数据及处理结果 1.测试所得原始数据 表1测试数据表 2.数据分析与计算 ◆表2热电偶测管温度平均值 ◆已知管长L=450mm,管直径d=40mm ,求得管表面积为205655 .0m L d A =??=π ◆空气进出口的平均绝对温度[K]:K T T T f 15.273)(2 1 21++= ,(见表3)由差值法及查表可知,热电偶

《传热学》第四版课后习题答案

《传热学》 第一章 思考题 1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。 答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。联系是:在发生对流换热的同时必然伴生有导热。 导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能 量的转移还伴有能量形式的转换。 2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。试写 出这三个公式并说明其中每一个符号及其意义。 答:① 傅立叶定律: dx dt q λ -=,其中,q -热流密度;λ-导热系数;dx dt -沿x 方向的温度变化率, “-”表示热量传递的方向是沿着温度降低的方向。 ② 牛顿冷却公式: ) (f w t t h q -=,其中,q -热流密度;h -表面传热系数;w t -固体表面温度; f t -流体的温度。 ③ 斯忒藩-玻耳兹曼定律:4 T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T -辐射物体的热力学温度。 3. 导热系数、表面传热系数及传热系数的单位各是什么哪些是物性参数,哪些与过程有关 答:① 导热系数的单位是:W/;② 表面传热系数的单位是:W/;③ 传热系数的单位是:W/。这三个参数中,只有导热系数是物性参数,其它均与过程有关。 4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一 个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。试分析引入传热方程式的工程实用意义。 答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。 5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。而一旦壶内的水烧干后,水壶很快就烧 坏。试从传热学的观点分析这一现象。

传热学-强迫对流实验指导书(2014)

《传热学》实验指导书 实验名称:强迫流动单管管外放热系数的测定 实验类型: 验证性实验 学 时:2 适用对象: 热动、集控、建环、新能源等专业 一、实验目的 1.该项实验涉及较多课程知识,测量参数多,如风速、功率、温度,可考查学生的综合能力。 2.测量空气横向流过单管表面的平均表面传热系数h ,并将实验数据整理成准则方程式。 3.学习测量风速、温度、热量的基本技能,了解对流放热的实验研究方法。 二、实验原理 根据相似理论,流体受迫外掠物体时的表面传热系数h 与流速、物体几何形状及尺寸、流体物性间的关系可用下列准则方程式描述: ),(r e u P R f N = 实验研究表明,流体横掠单管表面时,一般可将上式整理成下列具体的指数形式: m n r m n e um P CR N ?= 式中:m n c ,,均为常数,由实验确定 努谢尔特准则---um N m um hd N λ= ---em R 雷诺准则 m em d R νμ= ---rm P 普朗特准则 m n rm P αν=

上述各准则中--d 实验管外径,作定性尺寸(米) --μ流体流过实验管外最窄面处流速,()/s m --λ流体导热系数()/K m W ? --α流体导温系数)/(2s m --ν流体运动粘度)/(2s m --h 表面传热系数)/(2K m W ? 准则角码m 表示用流体边界层平均温度)(2 1 f w m t t t -= 作定性温度。 鉴于实验中流体为空气,rm P =0.7,故准则式可化成: n em um CR N = 本实验的任务在于确定n c 与的数值。首先使空气流速一定,然后测定有关的数据:电流I 、电压V 、管壁温度w t 、空气温度f t 、测试段动压P 。至于表面传热系数h 和流速μ在实验中无法直接测量,可通过计算求得,而物性参数可在有关书中查到。得到一组数据后,即可得一组e R 、u N 值,改变空气流速,又得到一组数据,再得一组e R 、u N 值,改变几次空气流速,就可得到一系列的实验数据。 三、实验设备 本对流实验在一实验风洞中进行。实验风洞主要由风洞本体、风机、构架、实验管及其加热器、水银温度计、动压计、毕托管、电位差计、电流表、电压表以及调压变压器组成。 由于实验段前有两段整流,可使进入实验段前的气流稳定。毕托管置于测速段,测速段截面较实验段小,以使流速提高,测量准确。风量由风机出口挡板调节。

传热学实验指导书

《传热学》实验指导书 热工教研室编

目录 实验要求 (2) 实验一球体法粒状材料的导热系数的测定 (3) 实验二平板法导热系数的测定 (7) 实验三套管换热器液-液换热实验 (12) 实验四中温辐射黑度的测定 (16) 附录1 铜-康铜热电偶分度表 (22) 附录2 精密数字温度温差仪使用方法 (23)

实验要求 1.实验前应预习与实验有关的教材内容和实验指导书,了解实验目的、实验原理和实验要求,做到心中有数。 2.在实验室要首先熟悉实验装置的构造特点、性能和使用方法,使用贵重仪器时需得到指导教师的许可,方可动用。 3.实验时应严肃认真、一丝不苟,细致地观察实验中的各种现象,并作好记录,通过实验,训练基本操作技能和培养科学的工作作风。 4.实验结束时,学生先自行检查全部实验记录,再经指导教师审阅后,方可结束实验。 5.学生实验时,如出现实验仪器损坏情况,应及时向指导教师报告。6.按规定格式认真填写实验报告,并按期交出。

实验一球体法粒状材料的导热系数的测定 一、实验目的 1.巩固稳定导热的基本理论,学习球体法测定物质的导热系数的实验方法; 2.实验测定被测材料的导热系数λ; 3. 绘制出材料导热系数λ与温度t的关系曲线。 二、实验原理 加热圆球(见图1)由两个壁厚1.2毫米的大小同心圆球(1)组成。小球内装有电加热器(2)用来产生热量。大球内壁与小球外壁各设有三对铜-康铜热电偶(4)。当温度达到稳定状态后,电加热器产生的热量全部通过中间的测试材料(3)传到外 气。 1.大小同心球; 2.电加热器; 3.颗粒状试材; 4.铜康铜热电偶; 5.专用稳压电源; 6.专用测试仪; 7.底盘; 8.UJ36a电位差计图1 加热圆球示意图 测取小球的温度t1,t2,t3, 取其平均温度:T1=(t1+ t2+ t3)/3; 测取大球的温度t4,t5, t6,取其平均温度:T2=(t4+ t5+ t6)/3;

传热学 书本习题答案第四版

第一章 导热理论基础 1. 按20℃时,铜、碳钢(1.5%C )、铝和黄铜导热系数的大小,排列它们的顺序;隔热保温材料导热系数的数值最大为多少?列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。 答:铜>铝>黄铜>碳钢; 隔热保温材料导热系数最大值为0.12W/(m ?K ) 膨胀珍珠岩散料:25℃ 60-300Kg/m 3 0.021-0.062 W/(m ?K ) 矿渣棉: 30℃ 207 Kg/m 3 0.058 W/(m ?K ) 软泡沫塑料: 30℃ 41-162 Kg/m 3 0.043-0.056 W/(m ?K ) 2. 推导导热微分方程式的已知前提条件是什么? 答:导热物体为各向同性材料。 3.(1) m k x t /2000=?? , q=-2×105(w/m 2 ). (2) m k x t /2000-=??, q=2×105(w/m 2 ). 4. (1),00==x q 3109?==δx q w/m 2 (2) 5108.1?=νq w/m 3 5. 已知物体的热物性参数是λ、ρ和c ,无内热源,试推导圆柱坐标系的导热微分方程式。 答:22222 11[()]t t t t a r r r r r z τφ?????=++????? 6. 已知物体的热物性参数是λ、ρ和c ,无内热源,试推导球坐标系的导热微分方程式。 答:2222222111[()(sin )]sin sin t t t t a r r r r r r θτθθθθ? ??????=++?????? 7. 一半径为R的实心球,初始温度均匀并等于t 0,突然将其放入一 温度恒定并等于t f 的液体槽内冷却。已知球的热物性参数是λ、ρ和c ,球壁表面的表面传热系数为h ,试写出描写球体冷却过程的完整数学描述。 答: 2201[()],0,00,0,0,,() f r R r R t t r r R c r r r r R t t t r R h t t r λττρττλ ==???=><=-=-?

哈工大-传热学虚拟仿真实验报告

哈工大-传热学虚拟仿真实验报告

Harbin Institute of Technology 传热学虚拟仿真实验报告 院系:能源科学与工程学院 班级:设计者: 学号: 指导教师:董士奎 设计时间:2016.11.7

传热学虚拟仿真实验报告 1 应用背景 数值热分析在核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、以及日用家电等各个领域都有广泛的应用。 2 二维导热温度场的数值模拟 2.1 二维稳态导热实例 假设一用砖砌成的长方形截面的冷空气通道,其截面如图2.1所示,假设在垂直于纸面方向上冷空气及砖墙的温度变化很小,可以近似地予以忽略。 图2.1一用砖砌成的长方形截面的冷空气通道截面 2.2二维数值模拟 基于模型的对称性,简化为如图所示的四分之一模

型。 图2.2 二维数值模拟 2.3 建立离散方程 此时对于内部节点,如图2.3: ,1,,1,,,1,,1=? ? - +??-+??-+??--++-x y t t x y t t y x t t y x t t j t j i j t j i j t j i j t j i λ λ λ λ 对于平直边界上的节点,如图2.4: 2 22,,1,,1,,,1=?+Φ??+??-+??-+??-? -+-w j i j t j i j t j i j t j i yq y x x y t t x y t t y x t t λλλ 对于外部和内部角点,如图2.5: 2 43220 2422,,,1,1,,1,,,1,,1,,,1=?+?+Φ??+??-+??-+??-+??-=?+?+Φ??+??-+??-?+-+-?--w n m n m n m n m n m n m n m n m n m w n m n m n m n m n m q y x y x y x t t x y t t x y t t y x t t q y x y x x y t t y x t t λλλλλλ

传热学课程实验(1)

传热学实验1 顺流式换热器传热系数测定 [实验目的] 1. 熟悉换热器性能的测试方法; 2. 了解套管式换热器、螺旋板式换热器和列管式换热器的结构特点及其性能特征; 3. 加深对顺流和逆流两种流动方式换热器换热能力差别的认识。 [实验原理] 换热器性能测试实验,主要对应用较广的间壁式换热器中的三种型式:套管式换热器、螺旋板式换热器和列管式换热器进行性能的测试。 图1实验装置简图 1.热水流量调节阀 2. 热水螺旋板、套管、列管启闭阀门组 3.热水流量计 4.换热器进口压力表 5.数显温度计 6.琴键转换开关 7.电压表 8.电流表 9.开关组10.冷水出口压力计11. 冷水螺旋板、套管、列管启闭阀门组12.逆顺流转换阀门组13.冷水流量调节阀 本实验装置换热形式为热水—冷水换热式,工作原理如图2所示。热水加热采用电加热方式,冷、热流体的进出口温度采用数显温度计,通过琴键开关来切换测点。 实验台参数: 1.换热器换热面积{F}: ⑴.套管式换热器具0.45 m2 ⑵.螺旋板式换热器0.65 m2 ⑶.列管式换热器 1.05 m2 2.电加热器总功率:9.0 kw 3.冷、热水泵: ⑴.允许工作温度:< 80 ℃ ⑵.额定流量: 3 m3/h

⑶.扬程:12 m ⑷.电机电压:220 V ⑸.电机功率:370 W 4.转子流量计: ⑴.型号:LZB-15 ⑵.流量:40-400升/小时 ⑶.允许温度范围:0―120 ℃ 1.冷水泵 2.冷水箱 3.冷水转子流量计 4.冷水顺逆流换向阀门组 5.列管式换热器 6.电加热水箱 7.热水转子流量计 8.回水箱 9. 热水泵10. 螺旋板式换热器11. 套管式换热器 [实验操作] 1.实验前准备: ⑴. 熟悉实验装置及使用仪表的工作原理和性能; ⑵. 打开所要实验的换热器阀门,关闭其它阀门; ⑶. 按顺流方式调整冷水换向阀门的开或关; ⑷. 向冷-热水箱充水,禁止水泵无水运行(热水泵启动,加热才能供电)。 2.实验操作: ⑴. 接通电源;启动热水泵(为了提高热水温升速度,可先不启动冷水泵),并调整好合适的流量; ⑵.调整温控仪,使加热水温控制在80℃以下的某一指定温度; ⑶.分别打开加热器开关(热水泵开关与加热开关已进行连锁); ⑷.利用数显温度计和温度测点选择琴键按钮,观测和检查换热器冷-热流体的进出口温度。待冷-热流体的温度基本稳定后,既可测读出相应测温点的温度数值,同时测读转子流量计显示的冷-热流体的流量读数;记录上述测试结果; ⑸.实验结束后,首先关闭电加热器开关,5分钟后切断全部电源。 [实验数据与处理]

相关主题
文本预览
相关文档 最新文档