当前位置:文档之家› 食品添加剂中铅的测定方法

食品添加剂中铅的测定方法

食品添加剂中铅的测定方法
食品添加剂中铅的测定方法

食品添加剂中铅的测定方法

中华人民共和国国家标准

食品添加剂中铅的测定方法 UDC 6114.3

Method for dtrmination of :543.06

lad in food additivs :546.815GB 8449-87

本标准适用于食品添加剂中铅的限量试验的定量试验。

本标准参照采用1983年联合国粮农组织的世界卫生组织(FAO/WHO) 食品添加剂联合专家委员会发布的有关铅的测定方法。

1原理

样品经处理加入柠檬铵、氰化钾和盐酸羟胺等,消除铁、铜、锌等离子干扰,在pH8.5~9.0时,铅离子 与双硫腙生成红色络合物,用三氯甲烷提取,与标准系列,比较做限量试验或定量试验。

2试剂

除特别注明外,本标准所用试剂均为去离子水或无铅水。

2.1硝酸(GB 626-78)。

2.2硫酸(GB 625-77)。

2.3氨水(GB 631-77)(1+1):如含铅,须用全玻璃蒸馏器重蒸馏。

2.4盐酸(GB 622-77)。

2.5三氯甲烷(GB 682-78):不应含氧化物。

2.6酚红指示液:0.1%乙醇溶液。

2.7柠檬酸氢二铵(HGB 3294-60):50%溶液。

称取100g柠檬酸氢二铵,溶于100ml水中,加2滴酚红指示液,加氨水(1+1)调节pH8.5~9.0(由黄变红,再多加2滴),用双硫腙三氯甲烷溶液提取数次,每次10~20ml,至三氯甲烷层绿色不变为止,弃去三氯甲烷洗涤二次,每次5ml,弃去三氯甲烷层,加水稀释至200ml。

2.8盐酸羟胺(HG 3-967-76):20%溶液。

称取20g盐酸羟胺,加40ml水溶解,加2滴酚红指示液,加氨水(1+1)调节pH至8.5~9.0(由黄变红,再多加2滴),用双硫腙三氯甲烷溶液提取数次,每次10~20ml,至三氯甲烷层绿色不变为止,再用三氯甲烷洗二次,每次5ml,弃去三氯甲烷层加盐酸(1+1)呈酸性,加水至100ml。

2.9氰化钾:10%溶液。

2.10二苯基硫巴腙(双硫腙)(HGB 3343-60):0.05%三氯甲烷溶液,保存于冰箱中,必要时按下述方法纯化。称取0.5g研细的双硫腙,溶于50ml三氯甲烷中,如有残渣,可用滤纸过滤于250ml□?分液漏斗中,用氨水(1+99)提取三次,每次100ml,将提取液用棉花过滤至500ml分液漏斗中,用盐酸(1+1)调至酸性,将沉淀出的双硫腙用200,200,100ml三氯甲烷提取三次,合并三氯甲烷为双硫腙储备溶液。

2.10.1双硫腙使用液:吸取1.0ml双硫腙储备溶液,加9ml三氯甲烷,混匀。用1cm比色杯,以三氯甲烷调节零点,于波长510nm处测吸光度(A),用式(1)算出配制100ml双硫腙使用液(70%透光率)所需双硫腙储备溶液的毫升数(V)。

V=10(2-lg70) /A =1.55/A (1)

2.11铅标准溶液:精密称取0.1598g高纯硝酸铅(HG 3-1309-80),加10ml 1%硝酸,溶解后定量移入100ml容量瓶中,加水稀释至刻度。此溶液1ml相当于1mg铅。临用前水稀释成1ml相当于10μg铅。

2.121%硝酸:取1ml硝酸(GB 626-78),加水稀释至100ml。

3仪器

所用玻璃仪器均用10~20%硝酸浸泡24h以上,用自来水反复冲洗,最后用水冲洗干净。

3.1分光光度计。

3.2125ml分液漏斗。

3.3250ml凯氏烧瓶或250ml三角烧瓶。

4样品处理

4.1无机样品的“样品处理”可按各标准文本中规定的方法进行。

4.2有机样品的“样品处理”除按各标准文本中规定的外,一般按下述程序进行。

4.2.1湿法消解:称取

5.0g样品,置于250ml凯氏烧瓶或三角烧瓶中,加入10ml硝酸浸润样品,放置片刻(或过夜)后,缓缓加热,待作用缓和后稍冷,沿瓶壁加入5ml硫酸,再

缓缓加热,至瓶中溶液开始变成棕色,不断滴加硝酸(如有必要可滴加些高氯酸,在操作过程中,应注意防止爆炸),至有机质分解完全,继续加热,至生成大量的二氧化硫白色烟雾,最后溶液应呈无色或微带黄色。冷却后将溶液移入50ml容量瓶中,用少量水分次洗涤凯氏烧瓶或三角烧瓶,将洗液一并移入容量瓶中,加水至刻度,混匀备用。每10ml溶液相当于1.0g样品。取一坩埚,按上述方法做试剂空白试验。

4.2.2干法消解:村法适用于不适合用湿法消解的样品。

称取5.0g样品于瓷坩埚中,加入适量硫酸湿润样品,小心炭化后,加2ml硝酸和5滴硫酸,小心加热,直到白色烟雾挥尽,移入高温炉中,于550℃灰化完全。冷后取出。加1ml硝酸(1+1)溶液,加热使灰分溶解,将样品液转移到50ml容量瓶中(必要时过滤),并用少量水洗涤坩埚,洗液一并移入容量瓶中,加水至刻度,混匀备用。每10ml溶液相当于1.0g样品。取一坩埚,按上述方法做试剂空白试验。

5测定

5.1限量试验

吸取适量样品液及铅的限量标准液(含铅不低于5μg),分别置于125ml 分液漏斗中,各加1%硝酸至20ml。向样品液及铅的限量标准液中各加入1ml50%柠檬铵溶液、1ml20% 盐酸羟胺溶液和2滴酚红指示液,用氨水(1+1)调至红色,再各加2ml 10%氰化钾溶液,混匀后,加入5.0ml双硫腙使用液,剧烈振摇1min,静置分层后,三氯甲烷层经脱脂棉滤入1cm比色杯中,于波长510nm处,以三氯甲烷调节零点,测定吸光度,或进行目视比色,样品液的吸光度或色度不应大于铅的限量标准液的吸光度或色度。若样品经处理,则铅限量标准也应同法处理。

5.2定量测定

吸取10.0ml(或适量)样品液和同量的试剂空白液,分别置于125ml分液漏斗中,

各加1%硝酸至20ml。

吸取铅标准溶液0.0,0.1,0.3,0.5,0.7,1.0ml(分别相当于0,1,3,5,7,10μg铅)。分别置于125ml 的分液漏斗中。各加1%硝酸至20ml。向样品液、试剂空白液及铅标准溶液中各加入1ml 50%柠檬酸铵溶液,1ml 20%盐酸羟胺溶液和2滴酚红指示液,用氨水(1+1)调至红色,再各加入2ml 10%氰化钾溶液,混匀,各加5.0ml双硫腙使用液,剧烈振摇1min,静置分层后,三氯甲烷经脱脂棉滤入1cm比色杯中,于波长510nm处,以零管调节点,测定吸光度,绘制标准曲线。

5.3计算

(A1-A2)×1000

C=----------------------------------- (2)

m×V2/ V1×1000

式中:C-样品中铅的含量,mg/kg或mg/L;

A1-样品液中铅的含量,μg;

A2-试剂空白液中铅的含量,μg;

m-样品质量(体积),g(ml);

V1-样品处理后定容体积,ml;

V2-测定时所取样品液体积,ml

-----------------------------------------------------------------

附加说明

本标准由全国食品添加剂标准化技术委员会提出。

本标准由江苏省扬州市卫生防疫站负责起草。

本标准主要起草人姜友付、杨一超、张刈平。

本标准由卫生部委托技术归口单位卫生部食品卫生监督检验所负责解释。

水中铅离子检测

氨基凹土修饰电极示差脉冲阳极溶出法测定铅离子 1前言 1.1 重金属污染 若金属元素的原子密度超过每立方厘米五克,即可认为其是重金属。如铜、铅、锌、镉、铁、锰等,均属于重金属,共有四十五种。若水体排入的重金属物质,无法结合自净能力将其净化,而最终导致水体的性质、组成等发生改变,影响水体生物生长,并对人的健康、生活产生不良影响的,即属于水环境重金属污染。在工业、农业快速发展的同时,许多污染物被排入河流,其中也包含重金属,最终导致水质恶化,也由此产生了一系列严重后果。不论是在何种环境中,重金属污染物的降解都极为困难,并且能够积累在植物、动物体,并结合食物链不断富集,最终进入人体,对人体健康产生危害,这类污染物也是对人体产生最大危害的一种污染物。 1.2水环境中重金属的检测技术方法研究与发展 重金属污染能够不断富集,并最终对动植物、人体以及环境产生一定负面影响,具备潜在的危险性,因此这也是一个不容忽视的问题。工业污染是重金属污染的主要来源,企业的排放要达标,管理要严格,最为关键的是当前国家的管理机制尚未健全,仍需继续完善。在水环境监测工作方面,重金属检测工作能够为此提供一定依据。近年来,伴随着多种分析仪器的开发,重金属检测也逐步体现出准确性、灵敏度高等优势。 当前,对重金属进行检测的电化学方法主要有:伏安法、极谱法、电位分析法和电导分析法。 1.3 对铅离子的研究 铅可通过皮肤、消化道、呼吸道进入体与多种器官亲和,对神经、血液、消化、心脑血管、泌尿等多个系统造成损害,严重影响体新代,堵塞金属离子代通道,造成低钙、低锌、低铁,且导致补充困难。因此研究一种简单、准确和灵敏度高的铅测定方法具有重要意义。 目前铅的主要检测方法有:原子吸收光谱法,电感耦合等离子体原子发射光谱法,电感耦合等离子体质谱法,X射线荧光光谱法,分光光度法等。化学修饰电极测定重金属离子的方法也有报道,如植酸钠或石墨烯修饰玻碳电极测定铅,多壁碳纳米管修饰电极测定镉等,但这些方法的线性围较窄,检出限较高。 凹土即凹凸棒粘土的简称,是一种稀有非金属矿产资源,它是一种层链状结 构的含水富镁铝硅酸盐粘土矿物。凹土的化学式为Mg 5Si 8 O 20 (HO) 2 (OH 2 ) 4 ·4H 2 O, 它的表面有可交换阳离子和活性羟基,同时拥有较大的表面积和较好的机械强度。因此,原始的凹土可作为重金属离子的吸附剂,有研究表明用有机试剂(例如:氨丙基三乙氧基硅烷、3-巯基丙基三甲氧基硅烷)修饰凹土表面可以提高凹土的吸附能力和吸附选择性。 因此本文选取3-氨丙基三乙氧基硅烷(简称AEPTMS)来修饰电极。 2 实验部分 2.1 粘土矿物、化学试剂和化学仪器 精制凹凸棒粘土(粒径小于 2 微米,)——简称凹土,是一种稀有非金属矿产资源,它是一种层链状结构的含水富镁铝硅酸盐粘土矿物。 化学试剂:Pb(NO3)2(99%,分析纯),H2SO4(98%),Pb(NO3)2 (99%,分析纯),H2SO4(98%),HCl(36%),NaCl(99.5%),HNO3(63%),K3[Fe(CN)6],Ru(NH3)6Cl3,In(NO3)3.H2O(99.99%),Cd(NO3)2·4H2O(98%),Cu(NO3)2·xH2O(99.99%),T l NO3(99.9%),Hg(NO3)2·H2O(≥99.99%),乙醇,Al2O3,有机结合剂3-氨丙基三乙氧基硅烷(简称AEPTMS,用来修饰黏土表面),蒸馏水

(整理)6种方法测定蛋白质含量.

6种方法测定蛋白质含量 一、微量凯氏(kjeldahl)定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: NH2CH2COOH+3H2SO4――2CO2+3SO2+4H2O+NH3(1) 2NH3+H2SO4――(NH4)2 SO4(2) (NH4)2 SO4+2NaOH――2H2O+Na2SO4+2NH3(3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(biuret法) (一)实验原理 双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。

紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材 1.试剂: (1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正其纯度。如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。牛血清清蛋白用H2O 或0.9%NaCl配制,酪蛋白用0.05NaOH配制。 (2)双缩脲试剂:称以1.50克硫酸铜(CuSO4?5H2O)和6.0克酒石酸钾钠(KNaC4H4O6?4H2O),用500毫升水溶解,在搅拌下加入300毫升10% NaOH溶液,用水稀释到1升,贮存于塑料瓶中(或内壁涂以石蜡的瓶中)。此试剂可长期保存。若贮存瓶中有黑色沉淀出现,则需要重新配制。 2.器材: 可见光分光光度计、大试管15支、旋涡混合器等。 (三)操作方法 1.标准曲线的测定:取12支试管分两组,分别加入0,0.2,0.4,0.6,0.8,1.0毫升的标准蛋白质溶液,用水补足到1毫升,然后加入4毫升双缩脲试剂。充分摇匀后,在室温(20~25℃)下放置30分

水中铅在线自动分析仪

系统概述: T8000—Pb水中铅在线自动分析仪是基于我国标准而研制的新一代全自动在线分析仪。经过预处理的水样由注射泵注入到一个特殊反应器中后首先与酸性氧化试剂进行反应,将水样中所有形态的铅统一氧化成二价铅离子,接着调整溶液的PH值,再加入掩蔽剂,最后在该混合溶液中加入显色剂进行显示反应,在测量范围内,显色溶液的吸光度与水样中总铅的浓度成正比,通过测量吸光度,就可以计算出水样中总铅的含量。 系统特点: 测量方法避免了使用剧毒物质氰化钾,同一台仪器可用于总铅和铅离子的测定; 水样预处理装置采用免维护设计,可确保预处理装置维护周期超过半年时间; 极宽的检测范围确保可用于任何水样铅的检测; 微量进样技术保证了试剂的低消耗; T8000—Pb水中铅在线自动分析仪全进口器件及分析流路设计和试剂配方保证了极高的测量重现性,目前测量重现性可达到5%; 全自动运行,无需人员值守,可实现自动调零、自动校准、自动测量、自动清洗、自动维护、自我保护、自动恢复等智能化功能; 在线监测方式多样化,可实现人工随时测量、自动定时测量、自动周期性测量等测定方式。 技术参数: 测量方法:高温酸化消解,将所有形态的铅(包括不同价态、有机态、络合态等)转化成同一价态,在调整溶液的pH值和掩蔽掉其他干扰离子后显色测量地表水和工业废水中各种铅的总含量; 测量范围:(0–0.5/1/5)mg/L 铅; 测量准确度:±10%; 重复性:<5%; 零点漂移:±0.05mg/L; 量程漂移:±10%; 检测下限:0.005mg/L; MTBF(无故障运行时间):≥720 h/次; 实际水样比对:±10%; 测量方式:可实现多种选择; 测量耗时:可任意设定,一般15min; 校正方式:自动定时校正或手动校正; 试剂消耗:每次测量过程中每种试剂仅消耗2-3mL; 仪器内部取样:采用注射泵,注射泵与蠕动泵相比特点是寿命长,不存在像泵管等这样的易老化部件,注射泵使用寿命可伴随仪器终生,每一年只须更换一次注射器就可以了; 仪器外部取样:分别提供潜水泵和自吸泵两种方式,一般潜水泵方式用于水样点与地面落差过大(通常超过2米)的情况,自吸泵用于水样点与地面落差少于2米的情况; 预处理装置:预处理装置在每次测量完毕后会自动进行冲洗维护,同时预处理装置单独具有控制箱,可单独人工进行清洗维护; 二次污染:所用化学试剂均全部回收,不存在对外直接排放; 数据传输:能同时提供4—20 mA、RS232、RS485等多种数据传输接口; 环境温度:+5°C到+40°C; 机械尺寸:500 mm x 1650 mm x 320 mm;

饲料中铅的测定方法

饲料中铅的测定方法 1 主题内容与适用范围 本标准规定了饲料中铅的测定方法。 本标准适用于饲料原料(磷酸盐、石粉、鱼粉等)、配合饲料(包括混合饲料)中铅的测定。 2 原理 样品经消解处理后,再经萃取分离,然后导入原子吸收分光光度计中,原子化后测量其在283.3nm处的吸光度,与标准系列比较定量。 3 试剂和溶液 除特殊规定外,本标准所用试剂均为分析纯,水为去离子重蒸馏水或相应纯度的水。 3.1 硝酸(GB 626),优级纯。 3.2 硫酸(GB 625),优级纯。 3.3 高氯酸(GB 623),优级纯。 3.4 盐酸(GB 622),优级纯。 3.5 甲基异丁酮〔CH3COCH2CH(CH3)2,HG3—1118〕。 3.6 6mol/L硝酸溶液:量取38mL硝酸,加水至100mL。 3.7 1mol/L碘化钾溶液:称取166g碘化钾(KI,GB 1272),溶于1 000mL水中,储存于棕色瓶中。 3.8 1mol/L盐酸:量取84mL盐酸,加水至1 000mL。 3.9 5%抗坏血酸溶液:称取5.0g抗坏血酸(C6H8O6),溶于水中,稀释至100mL,储存于棕色瓶中。 3.10 铅标准储备液:精确称取0.159 8g硝酸铅〔Pb(NO3)2,HG 3—1070〕,加6mol/L硝酸10mL,全部溶解后,转入1 000mL容量瓶中,加水至刻度,该溶液为每毫升0.1mg铅。 3.11 铅标准工作液:精确吸取1mL铅标准储备液,加入100mL容量瓶中,加水至刻度。此溶液为每毫升1μg。 4 仪器、设备 4.1 消化设备:两平行样所在位置的温度差小于或等于5℃。 4.2 马福炉。

定量分析方法的方法学验证

定量分析方法的方法学验证 定量分析方法的方法学验证 定量分析方法验证的目的是证明采用的含量测定方法适合于相应分析要求,在进行定量分析方法学研究或起草药品质量标准时,分析方法需经验证。 验证内容有:线性、范围、准确度、精密度(包括重复性和重现性)、检测限、定量限和耐用性等。 一,线性 线性是指在设计的范围内,测试结果与试样中被测物质浓度直接呈正比关系的程度。 应在规定的范围内测定线性关系。可用一贮备液经精密稀释,制备一系列供试品的方法进行测定,至少制备五份供试样品;以测得的响应信号对被测物浓度作图,观察是否呈线性,再用最小二乘法进行线性回归。必要时,响应信号可经数学转换,再进行线性回归计算。回归方程的相关系数( r ) 越接近于1 ,表明线性关系越好。 用UV 法测定时,以对照品配制一定浓度范围的对照品系列溶液,吸光度A一般在0.3 ~0.7 ,浓度点n =5 ,用浓度C 对A作线性回归,得一直线方程,方程的截距应接近于零,相关系数r 应大于0.9999 。 用HPLC 法测定时,以对照品配制一定浓度范围的对照品系列溶液,浓度点n =5 ~7 ,用浓度 C 对峰高h 或峰面积A或被测物与内标物的响应值之比进行线性回归或非线性拟合(如HPLC-ELSD ),建立方程,方程的截距应趋于零,相关系数r 应大于0.999 。 线性关系的数据包括相关系数、回归方程和线性图。 二,范围 范围系指能达到一定精密度、准确度和线性,测试方法适用的高低限浓度或量的区间。 范围应根据分析方法的具体应用和线性、准确度、精密度结果及要求确定。对于有毒的、具特殊功效或药理作用的成分,其范围应大于被限定含量的区间。 三,精确度 准确度系指用该方法测定的结果与真实值或参考值接近的程度,一般用回收率( %) 表示。准确度应在规定的范围内测试。用于定量测定的分析方法均需做准确度验证。 1. 测定方法的准确度 可用已知纯度的对照品做加样回收率测定,即于已知被测成分含量的供试品中再精密加入一定量的已知纯度的被测成分对照品,依法测定。用实测值与供试品中含有量之差,除以加入对照品量计算回收率。 在加样回率收试验中须注意对照品的加入量与供试品中被测成分含有量之和必须在标准曲线线性范围之内;加入的对照品的量要适当,过小则引起较大的相对误差,过大则干扰成分相对减少,真实性差。 回收率% = [(C-A)/B]*100% 式中,A为供试品所含被测成分量;B 为加入对照品量;C 为实测值。 2. 数据要求 在规定范围内,取同一浓度的供试品,用 6 个测定结果进行评价;或设计 3 个不同浓度,每个浓度各分别制备 3 份供试品溶液进行测定,用9 个测定结果进行评价,一般中间浓度加入量与所取供试品含量之比控制在l ∶ 1 左右,其他两个浓度分别约为供试品含量的80% 和120% 。应报告供试品取样量、供试品中含有量、对照品加入量、测定结果和回收率( %) 计算值,以及回收率( %) 的相对标准偏差(RSD) 或可信限。 四,精密度 精密度是指在规定的测试条件下,同一个均匀供试品,经多次取样测定所得结果之间接近的程度。 1. 精密度的表示方法 气相色谱法和高效液相色谱法是对同一供试液进行至少五次以上的测定;精密度一般用相对标准偏差(relative standard deviation, RSD) 表示:RSD= 标准偏差/ 平均值′ 100 %

食品中铅的测定方法

食品中铅的测定方法 1.1 原理 试样经灰化或酸消解后,注入原子吸收分光光度计石墨炉中,电热原子化后吸收283.3nm共振线,在一定浓度范围,其吸收值与铅含量成正比,与标准系列比较定量。 1.2 试剂 1.2.1硝酸:优级纯。 1.2.2高氯酸:优级纯。 1.2.3硝酸(0.5mol/L):取3.2ml 硝酸加入50ml水中,稀释至100ml。 1.2.4硝酸(1mol/L):取6.4ml硝酸加入50ml水中,稀释至100ml。 1.2.5磷酸二氢铵溶液(20g/L):称取2.0g磷酸二氢铵,以水溶解稀释至100ml。 1.2.6混合酸:硝酸+高氯酸(4+1)。取4份硝酸与1份高氯酸混合。 1.2.7铅标准储备液:由国家标准物质研究中心提供。 1.2.8铅标准使用液:每次吸取铅标准储备液1.0ml于100ml容量瓶中,加硝酸(0.5mol/L)或硝酸(1mol/L)至刻度。如此经多次稀释成每毫升含10.0,20.0,40.0,60.0,80.0ng铅的标准使用液(可根据样品所含浓度进行配制)。 1.3仪器 所用玻璃仪器均需以硝酸(1+5)浸泡过液,用水反复冲洗,最后用去离子水冲洗干净。 1.3.1原子吸收分光光度计(附石墨炉及铅空心阴极灯)。 1.3.2消化装置 1.3.3可调式电热饭、可调式电炉。 1.4 操作 1.4.1 试样预处理 1.4.1.1 在采样和制备过程中,应注意不使试样污染。 1.4.1.2 粮食、豆类去杂物后,磨碎,过20目筛,储于塑料瓶中,保存备用。 1.4.1.3 蔬菜、水果、鱼类、肉类及蛋类等水分含量高的鲜样,用食品加工机或匀浆机打成匀浆,储于塑料瓶中,保存备用。 1.4.2 试样消化 湿式消解法:称取试样1.00g~5.00g 于锥形瓶或高脚烧杯中,放数粒玻璃珠,加10ml混合酸,加盖浸泡过夜,加一小漏斗电炉上消解,若变棕黑色,再加混合酸,直至冒白烟,消化液呈无色透明或略带黄色,放冷用滴管将试样消化液洗入或过滤入(视消化后试样的盐分而定)10ml~25ml容量瓶中,用水少量多次洗涤锥形瓶或高脚烧杯,洗液合并于容量瓶中并定至刻度,混匀备用;同时作试剂空白。 1.4.3 测定 1.4.3.1 仪器条件:根据各自仪器性能调至最佳状态。参考条件为波长283.3nm,狭缝0.2nm~1.0nm,灯电流5mA~7mA,干燥温度120℃,20s;灰化温度450℃,持续15s~20s,原子化温度1700℃~2300℃,持续4s~5s,背景校正为氘灯或塞曼效应。 1.4.3.2 标准曲线绘制:吸取上面配制的铅标准使用液10.0,20.0,40.0,60.0,80.0ng/ml(或μl)各10μL,注入石墨炉,测得其吸光值并求得吸光值与浓度有关系的一元线性回归方程。 1.4.3.3 试样测定:分别吸取样液和试剂空白液各10μl,注入石墨炉,测得其吸光值,代入标准系列的一元线性回归方程中求得样液中铅含量。 1.4.3.4 基体改进剂的使用:对于干扰试样,则注入适量的基体改进剂磷酸二氢铵溶液(20g/L)一般为5μl或与试样同量消除干扰。绘制铅标准曲线时也要加入与试样测定时等量的基体改进剂磷酸二氢铵溶液。

含量测定方法学考察

含量测定方法学验证内容及可接受标准 1.准确度 可接受的标准为:各浓度下的平均回收率均应在98.0%-102.0%之间,9个回收率数据的相对标准差(RSD)应不大于2.0%。 2.线性 其主峰的面积,计算相应的含量。以含量为横坐标(X),峰面积为纵坐标(Y),进行线性回归分析。 可接受的标准为:回归线的相关系数(R)不得小于0.998,Y轴截距应在100%响应值的2%以内,响应因子的相对标准差应不大于2.0%。 3.精密度 1)重复性 件下进行测试,所得6份供试液含量的相对标准差应不大于2.0%。 2)中间精密度 4.专属性 可接受的标准为:空白对照应无干扰,主成分与各有关物质应能完全分离,分离度不得小于2.0。以二极管阵列检测器进行纯度分析时,主峰的纯度因子应大于980。 5.检测限

主峰与噪音峰信号的强度比应不得小于3。 6.定量限 主峰与噪音峰信号的强度比应不得小于10。另外,配制6份最低定量限浓度的溶液,所测6份溶液主峰的保留时间的相对标准差应不大于2.0%。 7.耐用性 方法:分别考察流动相比例变化±5%、流动相pH值变化±0.2、柱温变化±5℃、 可接受的标准为:主峰的拖尾因子不得大于2.0,主峰与杂质峰必须达到基线分离;各条件下的含量数据(n=6)的相对标准差应不大于2.0%。 8、系统适应性 应不大于2.0%,主峰保留时间的相对标准差应不大于1.0%。另外,主峰的拖尾因子不得大于2.0,主峰与杂质峰必须达到基线分离,主峰的理论塔板数应符合质量标准的规定。 有关物质测定方法学验证内容及可接受标准: 1.准确度 该指标主要是通过回收率来反映。验证时一般要求根据有关物质的定量限与质量标准中该杂质的限度分别配制三个浓度的供试品溶液各三份(例如某杂质的限度为0.2%,则可分别配制该杂质浓度为0.1%、0.2%和0.3%的杂质溶液),分别测定其含量,将实测值与理论值比较,计算回收率,并计算9个回收率数据的相对标准差(RSD)。该项目的可接受的标准为:各浓度下的平均回收率均应在80%-120%之间,如杂质的浓度为定量限,则该浓度下的平均回收率可放宽至70%-130%,相对标准差应不大于10%。 2.线性 线性一般通过线性回归方程的形式来表示。具体的验证方法为:在定量限至

环境空气 铅的测定方法验证

环境空气铅的测定方法验证 一、目的 采用GB/T15264-1995 方法,使用原子吸收分光分光光度法测定环境空气中的铅方法验证确认。 二、方法简介 2.1方法原理 用玻璃纤维滤膜采集的试样,经硝酸—过氧化氢溶液浸出制备成试料溶液。直接吸入空气-乙炔火焰中原子化,在283.3nm 处测量基态原子对空心阴极灯特征辐射的吸收。在一定条件下,根据吸收光度与待测样中金属浓度成正比。 2.2方法检出限 方法检出限为0.5 μg/mL (1%吸收),当采样体积为50 m^3进行测定时,最低检出浓度为5×10^-4mg/m3。 2.3方法步骤及条件 2.3.1校准曲线的绘制 取 6 个 100mL 容量瓶,分别加入铅标准溶液 (0.100g/L),然后用 1%硝酸溶液稀释至标线,配制成工作标准溶液,其浓度范围包括试料中被测铅浓度。铅标准溶液加入体积 (mL):0, 0.50, 1.00, 2.00, 4.00, 8.00, 10.00工作标准溶液浓度 (mg/L):0, 0.50, 1.00, 2.00, 4.00, 8.00, 10.00按照选定的仪器工作条件,测定铅标准系列的吸光度,并计算标准曲线的线性回归方程。 2.3.2样品测定 取试样,滤膜,置于高型烧杯中,加入 10mL 硝酸—过氧化氢混合溶液浸泡 2h 以上,微火加热至沸腾,保持微沸 10min,冷却后加入过氧化氢 10mL,沸腾至微干,冷却,加硝酸溶液20mL,再沸腾10min,热溶液通过多孔玻璃过滤器,收集于烧杯中,用少量热硝酸溶液冲洗过滤器数次。待滤液冷却后。转移到50mL 容量瓶中,再用硝酸溶液稀释至标线,即为试料溶液。取同批号等面积滤膜两个,和样品同时处理操作,制备成空白试样。按标准曲线绘制时的仪器工作条件和操作步骤,分别测定试样和空白试样的吸光度。 2.3.3计算结果与表示

检验方法验证方案(含量测定)

检验方法验证方案 目的:证明所采用的检验方法适于相应的检测要求,具有可靠的准确度、精密度。范围:含量的检定方法的前验证 编定依据:《药品生产质量管理规范》1998年修订版及验证管理办法 职责:验证小组人员 目录 1.概述 2.验证目的 3.职责 3.1验证小组 3.2品质部 3.3化验室 4.验证内容 4.1验证的准备工作 4.2适用性验证 4.2.1准确度试验 4.2.2精密度试验 4.3拟订验证周期 4.4验证结果评定与结论 5.附件

1. 概述 对小容量注射剂的含量测定,本公司采用福林酚测定法,该检验方法具有测量准确、精密度高、专属性强、定量准确可靠、方法简便易行的特点,可满足小容量注射剂含量测定的要求。检验方法标准操作规程。用本方法进行转移因子注射液、胸腺肽注射液的含量测定。 2. 验证目的 为确认对转移因子注射液、胸腺肽注射的含量测定的紫外分光光度法,适合相应的检测要求,特制订本验证方案,进行验证。 验证过程应严格按照本方案规定的内容进行,若因特殊原因确需变更时,应填写验证方案变更申请及批准书,报验证工作小组批准。 验证前,应首先对验证所需的仪器、设备进行验证,对所需仪器、仪表、量具等进行校正。 3. 职责 3.1 验证工作小组 负责验证方案的审批。 负责验证的协调工作,以保证本验证方案规定项目的顺利实施。 负责验证数据及结果的审核。 负责验证报告的审批。 负责发放验证合格证书。 负责再验证周期的确认。 3.2 品质部 负责验证所需仪器、设备的安装、调试,并做好相应的记录。 负责组织验证所需仪器、设备的验证。 负责仪器、仪表、量具等的校正。 负责拟订检验方法的再验证周期 3.3 化验室 负责验证所需的标准品、样品、试剂、试液等的准备。 负责验证方案指定的试验的实施。 负责收集各项验证、试验记录,并对试验结果进行分析后,报验证工作小组。 4. 验证内容 4.1 验证的准备工作 4.1.1 验证所需文件资料 品质部负责提供验证所需的文件资料,包括该检验方法的标准操作规程。以及负责提供验证所需仪器、设备的验证报告以及仪器、仪表、量具等的校正报告。 检查人:日期:

水中铅测定方法详解终审稿)

水中铅测定方法详解文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

水中铅详解(1)在中性和碱性溶液中,双硫腙与铅反应生成单取代双硫腙络合物,溶于有机溶剂而呈洋红色。反应灵敏,最大吸收波长为520nm,摩尔吸光系数(ε)6.86×104L/(mol·cm)。有机溶剂通常使用三氯甲烷或四氯化碳,四氯化碳可比三氯甲烷在较低pH值萃取铅,不形成二铅酸盐,且四氯化碳不溶于水,挥发性较低,比重较大。另一方面,铅一双硫腙络合物在三氯甲烷中溶解度较大,可萃取较大量的铅。由于双硫腙在三氯甲烷中溶解度比四氯化碳为大,因此,当需要从三氯甲烷中完全除去双硫腙时,必须保持较高的pH值。当使用三氯甲烷作溶剂时,铅可在pH8~11.5被定量萃取。,通常采用百里酚蓝 (pH8.O~9.6)作指示剂,调节水相由绿变蓝(pH~9.5),然后进行萃取。亦有建议在高pH值进行萃取,如SnydercsJ提出,在含柠檬酸铵和氰化钾的pH9.5~10.0水溶液中,用双硫腙一三氯甲烷溶液萃取铅,继用稀硝酸反萃取,最后用氨性氰化物溶液调节至pH11.5,以双硫腙三氯甲烷溶液萃取,在pHll.5的高pH值下,使过量双硫腙成为铵盐而进入水层。影响铅的萃取率,除pH外,还与所用溶剂、存在阴离子的种类和数量、两相的体积比、双硫腙在有机相中的浓度等参数有关。阴离子由于与铅形成络合物而影响萃取平衡,如在同样的pH,当含一定浓度的乙酸盐、酒石酸盐和柠檬酸盐时,可使萃取率降低。双硫腙法测定铅,可采用单色法,亦可采用混色法,前者以氨性氰化物溶液洗去有机层中过量的双硫腙后,测量络合物的吸光度,后者则有机层中残留过量的双硫腙不经除去直接测量吸光度,操作简便。然而对铅含量极微的水样,由于受基体影响,当采用混色法测定,以无铅水制备的空白试验为

如何测试水中含铅

如何测试水中含铅 含铅废水来自各种电池车间、选矿厂、石油化工厂等。电池工业是含铅废水的最主要来源, 据报道, 每生产1 个电池就造成铅损失4.54-6810mg, 其次是石油工业生产汽油添加剂。那么如何测试水中含铅呢? 目前国内的铅水质在线监测仪大多都是采用电极法,电极法的测量范围较窄,且电极较昂贵,易损坏,维护费用较高;比色法的铅设备也是采用双硫腙分光光度法(GB7470-87),该方法是采用微碱性溶液中铅与双硫腙反应生成红色络合物,用三氯甲烷萃取比色。使用剧毒试剂氰化钾及有机试剂萃取,操作甚繁且污染很大,而且双硫腙很不稳定,易变质,测试结果不准确,同时也会严重影响分析仪测定的稳定性,导致后续测试的不稳定性。 一些人问:水污染成因与污水处理方法?

含油废水主要来源于石油、石油化工、钢铁、焦化、煤气发生站、机械加工等工业部门。废水中油类污染物质,除重焦油的相对密度为1.1 (2)分散油.油滴粒径介于10一100μm之间,恳浮于水中。 (3)乳化油,油滴粒径小于10μm,不易从废水中分离出来。由于不同工业部门排出的废水中含油浓度差异很大,如炼油过程中产生废水,含油量约为150一1000mg/L,焦化废水中焦油含量约为500一800mg/L,煤气发生站排出废水中的焦油含量可达2000一 3000mg/L。 因此,含油废水的治理应首先利用隔油池,回收浮油或重油,处理效率为60%一80%,出水中含油量约为100一200mg/L;废水中的乳化油和分散油较难处理,故应防止或减轻乳化现象。方法之一,是在生产过程中注意减轻废水中油的乳化;其二,是在处理过程中,尽量减少用泵提升废水的次数、以免增加乳化程度。处理方法通常采用气浮法和破乳法。

含量测定分析方法验证的可接受标准简介

含量测定分析方法验证的可接受标准简介 黄晓龙 摘要:本文介绍了在对含量测定所用的分析方法进行方法学验证时,各项指标的可接受标准,以利于判断该分析方法的可行性。 关键词:含量测定分析方法验证可接收标准 在进行质量研究的过程中,一项重要的工作就是要对质量标准中所涉及到的分析方法进行方法学验证,以保证所用的分析方法确实能够用于在研药品的质量控制。为规范对各种分析方法的验证要求,我国已于2005年颁布了分析方法验证的指导原则。该指导原则对需要验证的分析方法及验证的具体指标做了比较详细的阐述。但是文中未涉及各具体指标在验证时的可接受标准,国际上已颁布的指导原则中也未发现相关的要求。另一方面,大多数药品研发单位在进行质量研究时,已逐步认识到分析方法验证的必要性与重要性,大都也在按照指导原则的要求进行分析方法验证,但验证完后却因没有一个明确的可接受标准,而难以判断该分析方法是否符合要求。本文结合国外一些大型药品研发企业在此方面的要求,提出了在对含量测定方法进行验证时的可接受标准,供国内的药品研发单位在进行研究时参考。 1.准确度 该指标主要是通过回收率来反映。验证时一般要求分别配制浓度为80%、100%和120%的供试品溶液各三份,分别测定其含量,将实测值与理论值比较,计算回收率。 可接受的标准为:各浓度下的平均回收率均应在98.0%-102.0%之间,9个回收率数据的相对标准差(RSD)应不大于2.0%。 2.线性 线性一般通过线性回归方程的形式来表示。具体的验证方法为: 在80%至120%的浓度范围内配制6份浓度不同的供试液,分别测定其主峰的面积,计算相应的含量。以含量为横坐标(X),峰面积为纵坐标(Y),进行线性回归分析。 可接受的标准为:回归线的相关系数(R)不得小于0.998,Y轴截距应在100%响应值的2%以内,响应因子的相对标准差应不大于2.0%。 3.精密度 1)重复性 配制6份相同浓度的供试品溶液,由一个分析人员在尽可能相同的条件下进行测试,所

水质 铜、铅、镉的测定 石墨炉原子吸收分光光度法水和废水监测分析方法 方法确认

水质铜、铅、镉的测定石墨炉原子吸收分光光度法水和废水监测分析方法(第四版)方法确认 1.目的 通过石墨炉原子吸收分光光度法测定水质中铜、铅、镉的浓度,分析方法精密度,判断本实验室的检测方法是否合格。 2. 适用范围 本方适用于对下水和清洁地表水。 3. 原理 将样品注入石墨管,用电加热方式使石墨炉升温,样品蒸发离解形原子蒸汽,对来自光源的特征电磁辐射产生吸收。将测得的样品吸光度和标准吸光度进行比较,确定样品中被测金属的含量。 4.仪器工作参数 5.分析方法

样品预处理 取100ml水样放入200ml烧杯中,加入硝酸5ml,在电热板上加热消解(不要沸腾)。蒸至10ml左右,加入5ml硝酸和10ml过氧化氢,继续消解,直至1ml 左右。如果消解不完全,再加入硝酸5ml和10ml过氧化氢,再次蒸至1ml左右。取下冷却,加水溶解残渣,在过滤液中加入10ml硝酸钯溶液,用水定容至100ml。 取%硝酸100ml,按上述相同的程序操作,以此为空白样。 混合标准使用溶液 用%硝酸稀释金属标准贮备溶液配制而成,使配成的混合标准溶液含量为镉ml、铜ml、ml 校准曲线的绘制 参照下表,在50ml容量瓶中,用硝酸溶液稀释混合标准溶液,配置至少5个工作标准溶液,其浓度范围应包括试料中铜、铅、镉的浓度。 注:定容体积为50ml。 样品测定 将20ul样品注入石墨炉,参照仪器工作参数表的仪器参数测量吸光度。以零浓度的标准溶液为空白样,扣除空白样吸光度后,从校准曲线上查出样品中被测金属的浓度。

计算 实验室样品中的金属浓度按下式计算: V W c 1000 ?= 式中:c —实验室样品中的金属浓度,ug/L ; W —试份中的金属含量,ug ; V —试份的体积,ml 。 6. 结果分析 选取6份样品加标,使铜、铅、镉的加标浓度均为100ug/L ,按5进行测试。由附表可知,精密度RSD<10%。铜标准偏差

石墨炉原子吸收光谱法测定铅的方法验证

石墨炉原子吸收光谱法测定铅的方法验证 1 材料与方法 仪器 Z-2700石墨炉原子吸收分光光度计;铅空心阴极灯;EH-20B电热板;DGH-9123A型电热恒温鼓风干燥箱。 试剂 试剂用水为纯化水。 1.2.1 硝酸:优级纯。 1.2.2 30%过氧化氢:优级纯。 1.2.3 磷酸二氢铵溶液(20 g/L):称取2.0 g 磷酸二氢铵(分析纯),以水溶解稀释至100 mL。 1.2.4 铅标准储备液:准确吸取铅标准储备液(mL,国家标准物质中心提供)于100mL容量瓶中,加硝酸,定容至刻度。如此多次逐级稀释成每毫升含100ng铅的标准储备液。 样品处理 准确称取0.5g样品置聚四氟乙烯瓶中,加入5mLHNO3和3mLH2O2,摇匀后加盖密封,置于不锈钢套内拧紧,放置2~3h。放置150℃恒温干燥箱内保持3~4h,取出冷至室温,于140℃电热板上赶酸,蒸至~后,取下冷却,用纯化水定容至刻度,摇匀,待上机测定。同时进行空白试验。 样品测定 1.5.1 标准曲线绘制 准确吸取100ng/mL铅标准溶液、、、、、,置于100ml容量瓶中,加入硝酸,定容至刻度,摇匀。各自相当于、、、、、mL的铅。吸取20μL注入石墨炉测定铅元素,测得其吸光值并求得吸光值与浓度关系的一元线性回归方程。 1.5.2 样品测定 分别吸取样液和试剂空白液20μL注入石墨炉测定铅元素,测得其吸光值,代入标准系列的一元线性回归方程中求得样液中铅含量。 1.5.3 基体改进剂的使用 在测定液注入石墨炉前,加入基体改进剂磷酸二氢铵(20g/L)5μL。

2 方法验证 线性范围 采用上述仪器试验条件,对配制好的、、、、、mLPb标准系列进行分析,并对其吸光值(y)与浓度(x)进行回归分析,得工作曲线回归方程:y=+,r=,说明铅浓度在~mL范围内具有良好的线性关系。 最低检出限与定量限 以3倍信噪比为检测低限,试验结果显示,铅的最低检出限分别为mL。以10倍信噪比为定量限,若称取0.5g样品消化并定容至50mL测定,铅对应的定量限分别为μg/kg。回收率试验 称取同一样品6份,进行3个浓度的铅含量加标回收率试验,并且每个浓度做2个平行。试验结果表明,铅的加标回收率在%~%之间,结果见表1。 表1 回收试验结果 编号本底含量 (μg/g)加入量(μg)测定值 (μg/g) 回收率 (%) 回收率平 均值(%) 1 2 3 4 5 6 精密度试验 2.4.1 标准品精密度试验 以上述仪器条件,分别对10ng/mL铅标准工作液连续进样11次,测定相对标准偏差分别为%。 2.4.2 样品精密度试验 准确称取同一样品5份进行平行测定,测定结果见表2。

HPLC含量测定分析方法验证中数据可接受标准讨论.

HPLC 含量测定分析方法验证中数据可接受标准讨论 在进行质量研究的过程中,一项重要的工作就是要对质量标准中所涉及到的分析方法进行方法学验证,以保证所用的分析方法确实能够用于在研药品的质量控制。为规范对各种分析方法的验证要求,中国药典2005年版附录规定了分析方法验证的指导原则。该指导原则对需要验证的分析方法及验证的具体指标做了比较详细的阐述。但是文中未涉及各具体指标在验证时的可接受标准,国际上已颁布的指导原则中也未发现相关的要求。另一方面,大多数药品研发单位在进行质量研究时,已逐步认识到分析方法验证的必要性与重要性,大都也在按照指导原则的要求进行分析方法验证,但验证完后却因没有一个明确的可接受标准,而难以判断该分析方法是否符合要求。本文提出了在对HPLC 含量测定方法进行验证时的可接受标准,供大家讨论。 1.准确度 该指标主要是通过回收率来反映。验证时一般要求分别配制浓度为80%、100%和120%的供试品溶液各三份,分别测定其含量,将实测值与理论值比较,计算回收率。 可接受的标准为:各浓度下的平均回收率均应在98.0%-102.0%之间,9个回收率数据的相对标准差(RSD )应不大于2.0%。 2.线性 线性一般通过线性回归方程的形式来表示。具体的验证方法为: 在80%至120%的浓度范围内配制5份浓度不同的供试液,分别测定其主峰的面积,计算相应的含量。以含量为横坐标(X ),峰面积为纵坐标(Y ),进行线性回归分析。 可接受的标准为:回归线的相关系数(R )不得小于0.998,Y 轴截距应在100%响应值的2%以内,响应因子的相对标准差应不大于2.0%。

3.精密度 1)重复性 配制6份相同浓度或分别配制浓度为80%、100%和120%的供试品溶液各三份的供试品溶液,由一个分析人员在尽可能相同的条件下进行测试,所得6份供试液含量的相对标准差应不大于2.0%。 2)中间精密度 配制6份相同浓度的供试品溶液,分别由两个分析人员使用不同的仪器与试剂进行测试,所得12个含量数据的相对标准差应不大于2.0%。 4.专属性 可接受的标准为:空白对照应无干扰,主成分与各有关物质应能完全分离,分离度不得小于2.0。以二极管阵列检测器进行纯度分析时,主峰的纯度因子应大于980。 5.检测限 主峰与噪音峰信号的强度比应不得小于3。 6.定量限 主峰与噪音峰信号的强度比应不得小于10。另外,配制6份最低定量限浓度的溶液,所测6份溶液主峰的保留时间的相对标准差应不大于2.0%。 7.耐用性 分别考察流动相比例变化±5%、流动相pH 值变化±0.2、柱温变化±5℃、流速相对值变化±20%时,仪器色谱行为的变化,选择至少三个不同厂家或不同批号的同类色谱柱,每个条件下各测试两次。可接受的标准为:主峰的拖尾因子不得大于

探讨水中铅的测定方法

探讨水中铅的测定方法 发表时间:2018-07-20T14:49:02.950Z 来源:《基层建设》2018年第15期作者:程金成[导读] 摘要:目的探讨水中低浓度铅的更好的测定方法。阳江市水务集团有限公司 529500摘要:目的探讨水中低浓度铅的更好的测定方法。实验:通过加入硝酸钯作为基体改进剂,同时加入抗坏血酸,提高石墨炉原子吸收光谱法的灰化温度(1000℃)的试验条件,降低了背景吸收,消除了基体干扰,结果,样品相对标准偏差:1.49%~2.30%,加标回收率98%~102.0%。方法较简单,灵敏度高,适合饮用水铅的测定。关键词:石墨炉原子吸收光谱法、水、铅、硝酸钯 1.前言 铅是毒理学指标,有害元素,对儿童,婴儿,胎儿和孕妇较成人敏感,饮用水标准中铅不得超过0.01mg/L。水中铅含量低,比色法和火焰原子吸收光谱法测定铅的灵敏度和稳定性不够好,石墨炉原子吸收光谱法使用普通石墨管采用283.3nm谱线也不稳定。本实验用热解涂层石墨管,以硝酸钯作为基体改进剂,提高灰化温度,降低基体干扰,而铅不受损失,从而提高了精密度和准确度。 2、实验条件 2.1仪器 iCE3500型石墨炉原子吸收分光光度计(美国赛默飞公司)。 GFS35Z塞曼石墨炉和自动进样器模块。热解涂层石墨管,铅空心阴极灯。 2.2工作条件及仪器参数: 2.3试剂 2.3.1. 1000μg/mL硝酸钯基体改进剂(中国标准物质)。取5mL用纯水稀释至50Ml,置于棕色瓶中使用。 2.3.2 高纯硝酸(美国进口)。 2.3.3 超纯水:法国Simplicity UV 纯水器制备。 2.3.4 Pb标准溶液1000μg/mL(中国标准物质中心),使用液用1%硝酸逐级稀释至20μg/L标准工作溶液。 2.3.5 抗坏血酸1%w/v。称取1.0g抗坏血酸溶于水中,定容至100mL(现配)。 3.测定步骤 3.1 工作曲线将20μg/L的Pb标准工作溶液倒入样品杯中,置于样品盘上,经自动进样器稀释为0.0, 4.0,8.0,12.0,16.0,20.0μg/L,同时,自动加入5μL硝酸钯机体改进剂使用液及5μL抗坏血酸使用液,在上述仪器参数条件下,测定吸光度值并绘制工作曲线,测得标准曲线为Y=0.0114x+0.0548 回收率试验

(完整word版)新-实验六 紫外分光光度法测定对乙酰氨基酚片的含量的方法学研究

实验六 紫外分光光度法测定对乙酰氨基酚片的含量的方法学研究 一、目的要求 1. 掌握确证分析方法的效能指标内容和要求。 2. 熟悉建立分析方法的基本思路。 3. 掌握紫外分光光度法的原理及操作。 二、实验原理 对乙酰氨基酚结构中含有苯环共轭系统,在0.4%氢氧化钠溶液中,于257nm 波长处有最大吸收,其吸收系数为% 11cm E 715。 C 8H 9NO 2 151.16 三、仪器与试剂 对乙酰氨基酚片,对乙酰氨基酚对照品,氢氧化钠,容量瓶,量筒,紫外分光光度计,研钵。 四、实验步骤 1. 线性与浓度范围 取对乙酰胺基酚对照品约40mg ,精密称定,置250mL 量瓶中,加0.4% 氢氧化钠溶液50mL 溶解后,加水稀释至刻度,摇匀。分别精密量取2,4,6,8,10,12mL ,置100mL 量瓶中,加入0.4%氢氧化钠溶液10mL ,加水稀释至刻度,摇匀,照分光光度法,在257nm 的波长处测定吸收度。将浓度C 对吸收度A 回归,得线性回归方程:A=a+bC(r= ,n=6)。线性浓度范围0.0032~0.0192mg/mL. 2. 供试品测定法 取本品10片,精密称定,研细,精密称取适量(约相当于对乙酰氨基酚40mg ),置250ml 量瓶中,加0.4 %氢氧化钠溶液50ml 及水50ml ,振摇15分钟,加水至刻度,摇匀,用干燥滤纸滤过,精密量取续滤液5ml ,置100ml 量瓶中,加0.4 %氢氧化钠溶液10ml ,加水至刻度,摇匀,照分光光度法,在257nm 的波长处测定吸收度,按C 8H 9NO 2 的吸收系数(%11cm E )为715 计算,即得。 3. 回收率试验 取本品10片,精密称定,研细,精密称取细粉适量(约相当于对乙酰氨基酚40mg ),共6份,置250ml 量瓶中,按1:1比例,分别向其中加入对乙酰氨基酚对照品,其余照“供试品测定法”项下的方法操作,按标准曲线法或百分吸收系数法计算回收率。 4. 精密度试验 照“供试品测定”项下的方法操作,计算片剂含量相当于标示量的百分数,6份测定结果的相对标准偏差(RSD )即为精密度试验结果。 五、注意事项 1. 为减少误差,各样品应尽量平行操作。 2. 比色皿每次用完后应清洗干净。 六、思考题

环境空气中的铅测定方法确认报告

环境空气中的铅的测定方法确认报告 1、目的 采用GB/T15264-1995方法,使用原子吸收分光分光光度法测定环境空气中的铅方法验证确认。 2、方法简介 2.1方法原理 用玻璃纤维滤膜采集的试样,经硝酸—过氧化氢溶液浸出制备成试料溶液。直接吸入空气-乙炔火焰中原子化,在283.3nm处测量基态原子对空心阴极灯特征辐射的吸收。在一定条件下,根据吸收光度与待测样中金属浓度成正比。 2.2方法检出限 方法检出限为0.5μg/mL(1%吸收),当采样体积为50m3进行测定时,最低检出浓度为5×10-4mg/m3。 2.3方法步骤及条件 2.3.1校准曲线的绘制 取6个100mL容量瓶,分别加入铅标准溶液(0.100g/L),然后用1%硝酸溶液稀释至标线,配制成工作标准溶液,其浓度范围包括试料中被测铅浓度。 铅标准溶液加入体积(mL):0,0.50,1.00,2.00,4.00,8.00,10.00 工作标准溶液浓度(mg/L):0,0.50,1.00,2.00,4.00,8.00,10.00 按照选定的仪器工作条件,测定铅标准系列的吸光度,并计算标准曲线的线性回归方程。 2.3.2样品测定 取试样,滤膜,置于高型烧杯中,加入10mL硝酸—过氧化氢混合溶液浸泡2h以

上,微火加热至沸腾,保持微沸10min,冷却后加入过氧化氢10mL,沸腾至微干,冷却,加硝酸溶液20mL,再沸腾10min,热溶液通过多孔玻璃过滤器,收集于烧杯中,用少量热硝酸溶液冲洗过滤器数次。待滤液冷却后。转移到50mL容量瓶中,再用硝酸溶液稀释至标线,即为试料溶液。 取同批号等面积滤膜两个,和样品同时处理操作,制备成空白试样。按标准曲线绘制时的仪器工作条件和操作步骤,分别测定试样和空白试样的吸光度。 2.3.3计算结果与表示 根据所测的吸光度值,在校准曲线上查出试料溶液和空白溶液的浓度,并由下式计算空气中铅的含量,mg/m3。 式中;C-铅浓度,mg/m3; a—试料溶液中铅浓度,μg/mL;b—空白溶液中铅浓度,μg/mL; V—试料溶液体积,mL,Vn—换算成标准状态下(0℃、101325Pa)的采样体积m3;St—试料滤膜总面积,cm2;Sa—测定时所取滤膜面积,cm2。 3、仪器设备 仪器名称:火焰原子吸收分光光度计 规格型号:AAS-990 F 设备校准结果:经过校准,结果确认满足要求,见“设备档案”。 4、环境条件 要求温度(℃)/湿度(%):20~25℃/40~70% 实测温度(℃)/湿度(%):21℃/55%

相关主题
文本预览
相关文档 最新文档