当前位置:文档之家› 糖苷类化合物

糖苷类化合物

糖苷类化合物
糖苷类化合物

萜类化合物

一、萜类化合物概述 萜类化合物(Terpenoids)是所有异戊二烯聚合物及其衍生物的总称[4]。萜类化合物中的烃类常单独称为萜烯。萜类化合物除以萜烯的形式存在外,还以各种含氧衍生物的形式存在,包括醇、醛、羧酸、酮、酯类以及甙等。萜类化合物在自然界中分布广泛,种类繁多,估计有1万种以上,是天然物质中最多的一类。 萜类化合物的分子结构是以异戊二烯为基本单位的,因此其分类依据主要是以异戊二烯单位数目的不同为标准来进行。开链萜烯的分子组成符合通式(C5H8)n(n≥2),含有两个异戊二烯单位的称为单萜,含有三个异戊二烯单位的称为倍半萜,含有四个异戊二烯单位的则称为二萜(图1),以此类推[4]。倍半萜约有7 000多种,是萜类化合物中最大的一类[5]。二萜类以上的也称“高萜类化合物”,一般不具挥发性[6]。此外,有的萜类化合物分子中具有不同的碳环数,因此又进一步区分为链萜、单环萜、双环萜、三环萜等。其中,单萜和倍半萜及其简单含氧衍生物是挥发油的主要成分,而二萜是形成树脂的主要成分,三萜则以皂甙的形式广泛存在。 萜类化合物在植物界中普遍存在[4]。常见含萜类化合物的植物类群有:蔷薇科(Rosaceae)、藜科(Chenopodiaceae)、天南星科(Araceae)、毛茛科(Ranunculaceae)、萝科(Asclepi-adaceae)、莎草科(Cyperaceae)、禾本科(Gramineae)、柏科(Cu-pressaceae)、杜鹃科(Ericaceae)、木犀科(Oleaceae)、木兰科(Magnoliaceae)、樟科(Lauraceae)、胡椒科(Piperaceae)、马鞭草科(Verbenaceae)、马兜铃科(Aristolochiaceae)、芸香科(Ru-taceae)、唇形科(Labiatae)、菊科(Compositae)、松科(Pinaceae)、伞形科(Umbelliferae)、桃金娘科(Myrtaceae)等[7]。 1陈晓亚,叶和春.植物次生代谢及其调控.见:李承森主编.植物学进展(第一卷).北京:高等教育出版社,1998.293~304 2杜近义,胡国赋,秦际威.植物次生代谢产物的生态学意义.生学杂志,1999,16(5):9~10 3陈晓亚,刘培.植物次生代谢的分子生物学及基因工程.生命学,1996,8(2): 8~9 4肖崇厚主编.中药化学.上海:上海科学技术出版社,1991.323~37 5Bohlmann J, Gilbert MG, Rodney C. Plant terpenoid synthases: Molecular biology and phylogenetic analysis. Proc Nati Acad Sci,1998,95(8):4126~4133 6Langenheim J H. Plant resins. Am Sci,1990(78):16~24 7 谷文祥,段舜山,骆世明.萜类化合物的生态特性及其植物的化作用.华南农业大学学 报,1998,19(4):108~110 二、萜类化合物的分类

第二十一章 萜类和甾族化合物

第二十一章萜类和甾族化合物 1.找出下列化合物的手性碳原子,并计算一下在理论上有多少对映异构体? (1)α-蒎烯(2)2-α-氯菠 (3)苧(4)薄荷醇 (5)松香酸(6)可的松 (7)胆酸 答案: 解:

2.找出下列化合物的碳干怎样分割成异戊二烯单位:(1)香茅醛 (2)樟脑 (3)蕃茄色素 (4)甘草次酸

(5)α-山道年 答案: 解: 3.指出用哪些简单的化学方法能区分下列各组化合物? (1)角鲨烯、金合欢醇、柠檬醛和樟脑; (2)胆甾醇、胆酸、雌二醇、睾丸甾酮和孕甾酮 答案: 解: ①首先水解,各加钼酸铵,黄色沉淀为金合欢醇,其余三者加 Tollen试剂,析出Ag的为柠檬醛,其余二者加溴水,褪色者为角鲨烯,最后为樟脑。

4.萜类β-环柠檬醛具有分子式C10H16O,在235nm处(ε=12500)有一吸收峰。还原则得C10H20,与拖伦试剂反应生成酸(C10H16O2);把这一羧酸脱氢得间二甲苯、甲烷和二氧化碳。把C10H20脱氢得1,2,3-三甲苯。指出它的结构式。提示:参考松香酸的脱氢反应。 答案:略 5.β-蛇床烯的分子式为C15H24,脱氢得1-甲基-7-异丙基萘。臭氧化得两分子甲醛和C13H20O2。C13H20O2与碘和氢氧化钠液反应时生成碘仿和羧酸C12H18O。指出β-蛇床烯的结构式。 答案: 解: 故此化合物含氢化萘的骨架,臭氧化得两分子甲醛,必须具有两,所以此化合物的可能结构式为:

6.在薄荷油中除薄荷脑外,还含有它的氧化产物薄荷酮C10H18O。薄荷酮的结构最初是用下列合成方法来确定的: β-甲基庚二酸二乙酯加乙醇钠,然后加H2O得到B,分子式为C10H16O3。B加乙醇钠,然后加异丙基碘得C,分子式为C13H22O3。C加OH-,加热;然后加H+,再加热得薄荷酮。 (1)写出上列合成法的反应式; (2)根据异戊二烯规则,哪一个结构式更与薄荷油中的薄荷酮符合? 答案: 解: 7.溴对胆甾醇的反式加成能所生成的两种非对映体产物是什么?事实上其中一种占很大优势(85%)。试说明之。 答案: 解:

氨基糖苷类抗生素配伍禁忌

氨基糖苷类抗生素配伍禁忌 药物学上将具有两个或两个以上的氨基糖分子并有配糖链相互连接的一类抗生素,统称为氨基糖苷类抗生素。这类药物是治疗革兰氏阴性细菌所引起的感染性疾病、败血症及其他类型的化脓性感染的常用药,特别是妥布霉素与丁胺卡那霉素是治疗耐药性绿脓杆菌所致严重感染的重要药物。由于它们在化学结构上颇为相似,都具有氨基糖甙结构,所以它们的药物作用、用途及不良反应等方面有多种共同之处。 目前,临床上常用的氨基糖苷类抗生素有:链霉素、庆大霉素、卡那霉素、丁胺卡那霉素、妥布霉素等。在临床药物配伍应用时,这类药物与某些药物合用会使氨基糖苷类抗生素的毒性及不良反应增加。 因此,使用时应予以高度注意。 1.强利尿药氨基糖苷类抗生素与强利尿药(如呋喃

苯酸、利尿酸等)联用能加强氨基糖苷类抗生素的耳毒性副作用,可致严重暂时性或永久性耳聋。 2.红霉素红霉素在长期大量及静脉快速滴注给药 时也可发生耳毒性作用。因此,红霉素与氨基糖苷类抗生素联用时也可使氨基糖苷类抗生素的耳毒性副作用加强。合用需慎重。 3.头孢菌素Ⅰ、头孢菌素Ⅱ、洁霉素、二性霉素B、右旋糖酐等氨基糖苷类抗生素与上述药物联用可加强氨基糖苷类抗生素的肾毒性,引起肾损害甚至急性肾小管坏死。 4.乙醚、地西泮、肌松剂氨基糖苷类抗生素与这些药物合用时可致神经—肌肉阻滞作用加强,引起骨骼肌麻痹。所以,对进行手术麻醉或术后恢复期的病人以及正在服用地西泮药物的病人,应慎用氨基糖苷类抗生素。 5.碱性药氨基糖苷类抗生素与碱性药(如碳酸氢

钠、氨茶碱等)联合应用,抗菌效能可增加,但同时毒性也相应增加,因此,合用时必须慎重。 6.一种氨基糖苷类抗生素不宜与其他氨基糖苷类 抗生素联合两种氨基糖甙类抗生素联合抗菌谱不扩大,并因共同的毒性基础,反可增强对第八对脑神经和肾脏的毒性,特别是易引起永久性耳聋。 胃复安不能与解痉药合用 胃复安又名灭吐灵,有促进胃蠕动、加快胃内容物排空、改善胃功能及止吐等作用,用于治疗各种原因引起的恶心、呕吐、腹胀、嗳气、胆汁反流等症状。常用解痉药有阿托品、胃疡平,可缓解胃肠平滑肌痉挛,抑制腺体分泌。

(完整版)第十七章萜类和甾体化合物

第十七章 萜类和甾体化合物 萜类化合物(Terpenoids )和甾体化合物(Steroids )广泛存在于自然界中,有的能直接用来治疗疾病,有的是合成药物的原料,因此它们与药物的关系非常密切。 第一节 萜类化合物 萜类化合物多是从植物提取得到的香精油(挥发油)的主要成分。如:柠檬油、松节油、薄荷油等。它们多是不溶于水,易挥发,具有香味的油状物质,有一定的生理及药理活性,如祛痰、止咳、驱风、发汗和镇痛等作用。广泛用于香料和医药等。 一、结构与分类 (一)结构及异戊二烯规律 萜类化合物是由异戊二烯(Isoprene )作为基本骨架单元,可以看成是由两个或两个以上异戊二烯单位以头尾相连或互相聚合而成,这种结构特征称为“异戊二烯规律”。因此,萜类化合物是异戊二烯的低聚合物以及它们的氢化物和含氧衍生物的总称。 C CH 2 CH CH 3 CH 2 1 23 4 头 尾头 尾 头 尾 头 尾 头 尾 头 尾 异戊二烯 月桂烯 柠檬烯 月桂烯是两分子异戊二烯头尾相连;而柠檬烯是两分子异戊二烯之间的1,2和1,4加成。(一分子异戊二烯用3,4位双键与另一分子异戊二烯进行1,4加成)。所以,异戊二烯规律在萜类成分的结构测定中具有很大应用价值。 (二)分类 萜类化合物根据分子中所含异戊二烯骨架的多少可分为单萜、倍半萜、二萜等。见表19-1。

表19-1 萜类化合物的分类 异戊二烯单元数碳原子数类别 2 10 单萜类 3 15 倍半萜 4 20 二萜类 6 30 三萜类 8 40 四萜类 >8 >40 多萜类 二、单萜类化合物 单萜类化合物是有两个异戊二烯单元构成。根据两个异戊二烯单元的连接方式不同,单萜有可以分成为链状单萜、单环单萜和双环单萜。 (一)链状单萜化合物 链状单萜类化合物具有如下的碳架结构: 这是两个异戊二烯头尾相连而成。很多链状单萜都是香精的主要成分,例如:月桂油中的月桂烯、玫瑰油中的香叶醇、橙花油中的橙花醇、柠檬油中的柠檬醛(α-柠檬醛和β-柠檬醛)、玫瑰油及香茅油中的香茅醇等。它们很多是含有多个双键或氧原子的化合物,其结构如下: H CH2OH CH2OH H H CHO CHO H CH2OH 月桂烯香叶醇橙花醇α-柠檬醛β-柠檬醛香茅醇(Myrcene)(Geraniol)(Nerol)(Geranial)(Neral)(Citronellol)这些链状单萜都可以用来制备香料,其中柠檬醛还是合成维生素A的重要原料。 (二)单环单萜类化合物

黄酮类化合物

第五章黄酮类化合物 一、选择题 (一)单项选择题(在每小题的五个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内) 1.构成黄酮类化合物的基本骨架是() A. 6C-6C-6C B. 3C-6C-3C C. 6C-3C D. 6C-3C-6C E. 6C-3C-3C 2.黄酮类化合物的颜色与下列哪项因素有关() A. 具有色原酮 B. 具有色原酮和助色团 C. 具有2-苯基色原酮 D. 具有2-苯基色原酮和助色团 E.结构中具有邻二酚羟基 3.引入哪类基团可使黄酮类化合物脂溶性增加() A. -OCH3 B. -CH2OH C. -OH D. 邻二羟基 E. 单糖 4.黄酮类化合物的颜色加深,与助色团取代位置与数目有关,尤其在()位置上。 A. 6,7位引入助色团 B. 7,4/-位引入助色团 C. 3/,4/位引入助色团 D. 5-位引入羟基 E. 引入甲基 5.黄酮类化合物的酸性是因为其分子结构中含有() A. 糖 B. 羰基 C. 酚羟基 D. 氧原子 E. 双键 6.下列黄酮中酸性最强的是() A. 3-OH黄酮 B. 5-OH黄酮 C. 5,7-二OH黄酮

D. 7,4/-二OH黄酮 E. 3/,4/-二OH黄酮 7.下列黄酮中水溶性性最大的是() A. 异黄酮 B. 黄酮 C. 二氢黄酮 D. 查耳酮 E. 花色素 8.下列黄酮中水溶性最小的是() A. 黄酮 B. 二氢黄酮 C. 黄酮苷 D. 异黄酮 E. 花色素 9.下列黄酮类化合物酸性强弱的顺序为() (1)5,7-二OH黄酮(2)7,4/-二OH黄酮(3)6,4/-二OH黄酮A.(1)>(2)>(3) B.(2)>(3)>(1) C.(3)>(2)>(1)D.(2)>(1)>(3) E.(1)>(3)>(2) 10.下列黄酮类化合物酸性最弱的是() A. 6-OH黄酮 B. 5-OH黄酮 C. 7-OH黄酮 D. 4/-OH黄酮-二OH黄酮 11.某中药提取液只加盐酸不加镁粉,即产生红色的是() A. 黄酮 B. 黄酮醇 C. 二氢黄酮 D. 异黄酮 E. 花色素 12.可用于区别3-OH黄酮和5-OH黄酮的反应试剂是() A. 盐酸-镁粉试剂 B. NaBH4试剂 C.α-萘酚-浓硫酸试剂 D. 锆-枸橼酸试剂 E .三氯化铝试剂 13.四氢硼钠试剂反应用于鉴别() A. 黄酮醇 B. 二氢黄酮 C. 异黄酮

天然药物化学 第8章 甾体及其苷类

第8章甾体及其苷类 一、选择题 1.甾体皂苷不具有的性质是() A.可溶于水、正丁醇B.与醋酸铅产生沉淀C.与碱性醋酸铅沉淀 D.表面活性与溶血作用E.皂苷的苷键可以被酶、酸或碱水解 2.溶剂沉淀法分离皂苷是利用总皂苷中各皂苷() A.酸性强弱不同B.在乙醇中溶解度不同C.极性不同 D.难溶于石油醚的性质E.分子量大小的差异 3.可用于分离中性皂苷与酸性皂苷的方法是() A.中性醋酸铅沉淀B.碱性醋酸铅沉淀C.分段沉淀法 D.胆甾醇沉淀法E.酸提取碱沉淀法 4.Liebermann-Burchard反应所使用的试剂是() A.氯仿-浓硫酸B.三氯醋酸C.香草醛-浓硫酸 D.醋酐-浓硫酸E.盐酸-对二甲氨基苯甲醛 5.从水溶液中萃取皂苷类最好用() A.氯仿B.丙酮C.正丁醇D.乙醚E.乙醇 6.下列化合物属于() C.螺甾烷醇型皂苷D.四环三萜皂苷 E.甲型强心苷 7.区别三萜皂苷与甾体皂苷的反应() A.3,5-二硝基苯甲酸B.三氯化铁-冰醋酸 D.20%三氯醋酸反应E.盐酸-镁粉反应 8.可用于分离螺甾烷甾体皂苷和呋甾烷皂苷的方法是() A.乙醇沉淀法B.pH梯度萃取法C.醋酸铅沉淀法 D.明胶沉淀法E.胆甾醇沉淀法 9.有关薯蓣皂苷叙述错误的是() A.双糖链苷B.中性皂苷 C.可溶于甲醇、乙醇 D.其苷元是合成甾体激素的重要原料 10.含甾体皂苷水溶液中,分别加入酸管(加盐酸)碱管(加氢氧化钠)后振摇,结果是() A.两管泡沫高度相同B.酸管泡沫高于碱管几倍 C.碱管泡沫高于酸管几倍D.两管均无泡沫 E.酸管有泡沫,碱管无碱管 11.有关螺甾醇型甾体皂苷元的错误论述是() A.27个碳原子B.C22为螺原子C.E环是呋喃环,F环是吡喃环 D.六个环组成E.D、E环为螺缩酮形式连接 12.不符合甾体皂苷元结构特点的是() A.含A、B、C、D、E和F六个环B.E环和F环以螺缩酮形式连接 C.E环是呋喃环,F环是吡喃环D.C10、C13、C17位侧链均为β-构型 E.分子中常含羧基,又称酸性皂苷 13.水解强心苷不使苷元发生变化用() A.0.02~0.05mol/L盐酸B.氢氧化钠/水C.3~5%盐酸 D.碳酸氢钠/水E.氢氧化钠/乙醇

萜类化合物

萜类 1.1.1 概述 萜类化合物(terpenoids)是自然界存在的一类以异戊二烯为结构单元组成的化合物的统称,也称为类异戊二烯(isoprenoids)。该类化合物在自然界分布广泛、种类繁多,迄今人们已发现了近3万种萜类化合物,其中有半数以上是在植物中发现的。植物中的萜类化合物按其在植物体内的生理功能可分为初生代谢物和次生代谢物两大类。作为初生代谢物的萜类化合物数量较少,但极为重要,包括甾体、胡萝卜素、植物激素、多聚萜醇、醌类等。这些化合物有些是细胞膜组成成分和膜上电子传递的载体,有些是对植物生长发育和生理功能起作用的成分。主要功能有:醌类为膜上电子传递的在载体,载体是细胞膜组成成分,胡萝卜素类和叶绿素的侧链参与光合作用,赤霉素、脱落酸是植物激素。而次生代谢物的萜类数量巨大,根据这些萜类的结构骨架中包含的异戊二烯单元的数量可分为单萜(monoterpenoid C10)、倍半萜(sesquiterpenoid C15))、二萜(diterpeniod C20)和三萜(triterpenoid C30)等。它们通常属于植物的植保素,虽不是植物生长发育所必需的,但在调节植物与环境之间的关系上发挥重要的生态功能。植物的芳香油、树脂、松香等便是常见的萜类化合物,许多萜类化合物具有很好的药理活性,是中药和天然植物药的主要有效成分。有些萜类化合物已经开发出临床广泛应用的有效药物,如青蒿中的倍半萜青蒿素被用于治疗疟疾,红豆杉的二萜紫杉醇被用于治疗乳腺癌的癌症【1】。

一般来说,含有两个异戊二烯单位骨架的萜类称为单萜;含有三个异戊二烯单位骨架的萜类称为倍半萜;含有四个异戊二烯单位骨架的萜称为双萜;依次类推,有三萜、四萜等。此外,按萜类化合物是否含有环状结构又将其再分为无环萜(开链萜)、单环单萜、双环单萜、四环三萜等等。 单萜化合物是由加瓦龙酸(mevalonie acid)经磷酸化,再经脱羧及脱水生成异戊烯基二磷酸酯(isopentenyl diphosphate IPP),IPP 进一步异构化为二甲基烯丙基二磷酸酯(DMAPP),这两种活化的C5单元被称为“活性异戊二烯”,IPP和DMAPP通过反式1,2-加成和反式1,2-消除,以“头-尾”形式相连接构成牛儿键二磷酸酯(GPP),再经生物体内转化形成如下各种单萜化合物基本母核: 无环单帖类:2,6—二甲基辛烷型(9);单环单萜类:薄荷烷型(10),桉树脑型(11),虹彩烷(12),环烯醚萜(13),双环单萜类:蒎烷型(14),樟烷型(15)及异樟烷型(16),葑烷型(17),蓖烷型(18),苎烷型(19)等

芍药苷-是中药芍药的主要有效成分,是一种单萜类糖苷化合物,具有多种生物活性

芍药苷-是中药芍药的主要有效成分,是一种单萜类糖苷化合物,具有多种生物活性 芍药苷-是中药芍药的主要有效成分,是一种单萜类糖苷化合物,具有多种生物活性,如抗氧化、抗自由基损伤、抗血小板聚集、改善微循环、免疫调节等,且毒副作用小。芍药苷作为白芍总苷的主要成分,已被广泛应用于类风湿关节炎的临床治疗。 学术术语来源—— 芍药苷对骨髓间充质干细胞增殖的影响 文章亮点: 1芍药苷作为一种天然活性成分,具有补血及免疫抑制作用,对类风湿关节炎等自身免疫性疾病表现出一定的疗效,但其具体作用机制仍不明确,实验旨在通过观察芍药苷对间充质干细胞增殖及表达细胞因子的作用,从细胞水平探讨芍药苷的补血及免疫调节机制。 2研究发现,芍药苷促进骨髓间充质干细胞增殖的同时,可使骨髓间充质干细胞高表达白细胞介素6基因,并促进其细胞外分泌白细胞介素6。由此说明,芍药苷或许是通过促进骨髓或外周血中骨髓间充质干细胞的增殖,促使其高分泌白细胞介素6等细胞因子进而影响造血细胞及免疫细胞的功能。 关键词: 干细胞;骨髓干细胞;芍药苷;骨髓间充质干细胞;细胞增殖;白细胞介素6主题词: 骨髓;间质干细胞;细胞增殖;白细胞介素6 摘要 背景:研究显示芍药苷具有补血及治疗自身免疫性疾病的功效,骨髓间充质干细胞对机体的造血及免疫功能也起着重要的作用,但芍药苷对骨髓间充质干细胞的增殖及细胞因子的分泌和表达有何影响报道较少。 目的:探讨芍药苷对人骨髓间充质干细胞增殖及白细胞介素6表达的影响。

方法:采用密度梯度离心法和贴壁培养法体外分离培养人骨髓间充质干细胞,用流式细胞术和成脂及成骨诱导法鉴定人骨髓间充质干细胞生物学特性,MTT 法检测不同浓度芍药苷对人骨髓间充质干细胞增殖的影响,ELISA 法测定芍药苷干预人骨髓间充质干细胞后培养上清液中白细胞介素6的分泌水平,RT-PCR 检测芍药苷干预后白细胞介素6 mRNA的表达情况。 结果与结论:成功分离出骨髓间充质干细胞,具有成骨、成脂分化潜能。与对照组相比,芍药苷浓度为2 μmol/L和10 μmol/L可明显促进骨髓间充质干 细胞增殖。10 μmol/L芍药苷干预骨髓间充质干细胞后,G 0/G 1 期细胞比例显 著降低,S期细胞比例显著升高。10 μmol/L芍药苷干预组骨髓间充质干细胞白细胞介素6的分泌和mRNA表达均显著高于对照组(P < 0.01)。由此得出,一定浓度的芍药苷可促进骨髓间充质干细胞增殖,并提高骨髓间充质干细胞分泌白细胞介素6水平和基因表达。

山奈酚-7-O-α-L-鼠李糖苷与人血清白蛋白 相互作用的研究

毕业论文(设计) 题目:山奈酚-7-O-α-L-鼠李糖苷与人血清白蛋白 相互作用的研究 姓名:何鑫 学号:P112014541 学院:化工学院 专业:制药工程 班级:2011级制药工程(1)班 指导老师:齐燕姣 2015年月日

目录 摘要 (3) 关键词 (3) ABSTRACT (3) 1.前言 (4) 1.1黄酮类化合物的基本信息 (5) 1.2山奈酚-7-O-α-L-鼠李糖苷简介 (5) 1.2.1山奈酚-7-O-α-L-鼠李糖苷结构 (6) 1.2.2山奈酚-7-O-α-L-鼠李糖苷基本结构解析和官能团鉴定 (6) 1.2.3山奈酚-7-O-α-L-鼠李糖苷性状 (6) 1.3蛋白质的结构的基本信息 (7) 1.3.1蛋白质的一级结构(primary structure) (7) 1.3.2蛋白质的二级结构(secondary structure) (7) 1.3.2.1 α-螺旋结构(Alpha helix) (8) 1.3.2.2 β-折叠结构(Beta sheet) (8) 1.3.2.3 β-转角结构(Beta turn) (8) 1.3.2.4 无规则卷曲结构(random coil) (8) 1.3.3 蛋白质的三级结构(tertiary structure) (9) 1.3.4 蛋白质的四级结构 (9) 1.4人血清白蛋白分子(HSA)简介 (9) 1.4.1人血清白蛋白分子的基本结构 (9) 1.4.2人血清白蛋白分子的功能 (10) 1.4.3人血清白蛋白分子与药物结合位点 (11) 1.5分子对接简介 (11) 1.6 Sybyl软件简介 (12) 1.6.1 Sybyl/base模块 (12) 1.6.2 FlexX模块 (12) 1.6.3 Csore模块 (13) 2.实验部分 (13) 2.1蛋白质结构的处理 (13) 2.2配体小分子的处理 (15) 2.3山奈酚-7-O-α-L-鼠李糖苷分子与1H9Z初步分子对接 (15) 2.3.1山奈酚-7-O-α-L-鼠李糖苷分子在HSA(1H9Z)中结合位点的分析 (16) 2.3.2山奈酚-7-O-α-L-鼠李糖苷分子与HSA结合位点氨基酸氢键相互作用力的分析 (18) 2.3.3对接结果采用Csore模块进行打分结果 (19) 2.4山奈酚-7-O-α-L-鼠李糖苷分子与1N5U初步分子对接 (20) 2.4.1山奈酚-7-O-α-L-鼠李糖苷分子在HSA(1N5U)结合位点的分析 (21) 2.4.2山奈酚-7-O-α-L-鼠李糖苷分子与HSA结合位点氨基酸氢键相互作用力的分析 (22) 2.4.3对接结果采用Csore模块进行打分结果 (23)

萜类化合物(综述)

萜类化合物提取和分离及生理生态功能 姓名:曾鸿雁 班级:生物0802 学号:20083196

萜类化合物提取和分离及生理生态功能 曾鸿雁西南科技大学 引言一次代谢(primary metabolism)指在植物、昆虫或微生物体内的生物细胞通过光合作用、碳水化合物代谢和柠檬酸代谢,生成生物体生存繁殖所必须的化合物,如糖类、氨基酸、脂肪酸、核酸及其局和衍生物、乙酰辅酶A的代谢过程,这些化合物称为一次代谢产物。一次代谢过程对各种生物来说,基本上是相同的,其代谢产物广泛分布于生物体内;而二次代谢是从某些一次代谢产物作为起始原料,通过一系列特殊生物化学反应生成表面上看来似乎对生物本身无用的化合物,如萜类、甾体、生物碱、多酚类等,这些二次代谢产物就是人物所熟知的天然产物[1]。 二次代谢产物在生成它们的生物体内有何影响或作用及对环境的作用,随着对这些天然产物的研究,开始逐步浮出水面。例如,栎树中的鞣酸是幼虫生长的抑制剂,可以保护保护栎树生长。二次代谢产物可以成为非滋养性化学物质,它能控制周围环境中其他生物的生态学。 由于天然产物数量种类繁多,结构迥异,根据研究的需要,人为的依据天然产物骨架和化学性质分成了八类①糖盒糖苷;②生物碱;③黄酮类;④萜类; ⑤甾体类;⑥醌类;⑦香豆素和木脂素;⑧其他类。本文就萜类化合物的提取分离和生物学特性做一综述。 1 萜类化合物的概述 萜类化合物(terpenoid)一类异戊二烯(C10H16)的聚合体及其含氧的饱和程度不等的衍生物(分子式含C数在15~40个)的统称。从结构上可划分为若干个异戊二烯单位,称为异戊二烯规则。但是生物体内萜类并非异戊二烯相互聚合二形成的,在植物体内萜类的真正前提是由乙烯生成的甲戊二羟酸,称为生源的异戊二烯规则[2]。 萜类化合物按照异戊二烯单位的多少可分为单萜、二萜、三萜等,见表1。 表1 萜类化合物的分类 类别异戊二烯单位数(n)含碳数存在 单萜(mono-terpenoid) 2 10 挥发油(精油)倍半萜(sesqui- terpenoid) 3 15 挥发油、树脂二萜(di- terpenoid) 4 20 树脂 三萜(tri- terpenoid) 6 30 皂苷、树脂 四萜(tetra- terpenoid)8 40 色素

萜类化合物定义和分类

萜类化合物定义和分类 萜类化合物 1.萜类化合物的定义 从化学结构来看,萜类化合物由异戊二烯单元,C5,为基本结构单元。 从生源来看,萜类化合物的生物合成的重要前体物质是甲戊二羟酸。 定义,由甲戊二羟酸衍生,符合通式(CH)的化合物及5xn 衍生物。 异戊二烯, 甲戊二羟酸, CHOH-CH-COH(CH)-CH-COOH 2232 2 萜类化合物的分类; 根据异戊二烯结构单元的数目划分 are some differences in level of development of the various modes of transport, leading to traffic levels have a greater imbalance. Yibin city, based on the 2008 ~2013 year of external transport of passenger and cargo traffic volume statistics. 2008 ~2013 year, Yibin city, external table 3.1-1 railways roads water transport passenger traffic passenger traffic (million) share (%) Passenger traffic (million) share (%) Passenger traffic (million) share (%) Passenger traffic (million) in 2008 ~2013 year, Yibin city, external transport railways roads water transport traffic statistics 3.1-2 time of air cargo

21 萜类和甾族化合物

·237· 第二十一章 萜类和甾族化合物 学习要求: 1.理解萜的涵义;掌握异戊二烯规律和萜的分类。 2.熟悉各类萜的典型化合物的特性及重要用途。 3.熟悉甾族化合物的基本结构和立体结构,了解重要甾族化合物的类型和用途。 萜类和甾族化合物是广泛存在于植物、昆虫及微生物等生物体中的一大类有机化合物。在生物体内有着重要的生理作用。萜类和甾族化合物虽是两类不同的化合物,但有着生源合成方面的密切关系,因而放在一章内进行讨论。 §21-1 萜 类 一、萜的涵义和异戊二烯规律 分子中含C 10以上,且组成为5的倍数的烃类化合物称为萜类。 因分子中含有双键,所以,萜类化合物又称为萜烯类化合物。 萜类化合物是广泛存在于植物和动物体内的天然有机化合物。如从植物中提取的香精油——薄荷油、松节油等,植物及动物体中的某些色素——胡箩卜素、虾红素等等。 研究发现,萜类分子在结构上的共同点是分子中的碳原子数都是5的整倍数。例如: 月桂烯 对薄荷烯 (存在于柠檬,橘子中) 姜烯(存在于姜油中) (存在于月桂子油等中) 松节油( 蒎烯)异樟烯 (存在于松节油等中) (存在于姜油,冷杉等中) α

·238· 上述化合物的碳干骨骼可以看成是由若干个异戊二烯单位主要以头尾相接而成的。 这种结构特点叫做萜类化合物的异戊二烯规律。异戊二烯规则是从对大量萜类分子构造的测定中归纳出来的,所以能反过来知道测定萜类的分子构造。 二、萜的分类、命名 萜类化合物中异戊二烯单位可相连成链状化合物,也可连成环状化合物。 1.分类 根据组成分子的异戊二烯单位的数目可将萜分成以下几类: 1)单萜: 含有两个异戊二烯单位。它包含开链单萜,单环萜,二环单萜三种。 2)倍半萜:含有三个异戊二烯单位的萜。 3)双萜: 含有四个异戊二烯单位的萜。 4)三萜: 含有六个异戊二烯单位的萜。 5)四萜: 含有八个异戊二烯单位的萜。 这些萜类和单萜一样,也有开链和成环之分。 2.命名 IUPAC 规定的系统命名法,较生辟,多接触才能熟练。 我国一律按英文俗名意译,在接上“烷”、“烯”、‘醇“等类名而成。 习惯常用用俗名如樟脑,薄荷醇等。见P 621。 三、萜类化合物 1.单萜 1)开链单萜 C C C C C CH 2C CH 3 CH CH 2 异戊二烯 头尾 异戊二烯单位

有机化学(第四版)第二十一章 萜类和甾族化合物

有机化学(第四版)第二十一章萜类和甾族化合物1.找出下列化合物的手性碳原子,并计算一下在理论上有多少对 映异构体? (1)α-蒎烯(2)2-α-氯菠 (3)苧(4)薄荷醇 (5)松香酸(6)可的松 (7)胆酸 答案: 解:

2.找出下列化合物的碳干怎样分割成异戊二烯单位:(1)香茅醛 (2)樟脑 (3)蕃茄色素 (4)甘草次酸

(5)α-山道年 答案: 解: 3.指出用哪些简单的化学方法能区分下列各组化合物? (1)角鲨烯、金合欢醇、柠檬醛和樟脑; (2)胆甾醇、胆酸、雌二醇、睾丸甾酮和孕甾酮 答案: 解: ①首先水解,各加钼酸铵,黄色沉淀为金合欢醇,其余三者加 Tollen试剂,析出Ag的为柠檬醛,其余二者加溴水,褪色者为角鲨烯,最后为樟脑。

4.萜类β-环柠檬醛具有分子式C10H16O,在235nm处(ε=12500)有一吸收峰。还原则得C10H20,与拖伦试剂反应生成酸(C10H16O2);把这一羧酸脱氢得间二甲苯、甲烷和二氧化碳。把C10H20脱氢得1,2,3-三甲苯。指出它的结构式。提示:参考松香酸的脱氢反应。 答案:略 5.β-蛇床烯的分子式为C15H24,脱氢得1-甲基-7-异丙基萘。臭氧化得两分子甲醛和C13H20O2。C13H20O2与碘和氢氧化钠液反应时生成碘仿和羧酸C12H18O。指出β-蛇床烯的结构式。 答案: 解: 故此化合物含氢化萘的骨架,臭氧化得两分子甲醛,必须具有两,所以此化合物的可能结构式为:

6.在薄荷油中除薄荷脑外,还含有它的氧化产物薄荷酮C10H18O。薄荷酮的结构最初是用下列合成方法来确定的: β-甲基庚二酸二乙酯加乙醇钠,然后加H2O得到B,分子式为C10H16O3。B加乙醇钠,然后加异丙基碘得C,分子式为C13H22O3。C加OH-,加热;然后加H+,再加热得薄荷酮。 (1)写出上列合成法的反应式; (2)根据异戊二烯规则,哪一个结构式更与薄荷油中的薄荷酮符合? 答案: 解: 7.溴对胆甾醇的反式加成能所生成的两种非对映体产物是什么?事实上其中一种占很大优势(85%)。试说明之。 答案: 解:

黄酮类化合物

黄酮类化合物1.分类

几种重要黄酮类化合物: 黄芩苷甘草素 O O 876 5 4 3 25'1'6' 2'4'3' 1 OH HO O O COOH OH OH OH O O 8 6 5 4 325' 1'6' 2'4'3'1 HO OH 7 牡荆素葛根素 O 7 6 54 325'1'6' 2'4'3'1 OH HO 8 O HO HO CH 2OH HO O O 6 5 425' 1' 6' 2' 3'1 3 OH HO O HO HO CH 2OH HO 78 4' 槲皮素(+)-儿茶素 O O 8 7 6 54 325'1'6' 2'4'3' 1 OH HO OH OH OH 2. UV 谱 1)黄酮类化合物在甲醇溶液中的UV 谱

识别诀窍: 1.单纯黄酮在带Ⅱ最大吸收波长为250nm,如红移将近20nm考虑 5位有羟基取代,一旦红移不超过10nm,则一定5位无羟基取代,如果稍稍红移,则6、7、8位可能有羟基取代; 2.带Ⅱ强,带Ⅰ弱(肩峰),考虑异黄酮、二氢黄酮和二氢黄酮 醇,二氢黄酮和二氢黄酮醇最大吸收波长比异黄酮大; 3.带Ⅱ弱(近乎肩峰),带Ⅰ强,考虑查耳酮和橙酮,橙酮最大 吸收波长比查耳酮大; 4.带Ⅱ带Ⅰ都有一定程度的峰(此时可能带Ⅱ弱,带Ⅰ强,但不同于 查耳酮和橙酮,不是肩峰),此时考虑黄酮和黄酮醇,黄酮醇带Ⅰ最大吸收波长比黄酮大(还是由于羟基的影响而红移);当带Ⅰ>350

nm,则多为黄酮醇或其苷类; 5.如果带Ⅰ最大吸收波长超过了400nm,极少可能为上述黄酮类, 有可能为橙酮类或花青素类; 6.3-OH甲基化或苷化使带Ⅰ(328—357nm)与黄酮的带Ⅰ波长范 围重叠,5-OH甲基化使带Ⅰ和带Ⅱ紫移5—15nm,4’-OH甲基化或苷化使带Ⅰ紫移3—10nm。 2)加入诊断试剂的黄酮类化合物在甲醇溶液中的UV谱 因黄酮及其苷类均可溶于甲醇(MeOH)和乙醇,而乙醇中含有的痕迹量水 分可以抑制诊断试剂三氯化铝(AlCl3)与黄酮上邻二酚羟基(OH)形成络合物,故多选用MeOH做紫外-可见光谱测定用的溶剂;然后在溶有样品的MeOH溶液中,分别加入五种诊断试剂:甲醇钠(NaOMe)、醋酸钠(NaOAc)、醋酸钠/硼酸(NaOAc/H3BO3)、三氯化铝(AlCl3)、三氯化铝/盐酸(AlCl3/HCl),将测得的各种谱图进行对比分析,解析该类化合物的结构。 1加入NaOMe后立即测定。 如带Ⅰ红移40—60 nm,且强度不降,示有4’-OH;如带Ⅰ红移50—60 nm,强度下降,示有3-OH而无4’-OH;如5 min后测得的图谱带Ⅰ、带Ⅱ均衰减,示有对碱敏感的取代图式,如3’,4’-、3,3’,4’-、5,6,7-、5,7,8-、3’,4’,5’-OH取代等。 原因:母核上的所有酚OH在NaOMe强碱性下均可解离,故可引起相应峰带大幅度红移。 2加入NaOAc(未熔融)。 带Ⅱ红移5—20 nm时,示有7-OH;如带Ⅰ在长波一侧有明显肩峰时,示有4’-OH,但无3-及/或7-OH。

糖苷类天然产物的提取与分离技术

糖苷类天然产物的提取与分离技术 摘要:多糖和糖苷参与体内细胞各种生命现象的调节,能激活免疫细胞,提高机体免疫功能,而对正常细胞无毒副作用。我国天然产物资源丰富,对糖苷类化合物的的研究有着很好的基础,本文主要综述了糖苷的提取与分离新技术。 关键词:糖苷,提取,分离 前言 糖苷广泛分布于植物的根、茎、叶、花和果实中。大多是带色晶体,能溶于水,一般味苦,有些有剧毒,水解时生成糖和其他物质。例如苦杏仁苷(amygdalin)水解的最终产物是葡萄糖、苯甲醛和氢氰酸。糖苷可用作药物。很多中药的有效成分就是糖苷,例如柴胡、桔梗、远志等。我国目前生产的天然植物药产品占国际市场的份量相对较低,这与我国提取、分离与鉴定技术落后、设备现代化程度低等研究条件不无关系。因此,要充分挖掘天然产物在药物研究领域的独特优势,实现中药现代化,其首要问题是解决天然产物中有效成分的提取与分离技术问题[1]。本文将就糖苷类天然产物最新提取与分离技术进行综述。 1 糖苷的提取 1.1 一般提取方法 各种苷类分子中由于苷元结构不同,所连接糖的数目种类也不一样,所以糖苷很难有统一的提取方法,因此其提取方法是有差别的,如用极性不同的溶剂循极性从小到大次序提取,则在每一提取部分,都可能有苷的存在。以下是最常用的提取方法。 1.2 两步萃取法 在菜籽粕脱毒液中硫代葡萄糖苷提取中,用70%乙醇液洗脱原料,过

滤后,旋转蒸发回收乙醇,得到母液。在母液中加入萃取剂,搅拌约1小时候,倒入分液漏斗中静置2小时。放出下层溶液,取上层溶液加入蒸馏水,搅拌1小时后,旋转蒸发,回收萃取剂,得到糖苷水溶液。用自配萃取剂萃取水溶液,再用硫酸钠溶液反萃取。反萃液旋转蒸发至干,即得混合糖苷。 现有的糖苷提取工艺需要先用醋酸铅、醋酸钡沉降蛋白[2,3],难过虑,并使大量糖苷流失,醋酸铅、醋酸钡使蛋白变性,逝去利用价值,不利于原料的充分利用。沉降蛋白后,用DEAE Sephadex A-225层析柱陈色素。然后用大量0.02mol/L的酸酸吡啶溶液洗脱[3],得近白色糖苷。醋酸吡啶溶液难回收,不能重复利用,从而大大增加生产成本。 而用两步萃取法获得的混合糖苷为白色,且没有经过蛋白沉降处理,经检验不含蛋白。可见该方法操作简单,设备要求低,所用试剂易于回收利用,降低了生产成本。 1.3 大孔树脂吸附法分离 大孔吸附树脂(Marcoporous adsorption resin)[4]是一种不含交换基团、具有大孔结构的高分子吸附剂,于20 世纪60 年代开始应用。 由于大孔吸附树脂具有表面积大、吸附量大、选择性好、吸附速度快、易于解吸附、物理化学稳定性高、再生处理简便、使用周期长和节省费用等诸多优点。它的吸附作用与表面吸附、表面电极或形成氢键等有关[5]。主要用来分离纯化糖苷类、黄酮类、生物碱类、酚酸类、色素类、氨基酸类等。 李庆勇等对大孔树脂分离刺五加中有效成分丁香苷的最佳工艺进行考察时发现,刺五加用水作溶剂进行超声提取、浓缩,按照丁香苷与干树脂质量比0.021 的量,向浓缩液中加入树脂,搅拌1 h,平衡1 h,离心,滤出树脂装柱,用含20%乙醇的二氯甲烷混合溶剂洗脱,将洗脱液冻干,此种方法获得丁香苷的提取工艺最好。 1.4 超声提取技术 超声提取技术[6]是将超声波产生的空化、振动、粉碎、搅拌等综合效应应用到天然产物成分提取工艺中,实现击破细胞壁,高效、快速提取细

氨基糖苷类抗生素(ZHT)

南华大学教案

第四十一章 氨基糖苷类抗生素 【药物发展史】 由于青霉素类对G-菌感染所致疾病无能为力,人们开始研发对这类细菌有效的药物。 1943年,Waksman 从灰链霉菌发酵液获得链霉素,是最早用于临床的氨基糖苷类抗生素。 1957年,日本梅泽滨夫从卡那霉素链霉菌中提取出卡那霉素,用于治疗革兰氏阴性菌感染,为解决卡那霉素耐药菌株的问题,人们在卡那霉素的基础上进行改造,开发了阿米卡星、妥布霉素等新药 1963年,人们从小单孢菌发酵液中分离了庆大霉素,这是一种氨基糖苷类物质的混合物,有较好的抗革兰氏阴性菌和相对低的毒性,应用比较广泛 1970年代,人们又从链霉菌中提取出了新霉素、核糖霉素等新的氨基糖苷类抗生素,这些新药虽然抗菌活性没有此前发现的药物高,但是耳毒性和肾毒性却大大降低,比较早的氨基糖苷类药物更加安全。 【药物分类】 天然氨基糖苷类 来自链霉菌属:链霉素、卡那霉素、新霉素、妥布霉素、大观霉素 来自小单胞菌属:庆大霉素、西索米星、小诺米星、福提米星 半合成氨基糖苷类:阿米卡星、奈替米星、异帕卡星、阿贝卡星 第一节 氨基糖苷类抗生素共性 一、来源化学相似 氨基苷类抗生素是由链霉菌和小单孢菌产生以及人工半合成的一类抗生素,均呈弱碱性。由二个或三个氨基糖分子和非糖基部分的苷元通过氧桥连接而成。呈碱性,在碱性环境中不易分离,抗菌作用增强,盐容易溶于水,性质稳定。 23 5R 1 4 氨基糖+ 氨基环醇(苷元) 二、体内过程相似 1. 吸收: 化学结构中有多个氨基或胍基的有机强碱,水溶性大而脂溶性小,口服难吸收,胃肠道

吸收<2%。口服后药物浓度低,仅用于肠道感染和肠道消毒;肌肉注射吸收完全、迅速,30~90min 达到峰浓度。为避免血药浓度过高而导致不良反应,一般不主张静脉给药 2.分布:除链霉素外,血浆蛋白结合率低(<10%); 主要分布于细胞外液(如胸、腹腔液及心包液等),而在组织细胞内药物浓度较低;在耳淋巴液(浓度与用药量成正比,其半衰期较血浆的长5~6倍)和肾皮质中浓度高(肾皮质药物浓度可超过血药浓度10~50倍,半衰期平均可达112~693h);可透过胎盘屏障,孕妇禁用;不易透过血脑屏障 3.代谢排泄:不被代谢,约90%的原形经肾小球滤过排泄,尿药浓度高,约为血浆峰浓度的25~100倍。即使停药,尿药浓度仍可维持有效水平数天,有利于尿路感染治疗,碱化尿液可增加抗菌效果。半衰期2-3小时 三、抗菌作用和机制相似 静止期快速杀菌药 抗菌谱 1.需氧G-菌:对G-杆菌有强大的杀灭作用;包括大肠杆菌、铜绿假单胞菌、变形杆菌属、克雷伯菌属、肠杆菌属、志贺菌属、枸橼酸菌属。对沙雷菌属、产碱杆菌属、布氏杆菌、沙门菌属、痢疾杆菌、嗜血杆菌也有抗菌作用;对G-球菌如淋球菌、脑膜炎球菌效果差 2.G+球菌:耐药金葡菌:有效;链球菌:无效 3.结核杆菌:链霉素、卡那霉素、阿米卡星 4.MRSA和MRSE:有效 5.肠球菌、厌氧菌:无效 抗菌特点 1.对需氧菌有效(氧依赖性的主动转运过程),对厌氧菌无效(天然耐药):细菌对氨基甙类抗生素的摄取是一个需氧耗能的主动转运过程,而厌氧环境此过程不能进行。 2.有浓度依赖性(峰浓度):杀菌效率与浓度相关 3.在碱性环境中抗菌作用增强 4.抗菌后效应(PAE):本类药对G-杆菌明显。体外试验一般是1~3h,体内PAE试验更长 5.首次接触效应(FEE) 抗菌机制:可能是细菌与抗生素接触短时间后,部分细菌被杀死,多数细菌受到损伤,虽未致死但生长受到细菌抑制。细菌需要恢复时间,才能恢复酶的功能,恢复蛋白质合成的功能。 1.抑制蛋白质合成的全过程(起始、延伸、终止)

萜类和甾族化合物

第二十一章萜类和甾族化合物 一、教学目的和要求 (1)掌握萜类化合物的结构特征及重要萜类化合物(樟脑、冰片、薄荷醇、法尼醇)。 (2)掌握甾族化合物的结构特征及重要甾族化合物(胆甾醇、可的松、胆甾酸)。 二、教学重点与难点 萜类及甾族化合物的结构特征 三、教学方法和教学学时 1、教学方法:以课堂讲授为主,结合必要的课堂讨论。教学手段以板书和多媒体相结合。 2、教学学时:10学时 四、教学内容 第一节萜类 一、萜的涵义和异戊二烯规律 二、萜的分类,命名 三、单萜 四、倍半萜 五、双萜 六、三萜类 七、四萜类 第二节甾体化合物 一、甾的基本结构和命名 二、甾体化合物的立体结构:甾体化合物碳架的构型,甾体化合物碳架的构象 三、甾醇类 四、胆酸 五、甾型激素 五、课后作业、思考题 习题:2、6。

萜类和甾族化合物是广泛存在于植物、昆虫及微生物等生物体中的一大类有机化合物。在生物体内有着重要的生理作用。萜类和甾族化合物虽是两类不同的化合物,但有着生源合成方面的密切关系,因而放在一章内进行讨论。 §21~1 萜 类 一、萜的涵义和异戊二烯规律 分子中含C 10以上,且组成为5的倍数的烃类化合物称为萜类。 因分子中含有双键,所以,萜类化合物又称为萜烯类化合物。 萜类化合物是广泛存在于植物和动物体内的天然有机化合物。如从植物中提取的香精油——薄荷油、松节油等,植物及动物体中的某些色素——胡箩卜素、虾红素等等。 研究发现,萜类分子在结构上的共同点是分子中的碳原子数都是5的整倍数。例如: 上述化合物的碳干骨骼可以看成是由若干个异戊二烯单位主要以头尾相接而 成的。 这种结构特点叫做萜类化合物的异戊二烯规律。异戊二烯规则是从对大量萜类 分子构造的测定中归纳出来的,所以能反过来知道测定萜类的分子构造。 月桂烯 对薄荷烯 (存在于柠檬,橘子中) 姜烯(存在于姜油中) (存在于月桂子油等中) 松节油( 蒎烯)异樟烯 (存在于松节油等中) (存在于姜油,冷杉等中) αC C C C CH 2CH 3 CH CH 2 异戊二烯 头尾异戊二烯单位

相关主题
文本预览
相关文档 最新文档