当前位置:文档之家› 动量守恒定律的典型应用(1)

动量守恒定律的典型应用(1)

动量守恒定律的典型应用(1)

动量、冲量及动量守恒定律

动量、冲量及动量守恒定律

动量和动量定理 一、动量 1.定义:运动物体的质量和速度的乘积叫动量;公式p=m v; 2.矢量性:方向与速度的方向相同.运算遵循平行四边形定则. 3.动量的变化量 (1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式). (2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量用带有正负号的数值表示,从而将矢量运算简化为代数运算(此时的正负号仅代表方向,不代表大小). 4.与动能的区别与联系: (1)区别:动量是矢量,动能是标量. (2)联系:动量和动能都是描述物体运动状态的物 理量,大小关系为E k=p2 2m或p=2mE k. 二、动量定理 1.冲量 (1)定义:力与力的作用时间的乘积.公式:I=

Ft.单位:牛顿·秒,符号:N·s. (2)矢量性:方向与力的方向相同. 2.动量定理 (1)内容:物体在一个运动过程中始末的动量变化量等于它在这个过程中所受力的冲量. (2)公式:m v′-m v=F(t′-t)或p′-p=I.3.动量定理的应用 碰撞时可产生冲击力,要增大这种冲击力就要设法减少冲击力的作用时间.要防止冲击力带来的危害,就要减小冲击力,设法延长其作用时间.(缓冲) 题组一对动量和冲量的理解 1.关于物体的动量,下列说法中正确的是() A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向 B.物体的动能不变,其动量一定不变 C.动量越大的物体,其速度一定越大 D.物体的动量越大,其惯性也越大 2.如图所示,在倾角α=37°的斜面上, 有一质量为5 kg的物体沿斜面滑下,物 体与斜面间的动摩擦因数μ=0.2,求物体下滑2

动量守恒定律典型例题解析

动量守恒定律·典型例题解析 【例1】 如图52-1所示,在光滑的水平面上,质量为m 1的小球以速度v 1追逐质量为m 2,速度为v 2的小球,追及并发生相碰后速度分别为v 1′和v 2′,将两个小球作为系统,试根据牛顿运动定律推导出动量守恒定律. 解析:在两球相互作用过程中,根据牛顿第二定律,对小球1有:F ==,对有′==.由牛顿第三定律得=m a m m F m a m F 1112222????v t v t 12 -F ′,所以F ·Δt =-F ′·Δt ,m 1Δv 1=-m 2Δv 2,即m 1( v 1′-v 1)=-m 2(v 2′-v 2),整理后得:m 1v 1+m 2v 2=m 1v 1′+ m 2v 2′,这表明以两小球为系统,系统所受的合外力为零时,系统的总动量守恒. 点拨:动量守恒定律和牛顿运动定律是一致的,当系统内受力情况不明,或相互作用力为变力时,用牛顿运动定律求解很繁杂,而动量定理只管发生相互作用前、后的状态,不必过问相互作用的细节,因而避免了直接运用牛顿运动定律解题的困难,使问题简化. 【例2】 把一支枪水平地固定在光滑水平面上的小车上,当枪发射出一颗子弹时,下列说法正确的是 [ ] A .枪和子弹组成的系统动量守恒 B .枪和车组成的系统动量守恒 C .子弹、枪、小车这三者组成的系统动量守恒 D .子弹的动量变化与枪和车的动量变化相同 解析:正确答案为C 点拨:在发射子弹时,子弹与枪之间,枪与车之间都存在相互作用力,所以将枪和子弹作为系统,或枪和车作为系统,系统所受的合外力均不为零,系统的动量不守恒,当将三者作为系统时,系统所受的合外力为零,系统的动量守恒,这时子弹的动量变化与枪和车的动量变化大小相等,方向相反.可见,系统的动量是否守恒,与系统的选取直接相关. 【例3】 如图52-2所示,设车厢的长度为l ,质量为M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢壁来

第2讲动量守恒定律及应用讲义

第2讲动量守恒定律及应用 M曲却自检晦勢硼映.黴卿识.对点练o 嗨津——见学生用书P094 知识梳理畫浸義材弄实基稍 微知识1动量守恒定律 1.内容:如果系统不受外力,或者所受外力的合力为零,这个系统的总动量保持—不变。 2.常用的四种表达形式 (1)p= p;即系统相互作用前的总动量p和相互作用后的总动量P’大小相等,方向 相同。 ⑵p= p‘—p= 0,即系统总动量的增量为零。 ⑶ 山=-Ap2,即相互作用的系统内的两部分物体,其中一部分动量的增加量等于另一部分动量的减少量。 (4)m i v i + m2v2= m皿;+ m?v ;,即相互作用前后系统内各物体的动量都在同一直线 上时,作用前总动量与作用后总动量相等。 3.常见的几种守恒形式及成立条件 (1)理想守恒:系统不受外力或所受外力的合力为零。 (2)近似守恒:系统所受外力虽不为零,但内力远大于外力。 (3)分动量守恒:系统所受外力虽不为零,但在某方向上合力为零,系统在该方向上动量守恒。 微知识2碰撞 1.碰撞现象:两个或两个以上的物体在相遇的极短时间内产生非常大的相互作用的过程。 2.碰撞特征 (1)作用时间短。 (2)作用力变化快。 (3)内力远大于外力。 (4)满足动量守恒。

3.碰撞的分类及特点 (1)弹性碰撞:动量守恒,机械能守恒。 (2)非弹性碰撞:动量守恒,机械能不守恒。 (3)完全非弹性碰撞:动量守恒,机械能损失最多。 微知识3爆炸现象 爆炸过程中内力远大于外力,爆炸的各部分组成的系统总动量守恒微知识4反冲运动 1.物体的不同部分在内力作用下向相反方向运动的现象。 2.反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理。 基础诊断思维辨析对点微练 一、思维辨析(判断正误,正确的画“/”,错误的画“X”。) 1 .动量守恒定律中的速度是相对于同一参考系的速度。(“) 2.质量相等的两个物体发生碰撞时,一定交换速度。(X ) 3.系统的总动量不变是指系统总动量的大小保持不变。(X ) 4.系统的动量守恒时,机械能也一定守恒。(X ) 二、对点微练 1.(动量守恒条件)(多选)如图所示,在光滑水平面上有A、B两个木块,A、B之间用一轻弹簧连接,A 靠在墙壁上,用力F向左推B使两木块之间的弹簧压缩并处于静止状态。若突然撤去力 0 A B F,则下列说法中正确的是() ^777777777777777777777777777777. A.木块A离开墙壁前,A、B和弹簧组成的系统动量守恒,机械能也守恒 B.木块A离开墙壁前,A、B和弹簧组成的系统动量不守恒,但机械能守恒 C .木块A离开墙壁后,A、B和弹簧组成的系统动量守恒,机械能也守恒

动量守恒定律

动量守恒定律 一.动量和冲量 1.动量:物体的质量和速度的乘积叫做动量:p =mv ⑴动量是描述物体运动状态的一个状态量,它与时刻相对应。 ⑵动量是矢量,它的方向和速度的方向相同。 2.冲量:力和力的作用时间的乘积叫做冲量:I =Ft ⑴冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。 ⑵冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。 ⑶高中阶段只要求会用I=Ft 计算恒力的冲量。对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。 ⑷要注意的是:冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。 例1. 质量为m 的小球由高为H 的光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大 - 解:力的作用时间都是g H g H t 2sin 1 sin 22 α α== ,力的大小依次是mg 、 mg cos α和mg sin α,所以它们的冲量依次是: gH m I gH m I gH m I N G 2,tan 2,sin 2=== 合α α 特别要注意,该过程中弹力虽然不做功,但对物体有冲量。 二、动量定理 1.动量定理:物体所受合外力的冲量等于物体的动量变化。既I =Δp ⑴动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。 ⑵动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。 ⑶现代物理学把力定义为物体动量的变化率:t P F ??=(牛顿第二定律的动量形式)。 ⑷动量定理的表达式是矢量式。在一维的情况下,各个矢量必须以同一个规定的方向为正。 ^ 三.动量守恒定律 1.动量守恒定律的条件 ⑴系统不受外力或者所受外力之和为零; ⑵系统受外力,但外力远小于内力,可以忽略不计; ⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。 ⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。 2.动量守恒定律的表达形式 (1) 即p1 p2=p1/ p2/, (2)Δp1 Δp2=0,Δp1= -Δp2 3.运用动量守恒定律的解题步骤 1.明确研究对象,一般是两个或两个以上物体组成的系统; . 2.分析系统相互作用时的受力情况,判定系统动量是否守恒; 3.选定正方向,确定相互作用前后两状态系统的动量; 4.在同一地面参考系中建立动量守恒方程,并求解.

动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型) 例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为 4kg,地面光滑,则车后来的速度为多少? 例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少? 例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地 点的距离。(g取10m/s2) 例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。设 小车足够长,求: (1)木块和小车相对静止时小车的速度。 (2)从木块滑上小车到它们处于相对静止所经历的时间。 (3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。 例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞? 答案:1.

h b 分析:以物体和车做为研究对象,受力情况如图所示。 在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。因此地面给车的支持力远大于车与重物的重力之和。 系统所受合外力不为零,系统总动量不守恒。但在水平方向系统不受外力作用,所以系统水平方向动量守恒。以车的运动方向为正方向,由动量守恒定律可得: 车 重物初:v 0=5m/s 0末:v v ?Mv 0=(M+m)v ?s m v m N M v /454 14 0=?+=+= 即为所求。 2、分析:以滑块和小车为研究对象,系统所受合外力为零,系统总动量守恒。 以滑块的运动方向为正方向,由动量守恒定律可得 滑块 小车初:v 0=4m/s 0末:v v ?mv 0=(M+m)v ?s m v m M M v /143 11 0=?+=+= 再以滑块为研究对象,其受力情况如图所示,由动量定理可得 ΣF=-ft=mv-mv 0 ?s g v v t 5.110 2.0) 41(0=?--=-=μf=μmg 即为所求。 3、分析:手榴弹在高空飞行炸裂成两块,以其为研究对象,系统合外力不为零,总动量不守恒。但手榴弹在爆炸时对两小块的作用力远大于自身的重力,且水平方向不受外力,系统水平方向动量守恒,以初速度方向为正。 由已知条件:m 1:m 2=3:2 m 1 m 2 初:v 0=10m/s v 0=10m/s

§2 动量守恒定律及其应用

§2 动量守恒定律及其应用 教学目标: 1.掌握动量守恒定律的内容及使用条件,知道应用动量守恒定律解决问题时应注意的问题. 2.掌握应用动量守恒定律解决问题的一般步骤. 3.会应用动量定恒定律分析、解决碰撞、爆炸等物体相互作用的问题. 教学重点: 动量守恒定律的正确应用;熟练掌握应用动量守恒定律解决有关力学问题的正确步骤. 教学难点: 应用动量守恒定律时守恒条件的判断,包括动量守恒定律的“五性”:①条件性;②整体性;③矢量性;④相对性;⑤同时性. 教学方法: 1.学生通过阅读、对比、讨论,总结出动量守恒定律的解题步骤. 2.学生通过实例分析,结合碰撞、爆炸等问题的特点,明确动量守恒定律的矢量性、同时性和相对性. 3.讲练结合,计算机辅助教学 教学过程 一、动量守恒定律 1.动量守恒定律的内容 一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。 即:221 12211v m v m v m v m '+'=+ 2.动量守恒定律成立的条件 ⑴系统不受外力或者所受外力之和为零; ⑵系统受外力,但外力远小于内力,可以忽略不计; ⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。 ⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。 3.动量守恒定律的表达形式 (1)221 12211v m v m v m v m '+'=+,即p 1+p 2=p 1/+p 2/, (2)Δp 1+Δp 2=0,Δp 1= -Δp 2 和 1221v v m m ??-= 4.动量守恒定律的重要意义 从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。(另一个最基本的普适原理就是能量守恒定律。)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。但云室照片显示,两者径迹不在一条直线上。为解释这一反常现象,1930年泡利提出了中微子假说。由于中微子既不带电又几乎无质量,在实验中极难测量,直到1956年人们才首次证明了中

1.1-2物体地碰撞动量动量守恒定律(1)

学案1 物体的碰撞学案2 动量动量守恒定律(1) [目标定位] 1.探究物体弹性碰撞的一些特点,知道弹性碰撞和非弹性碰撞.2.理解动量、冲量的概念,知道动量的变化量也是矢量.3.理解动量定理的确切含义,会用其来解释和计算碰撞、缓冲等现象. 图1 一、弹性碰撞和非弹性碰撞

[问题设计] 演示实验:小明用如图1所示装置做实验. (1)如图1所示,让橡皮球A 与另一静止的橡皮球B 相碰,两橡皮球的质量相等,会看到什么现象?两橡皮球碰撞过程中总动能相等吗? (2)小明在A 、B 两球的表面涂上等质量的橡皮泥,再重复实验(1),可以看到什么现象? 若两橡皮球粘在一起上升的高度为橡皮球A 摆下时的高度的14 ,则碰撞过程中总动能相等吗? [要点提炼] 1.碰撞:碰撞就是两个或两个以上的物体在相遇的 时间产生非常大的相互作用的过程.其最主要特点是:相互作用 ,作用力 和作用力峰值 等. 2.弹性碰撞:两个物体碰撞后形变能够完全恢复,碰撞后没有动能转化为其他形式的能量,则碰撞前后两物体构成的系统的动能 .这种碰撞也称为完全弹性碰撞. 3.非弹性碰撞:两个物体碰撞后形变不能完全恢复,该过程有动能转化为其他形式的能量,总动能 .非弹性碰撞的特例:两物体碰撞后粘在一起以共同的速度运动,该碰撞称为完全非弹性碰撞,碰撞过程能量损失最多. 二、动量及其变化 [问题设计] 假定一个质量为m 的物体,初速度为v ,在合力F (恒力)的作用下,经过一段时间Δt 后,速度变为v ′.求这一过程中m 、v 、v ′、F 、Δt 的关系. [要点提炼] 1.冲量(1)定义式:I = 冲量是矢量,方向与力 的方向相同. (2)冲量是 (填“过程”或“状态”)量,反映的是力在一段时间的积累效果.

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

高中物理动量守恒定律及其应用

动量守恒定律及其应用 教学目标: 1.掌握动量守恒定律的内容及使用条件,知道应用动量守恒定律解决问题时应注意的问题. 2.掌握应用动量守恒定律解决问题的一般步骤. 3.会应用动量定恒定律分析、解决碰撞、爆炸等物体相互作用的问题. 教学重点: 动量守恒定律的正确应用;熟练掌握应用动量守恒定律解决有关力学问题的正确步骤. 教学难点: 应用动量守恒定律时守恒条件的判断,包括动量守恒定律的“五性”:①条件性;②整体性;③矢量性;④相对性;⑤同时性. 教学方法: 1.学生通过阅读、对比、讨论,总结出动量守恒定律的解题步骤. 2.学生通过实例分析,结合碰撞、爆炸等问题的特点,明确动量守恒定律的矢量性、同时性和相对性. 3.讲练结合,计算机辅助教学 教学过程 一、动量守恒定律 1.动量守恒定律的内容 一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。 即:221 12211v m v m v m v m '+'=+ 2.动量守恒定律成立的条件 (1)系统不受外力或者所受外力之和为零; (2)系统受外力,但外力远小于内力,可以忽略不计; (3)系统在某一个方向上所受的合外力为零,则该方向上动量守恒。 (4)全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。 3.动量守恒定律的表达形式

(1)221 12211v m v m v m v m '+'=+,即p 1+p 2=p 1/+p 2/, (2)Δp 1+Δp 2=0,Δp 1= -Δp 2 和1 221v v m m ??-= 4.动量守恒定律的重要意义 从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。(另一个最基本的普适原理就是能量守恒定律。)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。但云室照片显示,两者径迹不在一条直线上。为解释这一反常现象,1930年泡利提出了中微子假说。由于中微子既不带电又几乎无质量,在实验中极难测量,直到1956年人们才首次证明了中微子的存在。(2000年高考综合题23 ②就是根据这一历史事实设计的)。又如人们发现,两个运动着的带电粒子在电磁相互作用下动量似乎也是不守恒的。这时物理学家把动量的概念推广到了电磁场,把电磁场的动量也考虑进去,总动量就又守恒了。 5.应用动量守恒定律解决问题的基本思路和一般方法 (1)分析题意,明确研究对象.在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的。 (2)要对各阶段所选系统内的物体进行受力分析,弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力.在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒。 (3)明确所研究的相互作用过程,确定过程的始、末状态,即系统内各个物体的初 动量和末动量的量值或表达式。 注意:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。 (4)确定好正方向建立动量守恒方程求解。 二、动量守恒定律的应用 1.碰撞 两个物体在极短时间内发生相互作用,这种情况称为碰撞。由于作用时间极短,一般都满足内力远大于外力,所以可以认 为系统的动量守恒。碰撞又分弹性碰撞、非弹性 碰撞、完全非弹性碰撞三种。 仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B 开始加速;到Ⅱ位置A 、B 速度刚

动量守恒定律1 动量 动量定理(1)理解与应用2018学案

动量守恒定律专题1 动量动量定理 题型一——对基本概念的理解 例题1.关于冲量,下列说法中正确的是() A.冲量是物体动量变化的原因 B.作用在静止的物体上力的冲量一定为零 C.动量越大的物体受到的冲量越大 D.冲量的方向就是物体受力的方向 例题2.如图示,AB、AC、AD是竖直平面内三根固定的光滑细杆,A、B、C、D四点位于同一圆周上,A点位于最高点,D点位于圆周的最低点,每根杆上都套着一个质量相同的小滑环(图中没画出),三个滑环分别沿不同的细杆从A点由静止开始滑下,在他们分别沿细杆下滑的整个过程中,下列说法正确的是:() A.弹力对它们的冲量相同, B.重力对它们的冲量相同, C.合外力对它们的冲量相同 D.以上三种说法均错误 例题3.如图所示,一个质量是0.2 kg的钢球,以2 m/s的速度斜射到坚硬的大理石板上, 入射的角度是45°,碰撞后被斜着弹出,弹出的角度也是45°,速度仍为2 m/s.你能不能用作图法求出钢球动量变化的大小和方向? 例题4.在光滑的水平面上有一小滑块,开始时滑块静止,若给滑块加一水平恒力F1,持续一段时间后立刻换成与F1相反方向的水平恒力F2.当恒力F2与恒力F1持续时间相同时,滑块恰好回到初始位置,且具有动能E k,在上述过程中,F1对滑块做功为W1,冲量大小为I1;F2对滑块做功为W2,冲量大小为I2.则( ) A.3I1=I2 B.4I1=I2 C.W1=0.25E k,W2=0.75E k D.W1=0.20E k,W2=0.80E k 练习1-1:关于冲量和动量,下列说法中错误的是() A.冲量是反映力和作用时间积累效果的物理量 B.冲量是描述运动状态的物理量 C.冲量是物体动量变化的原因 D.冲量的方向与动量的方向一致 练习1-2:在动量定理F·t = △P中,F指的是() A.物体所受的弹力 B.物体所受的合外力 C.物体所受的除重力和弹力以外的其他力 D.物体所受的除重力以外的其他力的合力 练习1-3:甲、乙两个质量相同的物体,以相同的初速度分别在粗糙程度不同的水平面上运动,乙物体先停下来,甲物体又经较长时间停下来,下面叙述中正确的是() A、甲物体受到的冲量大于乙物体受到的冲量 B、两个物体受到的冲量大小相等 C、乙物体受到的冲量大于甲物体受到的冲量 D、无法判断 练习1-4:物体在恒力作用下作直线运动,在t1时间内物体的速度由零增大到v,F对物体做功W1,给物体冲量I1.若在t2时间内物体的速度由v增大到2v,F对物体做功W2,给物体冲量I2,则() A.W1=W2,I1=I2 B.W1=W2,I1>I2 C.W1<W2,I1=I2 D.W1>W2,I1=I2 练习1-5:与水平方向成角的光滑斜面的底端静止一个质量为m的物体,从某时刻开始有一个沿斜面方 向向上的恒力F作用在物体上,使物体沿斜面向上滑去,经过一段时间t撤去这个力,又经时间2t物体返回到斜面的底部,则() A.F与的比应该为3:7 B. F与的比应该为9:5

高中物理动量守恒定律题20套(带答案)

高中物理动量守恒定律题20套(带答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以0 2 v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ; (4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能. 【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)20 1532 mv E ?= 【解析】 【详解】 (1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有: mv 0=m 2 v +2mv B 解得v B = 4 v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量 2 220001 11()2()22224 v v mgL mv m m μ?=-- 解得20 516v gL μ= (3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有: 2 mv +mv B =2mv A 、C 系统机械能守恒: 22200111 ()()222242 v v mgR m m mv +-?= 解得2 64v R g = (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒

高中物理-动量守恒定律及其应用(实验)教案

高中物理-动量守恒定律及其应用(实验)教案 【学习目标】 1.知道动量与冲量的概念,理解动量定理与动量守恒定律. 2.会用动量定理与动量守恒定律解决实际应用问题. 3.明确探究碰撞中的不变量的基本思路. 【要点导学】 1.冲量与动量的概念理解. 2.运用动量定理研究对象与过程的选择. 3.动量守恒定律的适用条件、表达式及解题步骤. 4.弹性碰撞和非弹性碰撞 (1)弹性碰撞:___________________________________ (2)非弹性碰撞:____________________________________ (3)在光滑水平面上,质量为m 1的小球以速度v 1与质量为m 2的静止小球发生弹性正碰,根据动量 守恒和机械能守恒,碰后两个小球的速度分别为: v 1’=_____________v 2’=_____________。 【典型例题】 类型一 冲量与动量定理 【例1】质量为m 的小球,从沙坑上方自由下落,经过时间1t 到达沙坑表面,又经过时间2t 停在沙坑里。 求: (1)沙对小球的平均阻力F ; (2)小球在沙坑里下落过程所受的总冲量I 的大小. 类型二 动量守恒定律及守恒条件判断 【例2】 把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、 弹、 车,下列说法正确的是( ) A .枪和弹组成的系统,动量守恒 B .枪和车组成的系统,动量守恒 C .三者组成的系统,因为枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可以忽略不计,故系 统动量近似守恒 D .三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合 力为零 【变式训练1】如图A 、B 两物体的质量之比m A ∶m B =3∶2,原来静止在平板小车C 上,A 、B 间有 一根被压缩了的弹簧,A 、B 与平板车上表面间的滚动摩擦系数相同,地面光滑,当弹簧突然释放后, 则( ) A .A 、B 组成的系统动量守恒 B .A 、B 、 C 组成的系统动量守恒 C .小车向左运动 D .小车向右运动 类型三 动量守恒与能量守恒的综合应用 【例3】在静止的湖面上有一质量为M=100kg 的小船,船上站一个质量为m=50kg 的人。船长6米, A B C

动量守恒定律及其应用习题(附答案)

动量守恒定律及其应用习题(附答案) 1. 如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动.两球质量关系为m B =2m A ,规定向右为正方向,A 、B 两球的动量均为6kg·m/s,运动中两球发生碰撞,碰撞后A 球的动量增量为-4kg·m/s,则(A) A.左方是A 球,碰撞后A 、B 两球速度大小之比为2:5 B.左方是A 球,碰撞后A 、B 两球速度大小之比为1:10 C.右方是A 球,碰撞后A 、B 两球速度大小之比为2:5 D.右方是A 球,碰撞后A 、B 两球速度大小之比为1:10 2. 有一则“守株待兔”的古代寓言,设兔子的头部受到大小等于自身重量的打击时,即可致死.假若兔子与树桩作用时间大约为s 2.0,则若要被撞死,兔子奔跑的速度至少为()/102s m g = ( C ) A.s m /1 B.s m /5.1 C.s m /2 D.s m /5.2 3. 向空中抛出一手榴弹,不计空气阻力,当手榴弹的速度恰好是水平方向时,炸裂成a 、b 两块,若质量较大的a 块速度方向仍沿原来的方向,则( CD ) A.质量较小的b 块的速度方向一定与原速度方向相反 B.从炸裂到落地这段时间内,a 飞行的水平距离一定比b 的大 C.a 、b 两块一定同时落到水平地面a D.在炸裂过程中,a 、b 两块受到的爆炸力的冲量大小一定相等 4. 两木块A 、B 质量之比为2∶1,在水平地面上滑行时与地面间的动摩擦因数相同,则A 、B 在开始滑行到停止运动的过程中,滑行的时间之比和距离之比( AD ) A.初动能相同时分别为1∶2和1∶2 B.初动能相同时分别为1∶2和1∶4 C.初动量相同时分别为1∶2和1∶2 D.初动量相同时分别为1∶2和1∶4 5. 在我们日常的体育课当中,体育老师讲解篮球的接触技巧时,经常这样模拟:当接迎面飞来的篮球,手接触到球以后,两臂随球后引至胸前把球接住.这样做的目的是( D ) A.减小篮球的冲量 B.减小篮球的动量变化 C.增大篮球的动量变化 D.减小篮球的动量变化率 6.在光滑的水平面上,有A 、B 两个小球向右沿同一直线运动,取向右为正方向,两球的动量分别为m/s kg 5A ?=P ,m/s kg 7B ?=P ,如图所示.若两球发生正碰,则碰后两球的动量增量A P ?、B P ?可能是( B ) A.m/s kg 3A ?=?P ,m/s kg 3B ?=?P B.m/s kg 3A ?-=?P ,m/s kg 3B ?=?P C.m/s kg 3A ?=?P ,m/s kg 3B ?-=?P D.m/s kg 10A ?-=?P ,m/s kg 10B ?=?P 7. 材料不同的两个长方体,上下粘结在一起组成一个滑块,静止在光滑的水平面上.质量为m 的子弹以速度0v 水平射入滑块,若射击上层,子弹的深度为d 1;若射击下层,子弹的深度为d 2,如图所示.已知d 1>d 2.这两种情况相比较( B ) A.子弹射入上层过程中,子弹对滑块做功较多 B.子弹射人上层过程中,滑块通过的距离较大 C.子弹射入下层过程中,滑块受到的冲量较大 D.子弹射入下层过程中,滑块的加速度较小 8. 如图所示,质量相同的两个小物体A 、B 处于同一高度。现使A 沿固定的光滑斜面无初速地自由下滑,而使B 无初速地自由下落,最后A 、B 都运动到同一水平地面上。不计空气阻力。则在上述过程中,A 、B 两物体( BD ) A.所受重力的冲量相同 B.所受重力做的功相同 C.所受合力的冲量相同 D.所受合力做的功相同

动量守恒定律的推导

动量守恒定律的推导: 设在光滑水平面上做匀速运动的两个小球A和B,质量分别是m1和m2,沿着同一直线向 相同的方向运动,速度分别是v1和v2(v1>v2),经过一段时间后,两个发生碰撞,碰撞过 程相互作用时间为t,碰撞后的速度分别是v1’和v2’ 1)A、B两个小球在碰撞过程中各自所受的平均作用力 F1与F2有什么关系? (2)写出碰撞过程中小球各自所受到的外力的冲量? 每个小球的动量的变化?(推导过程略) 动量守恒定律玉中物理组复习回顾1、动量定理:合外力对物体的冲量等于其动量变化量。2、动量定理的表达式:3、动量定理的表达式:动量守恒定律—定律推导动量守恒定律—定律推导设在光滑水平面上做匀速运动的两个小球A和B,质量分别是m1和m2,沿着同一直线向相同的方向运动,速度分别是v1和v2(v1>v2),经过一段时间后,两个发生碰撞,碰撞过程相互作用时间为t,碰撞后的速度分别是V1/和v2/。(1)AB两个小球在碰撞过程中所受的平均作用力F1与F2有什么关系?(2)在碰撞前后两个小球的总动量分别是多少?(3)写出碰撞过程中小球各自所受到的外力的冲量和每个小球的动量的变化?动量守恒定律—定律推导答:两个小球在碰撞过程中所受到平均作用力F1与F2是相互作用力,大小相等,方向相反,作用在一条直线上,作用在两个物体上。(1)AB两个小球在碰撞过程中所受的平均作用力F1与F2有什么关系?动量守恒定律—定律推导(2)在碰撞前后两个小球的总动量分别是多少?动量守恒定律—定律推导(3)设碰撞过程中A球和B球所受的平均作用力分别是F1与F2和,力的作用时间是t.根据动量定

系统动量守恒的条件:系统不受外力,或者所受外力之和为0; 外力不为0,但是内力远远大于外力; 某方向上外力之和为零,在这个方向上动量守恒。 适用于正碰,也适用于斜碰; 适用于碰撞,也适用于其他形式的相互作用; 适用于两物系统,也适用于多物系统; 适用于宏观高速,也适用于微观低速。

物理动量守恒定律题20套(带答案)

物理动量守恒定律题20套(带答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上) 【答案】25m/s 【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒: ()20120M v M m M v +=++共,解得5m /s v =共 以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得 25m /s v = 考点:考查了动量守恒定律的应用 【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解 2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧 被压缩瞬间 的速度 ,木块 、 的质量均为 .求: ?子弹射入木块 时的速度; ?弹簧被压缩到最短时弹簧的弹性势能. 【答案】22()(2) Mm a M m M m ++b 【解析】 试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A 正确;爱因斯坦通过光电效应现象,提出了光子说,B 正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D 错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E 错.(2)1以子弹与木块A 组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得: 解得:

动量守恒定律及其应用·典型例题精析

动量守恒定律及其应用·典型例题精析 [例题1]平静的湖面上浮着一只长l=6m,质量为550 kg的船,船头上站着一质量为m=50 kg的人,开始时,人和船均处于静止.若船行进时阻力很小,问当人从船头走到船尾时,船将行进多远? [思路点拨]以人和船组成的系统为研究对象.因船行进时阻力很小,船及人所受重力与水对船的浮力平衡,可以认为人在船上行走时系统动量守恒,开始时人和船都停止,系统总动量为零,当人在船上走动时,无论人的速度如何,系统的总动量都保持为零不变. [解题过程]取人运动方向为正方向,设人对岸的速度为v,船对岸的速度为V,其方向与v相反,由动量守恒定律有 0=mv+(-MV). 解得两速度大小之比为

此结果对于人在船上行走过程的任一瞬时都成立. 取人在船上行走时任一极短时间Δt i,在此时间内人和船都可视为匀速运动,此时间内人和船相对地面移动的距离分别为ΔS mi=v iΔt i和ΔSM i=V iΔt i,由此有 这样人从船头走到船尾时,人和船相对地面移动的总距离分别为 S m=∑ΔS mi,S M=∑ΔS Mi. 由图中几何关系可知S m+S M=L.这样,人从船头走到船尾时,船行进的距离为 代入数据有 S M=0.5 m.

[小结]本题表明,在动量守恒条件得到满足的过程中,系统任一瞬时的总动量保持不变. [例题2]如图7-9示,物块A、B质量分别为m A、m B,用细绳连接,在水平恒力F的作用下A、B一起沿水平面做匀速直线运动,速度为v,如运动过程中,烧断细绳,仍保持力F大小方向不变,则当物块B停下来时,物块A的速度为多大? [思路点拨]以A和B组成的系统作为研究对象.绳子烧断前,A、B 一起做匀速直线运动,故系统所受外力和为零,水平方向系统所受外力计有拉力F,物块A受到地面的摩擦力f A,物体B受到地面的摩擦力f B,且F=f A +f B.绳烧断后,直到B停止运动前F与f A、f B均保持不变,故在此过程中系统所受外力和仍为零,系统总动量保持不变.所以此题可用动量守恒定律求解. [解题过程]取初速v的方向为正方向,设绳断后A、B的速度大小分别为v′A、v′B,由动量守恒定律有 (m A+m B)v=m A v′A+m B v′B.

1.3 动量守恒定律

1.3动量守恒定律 [学习目标] 1.理解系统、内力和外力的概念.2.知道动量守恒定律的内容及表达式,理解其守恒的条件.3.了解动量守恒定律的普遍意义. [导学探究] 如图所示,光滑水平桌面上的两个小球,质量分别为m1和m2,沿着同一直线向相同的方向做匀速运动,速度分别是v1和v2,v2>v1.当第二个小球追上第一个小球时两球发生碰撞,碰撞后两球的速度分别为v1′和v2′.试用动量定理和牛顿第三定律推导两球碰前总动量m1v1+m2v2与碰后总动量m1v1′+m2v2′的关系. [知识梳理] 动量守恒定律 1.系统、内力和外力 (1)系统:相互作用的两个或多个物体组成一个力学系统. (2)内力:系统中物体间的相互作用力. (3)外力:系统外部的物体对系统内物体的作用力. 2.动量守恒定律 (1)内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变. (2)表达式:m1v1+m2v2=m1v1′+m2v2′(作用前后总动量相等). (3)适用条件:系统不受外力或者所受外力的矢量和为0. [课堂练习]判断下列说法的正误. (1)一个系统初、末态动量大小相等,即动量守恒.() (2)两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒.() (3)若系统内存在摩擦力,则动量不可能守恒.() (4)只要系统所受到的合力的冲量为零,动量就守恒.() (5)系统动量守恒也就是系统的动量变化量为零.() 例1:在列车编组站里,一辆m1为1.8×104kg的货车在平直轨道上以v1=2m/s的速度运动,碰上一辆m2=2.2×104kg的静止的货车,它们碰撞后一起继续运动。求货车碰撞后运动的速度。 例2:一枚在空中飞行的火箭,质量为m,在某点的速度为v,方向水平,火箭在该点突然炸裂成两块,其中质量为m1的一块沿着与v相反的方向飞去,速度为v1。求炸裂后另一块的速度v2。 [知识深化]

16.2 动量守恒定律(一)(二)正式版

16.2 动量守恒定律(一) ★新课标要求 (一)知识与技能 理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围 (二)过程与方法 在理解动量守恒定律的确切含义的基础上正确区分内力和外力 (三)情感、态度与价值观 培养逻辑思维能力,会应用动量守恒定律分析计算有关问题 ★教学重点 动量的概念和动量守恒定律 ★教学难点 动量的变化和动量守恒的条件. ★教学方法 教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 上节课的探究使我们看到,不论哪一种形式的碰撞,碰撞前后mυ的矢量和保持不变,因此mυ很可能具有特别的物理意义。 (二)进行新课 1.动量(momentum)及其变化 (1)动量的定义:物体的质量与速度的乘积,称为(物体的)动量。记为p=mv. 单位:kg·m/s 读作“千克米每秒”。 理解要点: ①状态量:动量包含了“参与运动的物质”与“运动速度”两方面的信息,反映了由这两方面共同决定的物体的运动状态,具有瞬时性。 师:大家知道,速度也是个状态量,但它是个运动学概念,只反映运动的快慢和方向,而运动,归根结底是物质的运动,没有了物质便没有运动.显然地,动量包含了“参与运动的物质”和“运动速度”两方面的信息,更能从本质上揭示物体的运动状态,是一个动力学概念. ②矢量性:动量的方向与速度方向一致。

师:综上所述:我们用动量来描述运动物体所能产生的机械效果强弱以及这个效果发生的方向,动量的大小等于质量和速度的乘积,动量的方向与速度方向一致。 (2)动量的变化量: 定义:若运动物体在某一过程的始、末动量分别为p和p′,则称:△p= p′-p为物体在该过程中的动量变化。 强调指出:动量变化△p是矢量。方向与速度变化量△v相同。 一维情况下:Δp=mΔυ= mυ2- mΔυ1矢量差 【例1(投影)】 一个质量是0.1kg的钢球,以6m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少? 【学生讨论,自己完成。老师重点引导学生分析题意,分析物理情景,规范答题过程,详细过程见教材,解答略】 2.系统内力和外力 【学生阅读讨论,什么是系统?什么是内力和外力?】 (1)系统:相互作用的物体组成系统。 (2)内力:系统内物体相互间的作用力 (3)外力:外物对系统内物体的作用力 〖教师对上述概念给予足够的解释,引发学生思考和讨论,加强理解〗 分析上节课两球碰撞得出的结论的条件: 两球碰撞时除了它们相互间的作用力(系统的内力)外,还受到各自的重力和支持力的作用,使它们彼此平衡。气垫导轨与两滑块间的摩擦可以不计,所以说m1和m2系统不受外力,或说它们所受的合外力为零。 3.动量守恒定律(law of conservation of momentum) (1)内容:一个系统不受外力或者所受外力的和为零,这个系统的总动量保持不变。这个结论叫做动量守恒定律。 公式:m1υ1+ m2υ2= m1υ1′+ m2υ2′ (2)注意点: ①研究对象:几个相互作用的物体组成的系统(如:碰撞)。 ②矢量性:以上表达式是矢量表达式,列式前应先规定正方向; ③同一性(即所用速度都是相对同一参考系、同一时刻而言的) ④条件:系统不受外力,或受合外力为0。要正确区分内力和外力;当F内>>F外时,系统动量可视为守恒; 思考与讨论:

相关主题
文本预览
相关文档 最新文档