当前位置:文档之家› 快速气相色谱 飞行时间质谱联用仪

快速气相色谱 飞行时间质谱联用仪

快速气相色谱 飞行时间质谱联用仪
快速气相色谱 飞行时间质谱联用仪

iTOFMS-1G/2G宣传稿

全二维气相色谱-飞行时间质谱联用仪GCxGC –TOFMS(iTOFMS-2G)

快速气相色谱-飞行时间质谱联用仪

Fast GC-TOFMS(iTOFMS-1G)

厦门质谱仪器仪表有限公司

2014年5月1日

一、介绍

厦门质谱仪器仪表有限公司(简称厦门质谱公司)传承了厦门大学三十余年质谱技术的研究经验与成果,曾研发成功国内首台高分辨率电喷雾离子源飞行时间质谱仪,是国内一家专注于飞行时间质谱器技术研发与生产的新兴企业。

iTOFMS-G系列是中国首款具有完全自主产权的商品化小型台式气相色谱-飞行时间质谱联用仪。它具有高分辨、高灵敏度和高采集速度的优异功能,实现了与全二维气相色谱/快速气相色谱的完美对接。iTOFMS-G的诞生代表了国产质谱进军通用型高端质谱仪器迈出了重要一步。

●全二维气相色谱-飞行时间质谱联用技术(Comprehensive Two-dimensional Gas

Chromatography-Time of Flight Mass Spectrometry, GCxGC TOFMS)是近十年以来,国际上发展最迅猛的色质联用技术之一,是色谱-质谱联用技术发展的一个最新趋势。相比于常规气质联用具有高通量、高分离度和高灵敏度等显著优势,是解决复杂体系中全组分和痕量组分分析的最佳方案,逐渐成为石油化工、香精香料、烟草酒业、食品安全、环境监测和中药鉴定等领域的必备分析仪器。

图1 GCxGC-TOFMS(iTOFMS-2G)的实物外观图

●快速气相色谱-飞行时间质谱联用技术(Fast Gas Chromatography-Time of Flight

Mass Spectrometry, Fast GC-TOFMS)是当今最具潜力的气质联用技术之一,并已经得到了广泛的实践证明。与常规气质联用相比,能够提高3~6倍的分析速度(在保证足够的分辨率的条件下,只需十分钟就能完成绝大数中等或中等高度复杂混合物的分离与分析)。不仅极大地提高了工作效率,节约了时间成本,而且对色谱柱的要求低,显著减小了对仪器的污染,降低了维护和使用成本。

图2 Fast GC-TOFMS(iTOFMS-1G)的实物外观图

二、应用领域

?石油化工

?香精香料

?烟草及酒业

?食品安全与环保

?中药鉴定及药物代谢

三、主要指标

? 质量数范围: 1~1200amu

? 离子源:电子轰击离子源,双灯丝设计(带自动溶剂保护功能和软件自动切换);最大电子发射电流300uA,发射能量0~200eV;离子源最高温度300°C,传输

线最高温度400 °C

? 质量分辨率: 2000~3000(M/z=502Th)

? 检测灵敏度: 1pg/μl OFN, S/N>500 (RMS);0.1pg/μl OFN, S/N>50 (RMS)

? 采集速度: 200spectra/s (推斥脉冲频率15kHz)

? 采集卡: A DC(1.5/3GHz SPS,带硬件累加)

? 质量轴稳定性:小于0.01amu(一周内)

? 线性范围: 104

? 真空系统:双涡轮分子泵(350L/s+70L/s), 前级旋片式机械泵(标配,可选涡旋式干泵);一个皮拉尼数字规(前级)和两个全量程复合高真空数字规

四、仪器组成及主要特点

中国首款具有完全自主产权的商品化小型台式全二维气相色谱/快速气相色谱—电子轰击离子源飞行时间质谱联用仪(GCxGC / Fast GC-TOFMS)。它具有高分辨、高灵敏度和高采集速度的特点。

1.高性能的电子轰击源使全扫描灵敏度达到了四极杆质谱选择离子扫描的灵敏度完全满

足痕量分析要求。

2.采用离子正交引入式和二级反射镜设计的飞行时间分析器保证仪器的高分辨本领和高

优秀的质量精度;

3.采用带有硬件累加功能的超高速模数转换记录器(1.5GHz/ 3GHz SPS),是迄今同类

产品中最快的。

4.采用双涡轮分子泵+双全量程复合数字真空规设计,可以实时监测每个部件的真空;

5.完善、可靠的真空监控与电气保护系统;

6.采用美国Zoex公司最新设计的ZX-2环形调制器(可采用无氮气电制冷系统,将仪器

的使用成本降至最低)

五、软件系统特点

●Fast GC-TOFMS的软件系统由自主开发的GCTOF Master1.0(仪器实时控制采集)

和GCTOF Analysis(数据后处理与分析) 两套软件组成,其主要特点:

1.完全面向对象型的模块化开发,不仅功能丰富和强大,界面十分简洁直观高效;

2.采用优秀算法的自动调谐功能,能够使快速仪器达到最佳工作状态;

3.具有自动溶剂保护功能和组份过载保护功能,最大限度地保护灯丝和检测器;

4.创新的TIC图自动基线修正功能(SBC)和去背景技术,使分析更准确;

5.采用国内最新版本的NIST检索谱库,标准谱数量比08版增加11%,并具有

自建谱图功能;

6.多谱图的RSD和线性度自动计算功能,是用户快速了解仪器的重复性和稳定

性状态;

7.多样化的定量分析方法,可以实现带校正因子的面积归一化、内标法和外标法,

完成对样品的准确定量计算;

●GCxGC -TOFMS的软件系统由GCTOF Master2.0(仪器控制采集)和GC Image

(数据后处理与分析) 两套软件组成。GC Image的主要特点:

1.具有图像批处理模板,自动基线校正、复杂峰解析功能(Deconvolution)、样

品比较、生成报告、数据输出

2.自动峰识别功能,多个样品全组分比较

3.复杂峰解析功能(Deconvolution),将分析物与共流干扰物分离

4.具有结构化解析功能,针对被分析物按照种类系列区分,并可按照族类定量。无

需计算机语言就可以编辑,自行定义结构化分析程序

5. 彩色化设计,使定性分析达到最佳效果(内置60多种颜色,正确直观的显示色

谱图中部门组分的微弱差异)

6. 多模式的可视化效果,所得结果可以显示不同角度的3D 立体图,2D 平面俯瞰

图及传统的一维图

六、 应用实例

分析速度快(Fast GC )

图 7 Fast GC 分析时间只有常规GC 的1/4

时间缩短3/4

12

13

图8. 16种PAHs混合标样的原始TIC图(样品浓度20ppb)

图8. 15种PAEs混合标样的原始TIC图(样品浓度25ppb)

图10. 18种PCBs混合标样的原始TIC图(样品浓度60~25ppb)

高分离度,高容量(GCxGC)

图13 97#汽油实际样的检测

编制说明-飞行时间质谱校准规范-v12

国家计量技术规范规程制修订 《飞行时间质谱仪校准规范》 (报批稿) 编写说明 中国计量科学研究院 广东省计量科学研究院 南京市计量监督检测院 2013年5月

《飞行时间质谱仪校准规范》(报批稿) 编写说明 一、任务来源 根据国家质量监督检验检疫总局2009年国家计量技术法规计划(国质检量函〔2009〕393号)立项,由中国计量科学研究院、广东省计量科学研究院和南京市计量监督检测院共同承担《飞行时间质谱仪校准规范》的制定工作。 二、规范制定的必要性 飞行时间质谱仪是一种高分辨质谱仪,这类仪器的质量分析器是一个离子漂移管。由离子源产生的离子加速后进入无场漂移管,并以恒定速度飞向离子接收器。离子质量越大,到达接收器所用时间越长,离子质量越小,到达接收器所用时间越短,根据这一原理,可以把不同质量的离子按质荷比的大小进行分离。与高端的傅立叶变换离子回旋共振质谱仪、离子阱静电场轨道阱质谱仪相比,飞行时间质谱仪具有可检测的分子量范围大,扫描速度快,仪器结构简单,价格便宜等优势。近年来随着蛋白质组学和代谢组学的发展,各实验室飞行时间质谱仪的数量迅速增加,这些仪器除了被用于基础科研外,还被广泛地用于样品检测。据不完全统计,各个检测和校准实验室每年使用飞行时间质谱仪出具的报告数量达到1000份以上。根据《ISO/IEC 17025:2005 检测和校准实验室能力的通用要求》,检测校准实验中使用的分析设备都应当经过检定或校准,以保证仪器的准确性和测定结果的可溯源性,从而保证各个检测和校准实验室在不同时间、不同地点测定结果的准确、可比。飞行时间质谱仪由于没有检定规程或者校准规范,无法对仪器进行检定校准,已经成为当前实验室认可工作中的瓶颈之一。通过制定飞行时间质谱仪校准规范,实现仪器的校准,可以保证我国飞行时间质谱仪出具检测报告的准确有效,保护人民大众的健康,保证国际贸易的公平。 三、《飞行时间质谱仪校准规范》的制定过程 1、2008年4月28日,起草小组向主要飞行时间质谱仪生产厂家安捷伦、沃特斯、布鲁克、AB和岛津公司发函,要求其提供各自生产的各种型号的飞行时间质谱仪的质量数范围、质量准确度、信噪比、分辨力、质量数漂移、校准品等信息,作为规范制定时的参考。随后,各个厂家相继返回相应信息。

液相色谱-四极杆飞行时间质谱联用(HPLC-QTOF)

液相色谱-四极杆/飞行时间质谱联用(HPLC-QTOF) 一、开机 1.打开计算机,LAN Switch电源。 2.打开液相各个模块电源,打开质谱前面的电源开关,等待大约两分钟,当听到第二声溶剂阀切换的声音(表明质谱自检完成)后,仪器可以联机。 3.在计算机桌面上双击MassHunter采集软件图标,进入MassHunter工作站。 4.如果MassHunter工作站在之前曾经打开和关闭过,请确认在再次打开工作站之前,关闭MassHunter所有的进程;双击桌面上的图标,在弹出的窗口点击Shut Down,等待所有的Status都变为Terminated后,点击Close。然后再打开MassHunter工作站。注意:在MassHunter采集软件关闭后,再次打开之前,必须执行上面的操作,否则无法进入采集软件。 5. 点击Standby按钮,检查前级真空(典型值应≤2.5Torr)和高真空,等到高真空≤2×10-6Torr后,关闭工作站。 6. 进入仪器诊断软件界面,在菜单上选择Connection > Connect,输入IP地址 192.168.254.12,点击OK。 根据不同的情况,选择不同的Condition HV的模式。0.6 Hour Cycle (Quick Vent) 适用于Q-TOF短暂关机后的Condition,比如更换泵油,短时间停电等。2 Hour Cycle (Optics Service) 适用于对Q-TOF关机,进行简单维护后的Condition,比如清洗毖绅管等。8 Hour Cycle (TOF Service) 适用于对Q-TOF关机,进行比较长时间的维修后的Condtion,比如仪器出现故障后Agilent工程师上门维修后再次开机。13 Hour Cycle (Installation) 适用于Q-TOF安装时第一次开机后的Condtion;当者是比如长假关机后再次开机。 7. 标签栏显示Instrument ON/OFF界面,点击Condition HV。 8. 当Condition HV结束后,在File菜单上选择Connection > Disconnect,关闭TOF Diagnostics软件。 9. 重新进入MassHunter工作站。 二、调谐和校正

气相色谱质谱联用仪技术指标(新)

气相色谱/质谱联用仪技术指标 1.2温度:操作环境15?C~35?C 1.3 湿度:操作状态25~50%,非操作状态5~95% 2.性能指标 2.1质谱检测器 2.1.1具有网络通讯功能,可实现远程操作。结构紧凑,无需冷却水及压缩空气冷却。 2.1.2*侧开式面板,无须取下质谱仪机盖即可进行维护。玻璃窗口可显示离子源类 型,灯丝运行情况和离子源连接状态。需提供彩页证明文件。 2.1.3质量数范围:2-1000amu,以0.1amu递增

2.1.4分辨率:单位质量数分辨 2.1.5质量轴稳定性: 优于0.10amu/48小时 2.1.6灵敏度: EI:全扫描灵敏度(电子轰击源EI):1pg八氟萘(OFN),信/噪比≥ 1400:1 (扫描范围: 50-300amu) 2.1.7*仪器检出限IDL:10fg八氟萘。并提供三份以上现场安装验收报告。 2.1.8最大扫描速率:大于19,000amu/秒 2.1.9动态范围:全动态范围为106 2.1.10选择离子模式检测(SIM)最多可有100组,每组最多可选择60个离子 2.1.11质谱工作站可根据全扫描得到的数据,自动选择目标化合物的特征离子并对其进 行分组,最后保存到分析方法当中,无须手动输入。(AutoSIM) 2.1.12具有全扫描/选择离子检测同时采集功能 2.1.13两根长效灯丝的高效电子轰击源,采用完全惰性的材料制成 2.1.14*离子化能量:5~241.5eV 2.1.15离子化电流:0~315uA 2.1.16离子源温度:独立控温,150~350?C可调 2.1.17*分析器:整体石英镀金双曲面四极杆,独立温控, 106?C ~200?C。非预四极杆 加热。需提供彩页等证明文件。 2.1.18质量分析器前有T-K保护透镜。 2.1.19检测器:三维离轴,检测器。长效高能量电子倍增器 2.1.20真空系统:250升/秒以上分子涡轮泵 2.1.21气质接口温度: 独立控温,100~350℃ 2.1.22TID 痕量离子检测技术,在数据采集的过程中优化信号。 2.1.23自动归一化调谐。 2.1.24EI源可以采用氢气做为载气,CI源可以采用氨气替代甲烷气。 2.1.25具备早期维护预报功能(EMF) 2.1.26可提供质量认证功能(OQ/PV) 2.2 气相色谱仪 2.2.1 主机 2.2.1.1 电子流量控制(EPC):所有流量、压力均可以电子控制,以提高重现性,配有13路电子流量控制; 2.2.1.2 压力调节:0.001psi。 2.2.1.3 大气压力传感器补偿高度或环境变化; 2.2.1.4 程序升压/升流:3阶;

飞行时间质谱系统产品技术要求

飞行时间质谱系统 本产品由主机和计算机(含分析软件)组成,其中主机主要由激光器、质量检测器、靶板、真空泵组和开关电源组成。 飞行时间质谱系统Clin-ToF-Ⅱ通过检测生物大分子的分子量,使用蛋白指纹图谱技术,用于对口腔分离的乳酸杆菌、变异链球菌以及白色念珠菌的鉴定。 1.1 产品名称 本仪器全称为飞行时间质谱系统(Clin-ToF-Ⅱ) 1.2 产品型号 1.3 产品结构组成 由主机和计算机(含分析软件)组成,其中主机主要由激光器、质量检测器、靶板、真空泵组和开关电源组成。 2.1外观 外壳应表面整洁,色泽均匀,无伤斑,裂纹等缺陷; 文字和标志应清晰可见;各指示或显示装置应准确清晰; 塑料件应无起泡、开裂、变形以及灌注物溢出现象; 控制和调节机构应灵活可靠,紧固部位应无松动。 2.2技术参数(性能要求) 2.2.1质量测量范围 质谱仪检测离子的质荷比范围为1540Da ~16950Da 。 2.2.2准确度 2.2.2.1内标法 以参考品B完成校对后,参考品A、C的质量漂移应在800ppm内;以参考品D完成校对后,参考品E的质量漂移应在1500ppm内;以参考品F完成校对后,参考品G的质量漂移应在800ppm内。 2.2.2.2外标法 参考品A、B、C、D、E、F、G分别点在靶板上邻近的两点,以其中一点的参考品进行校对,另一点内的参考品质量漂移应在1500ppm内。 2.2.3灵敏度 表示质谱仪在一定信噪比下能够出峰的所需样品量。浓度为10 fmol/μl 的参考品A、浓度为20 fmol/μl的参考品B、浓度为2pmol/μl的参考 品C、浓度为5pmol/μl的参考品D、浓度为10pmol/μl的参考品E条件下,检测参考品A、B、C、D、E,应有信噪比 (S/N) >3的出峰。 2.2.4分辨率 50 < 分辨率 < 3500。 2.2.5重复性 检测参考品A、B、C、D、E物质,重复15次实验,CV<1%。 2.3系统功能

飞行时间质谱

飞行时间质谱技术及发展 前言:质谱分析是现代物理与化学领域使用的极为重要的工具。目前日益广泛的应用于原子能,石油以及化工,电子,医药等工业生产部门,农业科学研究部门及物理电子与粒子物理,地质学,有机,生物,无机,临床化学,考古,环境监测,空间探索等领域[1]。飞行时间质谱飞行时间质谱仪较其他质谱仪具有灵敏度好、分辨率高、分析速度快、质量检测上限只受离子检测器限制等优点,再配合电喷雾离子源基体辅助激光解析离子源[2]大气压化学电离源等离子源,使之成为当今最有发展前景的质谱仪。飞行时间质谱已用于研究许多国际最前沿的热点问题,是基因及基因组学、蛋白质及蛋白质组学、生物化学、医药学以及病毒学等领域中不可替代的有力工具,例如肽和蛋白分析、细菌分析、药物的裂解研究以及病毒检测。特别是在大通量、分析速度要求快的生物大分子分析中,飞行时间质谱成为唯一可以实现的分析手段,例如与激光离子源联用或作为二维气相色谱的检测器等。本文将介绍飞行时间质谱的基本原理、技术及仪器的发展历程。力求对该仪器技术有一个较清楚的认识,并对今后相关的研究工作提供建设性帮助。 1.飞行时间质谱的工作原理:TOF-MS分析方法的原理非常简单。这种质谱仪的 质量分析器是一个离子漂移管。样品在离子源中离子化后即被电场加速,由离子源产生的离子加速后进入无场漂移管,并以恒定速度飞向离子接收器,假设离子在电场方向上初始位移和初速度都为零,所带电荷数为q,质量数为m, 加速电场的电势差为V, 则加速后其动能应为: m v2 / 2= qe V 其中,v 为离子在电场方向上的速度。 离子以此速度穿过负极板上的栅条,飞向检测器。离子从负极板到达检测器的飞行时间t,就是TOFMS 进行质量分析的判据。在传统的线性TOFMS,离子沿直线飞行到达检测器;而在反射型TOFMS 中,离子经过多电极组成的反射器后反向飞行到达检测器,后者在分辨率方面优于前者。 2.飞行时间质谱的发展: 由于存在初始能量分散的问题,提高飞行时间质谱分辨率一直是研究者和仪器制造上努力的目标。仪器技术的进展也主要围绕这一目标进行。 2.1离子化技术的发展:最初TOFMS采用电子轰击的方法进行离子化。由电子枪产生的电子电离样品分子使其离解为离子,经加速形成离子束进入飞行区。这种方法可用于气、固、液体样品的分析。其缺点是:1)离子化时间较长,和一般离子的飞行时间数量级相近,容易引起大的误差;2)电子的电离及其进样方式,难以进行大分子样品的分析。目前这种离子化方式多用于小分子的分析。而新的电子发生方式如激光电子枪开始出现。后来脉冲离子发生器应用逐步广泛。用于固体或液体样品的重离子轰击、等离子体解吸(PDMS)及二次离子质谱(SIMS)属于此列。目前脉冲激光技术应用最广,包括激光解吸(LD)、共振激光离子化(RI)、共振加强单多光子离子化(RES/MPI)以及生化分析中常用的基质辅助激光解吸[4] (MALDI))等,适用于不同样品的分析。例如共振激光离子化可用于痕量金属元素的分析[3]。REMPI 则擅长复杂有机物的选择性离子化;MALDI的优点在于:1)可获得高的灵敏度,甚至能检测到离子化区的几个原子;2)对于热不稳定的生物大分子可实现无碎片离子化;3)对固体、液体表面分析,可以很好地控制离子化的位置或深度样品,分析时间大大缩短;4)可以与不同的离子化方式相结合。为解决多肽、蛋白、寡糖、DNA测序等生命科学领域中的前沿分析课题,需要发展特殊电离技术以及超高分辨、高灵敏度、大质量范围、多级串联的高档

飞行时间质谱TOF原理(英文)

This analyser is commonly called the TOF. The TOF is used in single MS systems, with an LC introduction, with a GC introduction, or with MALDI ionisation. In MS/MS configuration, the TOF is associated to a quadrupole (QTof), or to another TOF (TOF-TOF) or to an Ion Trap (QIT/TOF). Principle of the time of flight analyser:In a Time–Of–Flight (TOF) mass spectrometer, ions formed in an ion source are extracted and accelerated to a high velocity by an electric field into an analyser consisting of a long straight ‘drift tube’. The ions pass along the tube until they reach a detector. After the initial acceleration phase, the velocity reached by an ion is inversely proportional to its mass (strictly, inversely proportional to the square root of its m/z value). Since the distance from the ion origin to the detector is fixed, the time taken for an ion to traverse the analyser in a straight line is inversely proportional to its velocity and hence proportional to its mass (strictly, proportional to the square root of its m/z value). Thus, each m/z value has its characteristic time–of–flight from the source to the detector. Time of Flight equations:The first step is acceleration through an electric field (E volts). With the usual nomenclature (m = mass, z = number of charges on an ion, e = the charge on an electron, v = the final velocity reached on acceleration), the kinetic energy (mv /2) of the ion is given by equation (1). mv /2 = z.e.E(1) Equation (2) follows by simple rearrangement. v = (2z.e.E/m)1/2(2) If the distance from the ion source to the detector is d, then the time (t) taken for an ion to traverse the drift tube is given by equation (3). t = d/v = d/(2z.e.E/m)1/2 = d.[(m/z)/(2e.E)] 1/2(3) In equation (3), d is fixed, E is held constant in the instrument and e is a universal constant. Thus, the flight time of an ion t is directly proportional to the square root of m/z (equation 4). t = (m/z) 1/2 x a constant(4) Equation (4) shows that an ion of m/z 100 will take twice as long to reach the detector as an ion of m/z 25: going through the reflectron, the dispersion of ions of the same m/z value is minimized, leading to a great improvement of resolution

快速气相色谱 飞行时间质谱联用仪

iTOFMS-1G/2G宣传稿 全二维气相色谱-飞行时间质谱联用仪GCxGC –TOFMS(iTOFMS-2G) 快速气相色谱-飞行时间质谱联用仪 Fast GC-TOFMS(iTOFMS-1G) 厦门质谱仪器仪表有限公司 2014年5月1日

一、介绍 厦门质谱仪器仪表有限公司(简称厦门质谱公司)传承了厦门大学三十余年质谱技术的研究经验与成果,曾研发成功国内首台高分辨率电喷雾离子源飞行时间质谱仪,是国内一家专注于飞行时间质谱器技术研发与生产的新兴企业。 iTOFMS-G系列是中国首款具有完全自主产权的商品化小型台式气相色谱-飞行时间质谱联用仪。它具有高分辨、高灵敏度和高采集速度的优异功能,实现了与全二维气相色谱/快速气相色谱的完美对接。iTOFMS-G的诞生代表了国产质谱进军通用型高端质谱仪器迈出了重要一步。 ●全二维气相色谱-飞行时间质谱联用技术(Comprehensive Two-dimensional Gas Chromatography-Time of Flight Mass Spectrometry, GCxGC TOFMS)是近十年以来,国际上发展最迅猛的色质联用技术之一,是色谱-质谱联用技术发展的一个最新趋势。相比于常规气质联用具有高通量、高分离度和高灵敏度等显著优势,是解决复杂体系中全组分和痕量组分分析的最佳方案,逐渐成为石油化工、香精香料、烟草酒业、食品安全、环境监测和中药鉴定等领域的必备分析仪器。 图1 GCxGC-TOFMS(iTOFMS-2G)的实物外观图 ●快速气相色谱-飞行时间质谱联用技术(Fast Gas Chromatography-Time of Flight

飞行时间质谱精确定标的方法

飞行时间质谱精确定标的方法利用飞行时间质谱(TOF)探测得到的数据文件截图如下面左图,导入Origin里如右图: 行号即为横坐标,代表飞行时间,每一行数值代表质谱图中相应点的信号强度,如下图: 我们用工具选取一个已知峰的信号,如水(H2O),见下图,图中显示出该点行号为8642,信号强度为5855:

因为我们已知这个峰代表水(H2O),那么就可以将飞行时间与质量对应起来。 首先我们要了解,质谱探测得到的信号所代表的是这个物种(H2O)的同位素峰([1]H2[16]O),那么它的质量就不是平均分子量,而是由确定组成的核素相加得到的质量。 其次我们要了解,由于我们使用的是真空紫外光电离,那么形成的离子应该只带一个正电荷。 因此,质谱探测到的信号实际上是带一个正电荷的阳离子([1]H2[16]O+)。 我们使用下面这个软件来查询相应的m/z值,Measured mass表示质量数,Tolerence表示误差,单位为毫道尔顿,Charge on Molecule表示粒子所带电荷数,下图中的设置表示我们要查询质量数范围为[17.500, 18.500],带1个正电荷的粒子的可能分子式及其精确质量:

结果给出[1]H2[16]O+的精确质量为18.010016。 将上表拷入Origin中,并做图拟合,步骤如下:

显示下图结果: 将结果粘贴于下表,A、B、C即为定标公式的参数,其含义为m/z=A+B*row+C*row^2: 可自行设计表格,将目标峰的横坐标转化为精确质量数m/z。

Q&A: 1行号究竟代表多少飞行时间? 一行代表2ns,如行号5000,代表飞行时间10000ns。 这是通过P7888数据采集卡附带的采集软件MCDWin设置的,可以更改。 2怎么定更精确、更大范围的质量? 本例只提供了定标方法,对于更精确、更大范围的质量定标,就要提供更多的数据点来拟合。可以通过如下两种途径: 2.1选取一个产物较多的质谱,利用已定好标的公式,计算相应产物或碎片峰的质量, 猜测其真实分子式,并将分子式与其实际质量添加入飞行时间-质量对应表中,重 新拟合得到更精确的定标公式。 2.2若大质量产物的分子式不容易猜测,那么通入少量大质量标准样品进行定标。大质 量标准样品推荐芳香烃化合物,比如萘、蒽、菲等,不推荐使用脂肪烃,进入腔 体后非常不易挥发。 3怎么做横坐标为质量数的质谱图? 按下列步骤: 3.1在数据列左侧插入两列: 3.2将第一列填充为行号:

气相色谱-质谱联用 原理和应用介绍

气相色谱法-质谱联用 气相色谱法–质谱法联用(英语:Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS)是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。GC-MS的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。GC-MS也用于为保障机场安全测定行李和人体中的物质。另外,GC-MS 还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。 GC-MS已经被广泛地誉为司法学物质鉴定的金标方法,因为它被用于进行“专一性测试”。所谓“专一性测试”就是能十分肯定地在一个给定的试样中识别出某个物质的实际存在。而非专一性测试则只能指出试样中有哪类物质存在。尽管非专一性测试能够用统计的方法提示该物质具体是那种物质,但存在识别上的正偏差。 目录 1 历史 2 仪器设备 2.1 GC-MS吹扫和捕集 2.2 质谱检测器的类型 3 分析 3.1 MS全程扫描 3.2 选择的离子检测 3.3 离子化类型 3.3.1 电子离子化 3.3.2 化学离子化 3.4 GC-串联MS 4 应用 4.1 环境检测和清洁 4.2 刑事鉴识 4.3 执法方面的应用

4.4 运动反兴奋剂分析 4.5 社会安全 4.6 食品、饮料和香水分析 4.7 天体化学 4.8 医药 5 参考文献 6 参考书目 7 外部链接 历史用质谱仪作为气相色谱的检测器是上个世纪50年代期间由Roland Gohlke和Fred McLafferty首先开发的。当时所使用的敏感的质谱仪体积庞大、容易损坏只能作为固定的实验室装置使用。 价格适中且小型化的电脑的开发为这一仪器使用的简单化提供了帮助,并且,大大地改善了分析样品所花的时间。1964年,美国电子联合公司(Electronic Associates, Inc. 简称EAI)-美国模拟计算机供应商的先驱在开始开发电脑控制的四极杆质谱仪Robert E. Finnigan的指导下[3]开始开发电脑控制的四极杆质谱仪。到了1966年,Finnigan和Mike Uthe的EAI分部合作售出500多台四极杆残留气体分析仪。1967年,Finnigan仪器公司the (Finnigan Instrument Corporation,简称FIC)组建就绪,1968年初就给斯坦福大学和普渡大学发送了第一台GC/MS的最早雏型。FIC最后重新命名为菲尼根公司(Finnigan Corporation)并且继续持世界GC/MS系统研发、生产之牛耳。 1966年,当时最尖端的高速GC-MS (the top-of-the-line high-speed GC-MS units)单元在不到90秒的时间里,完成了火灾助燃物的分析,然而,如果使用第一代GC-MS至少需要16分钟。到2000年使用四极杆技术的电脑化的GC/MS仪器已经化学研究和有机物分析的必不可少的仪器。今天电脑化的GC/MS仪器被广泛地用在水、空气、土壤等的环境检测中;同时也用于农业调控、食品安全、以及医药产品的发现和生产中。 气质联用色谱是由两个主要部分组成:即气相色谱部分和质谱部分。气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基

飞行时间质谱仪

河南师范大学 光 谱 分 析 论 文 专业:新联物理 年级:2011级 学号:11020274003 姓名:王冉

飞行时间质谱仪 质谱仪(Mass spectrometry)是对电离的原子、分子以及分子的碎片进行测量。质谱仪有磁式、四电极的与飞行时间的等多种类型。按照带电粒子在磁场或电场中的飘移,或他们移动能量来确定它们的荷质比。 在激光质谱检测中最常用的是四级质谱仪与飞行时间质谱仪Time of Flight Mass Spectrometer (TOF),尤其是飞行时间质谱仪。飞行时间质谱仪是一种很常用的质谱仪。这种质谱仪的质量分析器是一个离子漂移管。由离子源产生的离子加速后进入无场漂移管,并以恒定速度飞向离子接收器。离子质量越大,到达接收器所用时间越长,离子质量越小,到达接收器所用时间越短,根据这一原理,可以把不同质量的离子按m/z值大小进行分离。 飞行时间质谱仪发展史:1948年A1E1Cameron和D1F1Eggers研制出世界上第一台飞行时间质谱仪实验样机,其直线飞行管长达10m,分辨率却不到5。初期由于质量分辨本领很低,很长时间未得到推广应用,但研究工作一直持续不断。值得注意的进展是1955年W1C1Wiley和I1H1Mclaren从理论上探讨限制TOFMS分辨率的两个主要因素,即初始空间分散和初始能量分散,并通过新型离子枪,双场加速和延迟引出的方法,将直线式飞行时间质谱仪的分辨率提高到300。但此后的20年,TOFMS的发展一直处于低谷,其分辨率在几百之内。直到1973年B1A1Marmylin引入静电反射器制成反射式飞行时间质谱仪,用离子

气相色谱-质谱联用技术

气相色谱-质谱联用技术 本章目录(查看详细信息,请点击左侧目录导航) 第一节气相色谱质谱联用仪器系统 一、GC-MS系统的组成 二、GC-MS联用中主要的技术问题 三、GC-MS联用仪和气相色谱仪的主要区别 四、GC-MS联用仪器的分类 五、一些主要的国外GC-MS 联用仪产品简介 第二节气相色谱质谱联用的接口技术 一、GC-MS联用接口技术评介 二、目前常用的GC-MS接口 第三节气相色谱质谱联用中常用的衍生化方法 一、一般介绍 二、硅烷化衍生化 三、酰化衍生化 四、烷基化衍生化 第四节气相色谱质谱联用质谱谱库和计算机检索 一、常用的质谱谱库 二、NIST/EPA/NIH库及其检索简介 三、使用谱库检索时应注意的问题 四、互联网上有关GC-MS和的信息资源 第五节气相色谱质谱联用技术的应用 一、GC-MS检测环境样品中的二噁英 二、GC-MS在兴奋剂检测中的应用 三、GC-MS区分空间异构体 四、常用于GC-MS 检测提高信噪比的方法 五、GC-MS(TOF)的应用 气质联用仪是分析仪器中较早实现联用技术的仪器。自1957年霍姆斯和莫雷尔首次实现 GC-M S系统的组成 气相色谱和质谱联用以后,这一技术得到长足的发展。在所有联用技术中气质联用,即

GC-MS发展最完善,应用最广泛。目前从事有机物分析的实验室几乎都把GC-MS作为主要的定性确认手段之一,在很多情况下又用GC-MS进行定量分析。另一方面,目前市售的有机质谱仪,不论是磁质谱、四极杆质谱、离子阱质谱还是飞行时间质谱(TOF),傅里叶变换质谱(FTMS)等均能和气相色谱联用。还有一些其他的气相色谱和质谱联接的方式,如气相色谱! 燃烧炉! 同位素比质谱等。GC-MS逐步成为分析复杂混合物最为有效的手段之一。 GC-MS联用仪系统一般由图11-3-1所示的各部分组成。 气相色谱仪分离样品中各组分,起着样品制备的作用;接口把气相色谱流出的各组分送入质谱仪进行检测,起着气相色谱和质谱之间适配器的作用,由于接口技术的不断发展,接口在形式上越来越小,也越来越简单;质谱仪对接口依次引入的各组分进行分析,成为气相色谱仪的检测器;计算机系统交互式地控制气相色谱、接口和质谱仪,进行数据采集和处理,是GC-MS的中央控制单元。 GC-M S联用中主要的技术问题 气相色谱仪和质谱仪联用技术中主要着重要解决两个技术问题: 1.仪器接口 众所周知,气相色谱仪的入口端压力高于大气压,在高于大气压力的状态下,样品混合物的气态分子在载气的带动下,因在流动相和固定相上的分配系数不同而产生的各组分在色谱柱内的流速不同,使各组分分离,最后和载气一起流出色谱柱。通常色谱往的出口端为大气压力。质谱仪中样品气态分子在具有一定真空度的离子源中转化为样品气态离子。这些离子包括分子离子和其他各种碎片离子在高真空的条件下进入质量分析器运动。在质量扫描部件的作用下,检测器记录各种按质荷比分离不同的离子其离子流强度及其随时间的变化。因此,接口技术中要解决的问题是气相色谱仪的大气压的工作条件和质谱仪的真空工作条件的联接和匹配。接口要把气相色谱柱流出物中的载气,尽可能多的除去,保留或浓缩待测物,使近似大气压的气流转变成适合离子化装置的粗真空,并协调色谱仪和质谱仪的工作流量。

JJF气相色谱仪质谱联用仪

台式气相色谱质谱联用仪校准规范 1范围 本规范适用于离子阱和四极杆型台式气相色谱 -质谱联用仪(以下简称台式GC-MS)的校准,其它类型台式GC-MS的校准可参照此规范进行。 2引用文献 JJF 1001—1998通用计量术语及定义 JJF 1059-1999测量不确定度评定与表示 GB/T 15481—1995校准和检验实验室能力的通用要求 GB/T 6041 — 2002质谱分析方法通则 JJG (教委)003—1996有机质谱仪检定规程 JJG 700-1999气相色谱仪检定规程 OIML/TC16/SC2/R83 Gas chromatograph/mass spectrometer system for an alysis of rganic polluta nts in water 使用本规范时,应注意使用上述引用文献的现行有效版本。 3术语和计量单位 3.1分辨力(resolution) 分辨两个相邻质谱峰的能力,对于台式 GC-MS以某离子峰峰高50%处的峰宽度(简称半峰宽)表示,记为W1/2,单位u。 3.2基线噪声(baseline noise 基线峰底与峰谷之间的宽度,单位计数。 3.3信噪比(signal-to-noise ratio) 待测样品信号强度与基线噪声的比值,记为SN。 3.4质量色谱图(mass chromatogram质谱仪(和色谱图是两回事) 质谱仪在一定质量范围内自动重复扫描所获得的质谱数据,可以不同形式再现,其中 以一个或多个离子强度随时间变化的谱图,称为质量色谱图。 3.5质量准确性(mass accuracy 仪器测量值对理论值的偏差。 3.6u (atomic mass unit) 原子质量单位。 4概述 气相色谱-质谱联用仪是将气相色谱仪与质谱仪通过一定接口耦合到一起的分析仪 器。样品通过气相色谱的分离后的各个组分依次进入质谱检测器,组分在离子源被电离, 产生带有一定电荷、质量数不同的离子。不同离子在电场和 /或磁场中的运动行为不同,米用不同质量分析器把带电离子按质荷比(m/z)分开,得到依质量顺序排列的质谱图。通过对质谱图的分析处理,可以得到样品的定性、定量结果。气相色谱-质谱联用仪主要包括

气相色谱质谱联用原理和应用

气相色谱质谱联用原理 和应用 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

气相色谱-质谱联用测定农药多残留 摘要:本文研究了气相色谱-质谱联用(GS-MS)仪检测农药残留的方法,辅助以样品前处理技术,对蔬菜、水果、食用油、土壤中的农药多残留的检测方法进行了研究,取得了比较理想的效果。 关键词:气相色谱-质谱联用仪;农药多残留;检测 1引言 当前人类环境持续恶化,世界各国在工业、民用、科技、商业和军事防御等领域都面临着严重的环境污染问题。随着人们对环境污染、食品安全的关注,环境、食品中有机污染物检测方面的规范越来越严格,相应的检测技术也越来越先进。在各种有机物检测技术中,色谱仪器与质谱仪器联用作为一种比较成熟的检测手段,既可发挥色谱法的高分离能力,又兼具质谱准确鉴定化合物结构的优点,即可定性又可定量,尤其适用于环境样品中微量、痕量有机污染物的分析检测工作。1979 年美国环保局(EPA)将GC-MS(Gas Chromatography-Mass Spectrometry)联用技术列为检测饮用水、地表水中有机物的标准分析方法。随着仪器的不断完善与发展,检测技术的成熟与推广,GC-MS 法应用范围越来越广。除了在传统挥发油、脂肪油等的分析测定方面不断发展与普及外,在环境有机污染物检测、食品安全、农药残留、化妆品禁用成分研究等方面的应用也得到了广泛开展。 近年来,由于农药的大量使用引起的食品安全问题已被人们广泛的认识、关注和重视。人们食用了受到农药严重污染的蔬菜水果,而造成人体急性中毒或者慢性中毒的事件屡有发生。为保证食品的质量,世界卫生组织和世界各国制订了严格的限量标准,与此同时,许多国家也借此施行技术壁垒,使得农药残留问题不仅是影响人的身体健康,而且也严重影响到国家的对外贸易。 由于各类食品组成成分复杂,不同农药品种的理化性质存在较大差异,并且近年来高效、低毒、低残留农药品种不断涌现,给农药残留检测技术提出了更高的要求。发展快速、可靠、灵敏和实用的农药残留分析技术无疑是控制农药残留、保证食品安全和避免国际间有关贸易争端的基础。目前,我国农药残留限量标准制定工作滞后,残留监测体系不健全,残留检测能力有限、覆盖面窄。因此,我国应该根据自己的技术条件及农产品市场制定相应的多残留分析方法。 食品中的农药残留污染影响着人民生活质量的提高和食品贸易的顺利进行。日常食用的果蔬施用的农药种类繁多,常见的农药如有机磷类农药、氨基甲酸酯类农药、菊酯类农药和除草剂,抑菌剂等。由于果蔬中往往同时残留不同种类的农药,这对多残留同时检测条件提出很高要求。由于气相色谱-质谱联用( GC-MS) 具有灵敏度

飞行时间质谱仪

河南师大学 光 谱 分 析 论 文

专业:新联物理 年级:2011级 学号:11020274003 :王冉 飞行时间质谱仪 质谱仪(Mass spectrometry)是对电离的原子、分子以及分子的碎片进行测量。质谱仪有磁式、四电极的与飞行时间的等多种类型。按照带电粒子在磁场或电场中的飘移,或他们移动能量来确定它们的荷质比。 在激光质谱检测中最常用的是四级质谱仪与飞行时间质谱仪Time of Flight Mass Spectrometer (TOF),尤其是飞行时间质谱仪。飞行时间质谱仪是一种很常用的质谱仪。这种质谱仪的质量分析器是一个离子漂移管。由离子源产生的离子加速后进入无场漂移管,并以恒定速度飞向离子接收器。离子质量越大,到达接收器所用时间越长,离子质量越小,到达接收器所用时间越短,根据这一原理,可以把不同质量的离子按m/z值大小进行分离。

飞行时间质谱仪发展史:1948年A1E1Cameron和D1F1Eggers 研制出世界上第一台飞行时间质谱仪实验样机,其直线飞行管长达10m,分辨率却不到5。初期由于质量分辨本领很低,很长时间未得到推广应用,但研究工作一直持续不断。值得注意的进展是1955年W1C1Wiley和I1H1Mclaren从理论上探讨限制TOFMS分辨率的两个主要因素,即初始空间分散和初始能量分散,并通过新型离子枪,双场加速和延迟引出的方法,将直线式飞行时间质谱仪的分辨率提高到300。但此后的20年,TOFMS的发展一直处于低谷,其分辨率在几百之。直到1973年B1A1Marmylin引入静电反射器制成反射式飞行时间质谱仪,用离子反射器抵消同一质荷比不同初始能量的离子飞行时间的分散,使得TOFMS的分辨率有较大突破达到3000。另一项重要的革新则是1987年发明的垂直引入技术,不仅提高离子传输效率还为各种离子源与飞行时间分析器相联提供一个通用接口。此后伴随着快电子技术、大面积检测器技术、计算机技术和机械加工工艺的不断进步,TOFMS的性能也不断提高。1998年A1F1Dodonov等设计一台垂直引入反射式TOFMS,其质量分辨率达到20000以上。该技术的出现使TOFMS进 入一个前所未有的快速发展阶段。 在飞行时间质谱仪里,以往多采用单场推斥脉冲,但现在多采用双推斥脉冲。采用双推斥脉冲可以保证不增加离子的空间分散和能量分散,这对提高仪器的分辨率非常重要。使用正负双推斥脉冲就相当于把原有的脉冲峰峰值增加了一倍,可以克服传统的单脉冲在提高脉冲

气相色谱-质谱联用技术..

气相色谱-质谱联用技术 气相色谱-质谱联用技术,简称质谱联用,即将气相色谱仪与质谱仪通过接口组件进行连接,以气相色谱作为试样分离、制备的手段,将质谱作为气相色谱的在线检测手段进行定性、定量分析,辅以相应的数据收集与控制系统构建而成的一种色谱-质谱联用技术,在化工、石油、环境、农业、法医、生物医药等方面,已经成为一种获得广泛应用的成熟的常规分析技术。 1、产生背景 色谱法是一种很好的分离手段,可以将复杂混合物中的各种组分分离开,但它的定性、鉴定结构的能力较差,并且气相色谱需要多种检测器来解决不同化合物响应值的差别问题;质谱对未知化合物的结构有很强的鉴别能力,定性专属性高,可提供准确的结构信息,灵敏度高,检测快速,但质谱法的不同离子化方式和质量分析技术有其局限性,且对未知化合物进行鉴定,需要高纯度的样本,否则杂质形成的本底对样品的质谱图产生干扰,不利于质谱图的解析。气相色谱法对组分复杂的样品能进行有效的分离,可提供纯度高的样品,正好满足了质谱鉴定的要求。 气相色谱-质谱联用(gas chromatography-mass sepetrometry , GC-MS)技术综合了气相色谱和质谱的优点,具有GC的高分辨率和质谱的高灵敏度、强鉴别能力。GC-MS可同时完成待测组分的分离、鉴定和定量,被广泛应用于复杂组分的分离与鉴定。 2、技术原理与特点 气相色谱技术是利用一定温度下不同化合物在流动相(载气)和固定相中分配系数的差异,使不同化合物按时间先后在色谱柱中流出,从而达到分离分析的目的。保留时间是气象色谱进行定性的依据,而色谱峰高或峰面积是定量的手段,所以气相色谱对复杂的混合物可以进行有效地定性定量分析。其特点在于高效的分离能力和良好的灵敏度。由于一根色谱柱不能完全分离所有化合物,以保留时间作为定性指标的方法往往存在明显的局限性,特别是对于同分异构化合物或者同位素化合物的分离效果较差。 质谱技术是将汽化的样品分子在高真空的离子源内转化为带电离子,经电离、引出和聚焦后进入质量分析器,在磁场或电场作用下,按时间先后或空间位置进行质荷比(质量和电荷的比,m/z)分离,最后被离子检测器检测。其主要特点是迁建的结构鉴定能力,能给出化合物的分子量、分子式及结构信息。在一定条件下所得的MS碎片图及相应强度,犹如指纹图,易与辨识,方法专属灵敏。但质谱拘束最大的不足之处在与要求样品是单一组分,无法满足复杂物质的分析。

实验三 气相色谱-质谱联用仪定性分析液体混合物

实验三气相色谱-质谱联用仪定性分析液体混合物 一、实验目的 1. 了解质谱检测器的基本组成及功能原理 2. 了解色谱工作站的基本功能,掌握利用气相色谱-质谱联用仪进行定性分析的基本操作。 二、实验原理 气相色谱法(gas chromatography, GC)是一种应用非常广泛的分离手段,它是以惰性气体作为流动相的柱色谱法,其分离原理是基于样品中的组分在两相间分配上的差异。气相色谱法虽然可以将复杂混合物中的各个组分分离开,但其定性能力较差,通常只是利用组分的保留特性来定性,这在欲定性的组分完全未知或无法获得组分的标准样品时,对组分定性分析就十分困难了。随着质谱(mass spectrometry, MS)、红外光谱及核磁共振等定性分析手段的发展,目前主要采用在线的联用技术,即将色谱法与其它定性或结构分析手段直接联机,来解决色谱定性困难的问题。气相色谱-质谱联用(GC-MS)是最早实现商品化的色谱联用仪器。目前,小型台式GC-MS已成为很多实验室的常规配置。 1. 质谱仪的基本结构和功能 质谱系统一般由真空系统、进样系统、离子源、质量分析器、检测器和计算机控制与数据处理系统(工作站)等部分组成。 质谱仪的离子源、质量分析器和检测器必须在高真空状态下工作,以减少本底的干扰,避免发生不必要的分子-离子反应。质谱仪的高真空系统一般由机械泵和扩散泵或涡轮分子泵串联组成。机械泵作为前级泵将真空抽到10-1-10-2Pa,然后由扩散泵或涡轮分子泵将真空度降至质谱仪工作需要的真空度10-4-10-5Pa。虽然涡轮分子泵可在十几分钟内将真空度降至工作范围,但一般仍然需要继续平衡2小时左右,充分排除真空体系内存在的诸如水分、空气等杂质以保证仪器工作正常。 气相色谱-质谱联用仪的进样系统由接口和气相色谱组成。接口的作用是使经气相色谱分离出的各组分依次进入质谱仪的离子源。接口一般应满足如下要

气相色谱质谱联用仪操作规程

气相色谱质谱联用仪操作规程(定性部分) 1.开机 ①打开高纯氦气钢瓶的阀门,调节出口压力为7kgf/cm2左右,然后依次打开GC电源和MS电源,点击软件[GCMS Real Time Analysis],选择用户名,登录后进入。 ②点击设定系统的配置。 ③点击[Vacuum Control] ,在随即出现的对话框中点击 [Auto Startup],启动真空系统。 2. 调谐 ①点击[GCMS Real Time Analysis]辅助栏中的[Turing],打开调谐窗口。 ②真空稳定后,点击[Peak Monitor View],进行泄漏检验。 确认m/z18、m/z28、m/z32、m/z69的关系及确认是否漏气:通常m/z18>m/z28, 表示不漏气;如果m/z28的强度同时大于m/z18,m/z69的两倍,表明漏气。 ③点击[Auto Tuning Condition],设置调谐条件。 通常使用默认的条件。 ④点击[Start Auto Tuning],进行自动调谐。 ⑤结束后,输出调谐报告。 在调谐报告中确认峰形、半峰宽、基峰、检测器电压和m/z502的丰度等。 一般的要求如下: 峰形:没有明显的分叉,峰形对称 半峰宽:m/z69、m/z219、m/z502的半峰宽与设定值相差0.1 基峰:在质谱图中,m/z28的强度在m/z69的50%以下 检测器电压:要求小于1.5Kv m/z502的丰度:大于2% 质量数准确性:质谱图中的测量值与标准值之间相差在0.1以内

⑥点击[File],选择[Save Tuning File As],保存调谐文件。 ⑦关闭调谐画面。 ************************************************************************ 注:检查漏气的方法如 1. 点击Tuning之中的Peak Monitor View 2. 在 Monitor Group菜单里选择[water,air],同时确认检测器的电压是0.7Kv。 3. 打开灯丝,观察m/z18、m/z28和m/z32的强度。如果需要比较m/z69的强度,请先关闭灯丝,选择打开PFTBA,等待10秒钟以上,再打开灯丝。将m/z32改成m/z69。如果发现有漏气的情况,将m/z69改成m/z43。 4. 使用石油醚,在怀疑有漏气的部位检查,如果有漏气,则m/z43的峰会非常大。 5. 确认漏气的部位,进行相应的处理。 ********************************************************************* 3. 分析条件的设定 ○1点击File》》New Method File,建立分析方法文件(如果使用现有的分析方法, 点击File》》New Method File,调出所需方法文件):

相关主题
文本预览
相关文档 最新文档