当前位置:文档之家› 密码学实验1古典密码算法

密码学实验1古典密码算法

密码学实验1古典密码算法
密码学实验1古典密码算法

密码学实验1古典密码算法

一(实验原理

古典密码算法历史上曾被广泛应用,大都比较简单,使用手工和机械操作来实现加密和解密。它的主要应用对象是文字信息,利用密码算法实现文字信息的加密和解密。下面介绍两种常见的具有代表性的古典密码算法,以帮助读者对密码算法建立一个初步的印象。

1( 替代密码

替代密码算法的原理是使用替代法进行加密,就是将明文中的字符用其它字符替代后形成密文。例如:明文字母 a、b、c、d ,用 D、E、F、G做对应替换后形成密文。

替代密码包括多种类型,如单表替代密码、多明码替代密码、多字母替代密码、多表替代密码等。下面我们介绍一种典型的单表替代密码,恺撒(caesar)密码,又叫循环移位密码。它的加密方法,就是将明文中的每个字母用此字符在字母表中后面第 k个字母替代。它的加密过程可以表示为下面的函数: E(m)=(m+k) mod n

其中:m 为明文字母在字母表中的位置数;n 为字母表中的字母个数;k 为密钥;E(m)为密文字母在字母表中对应的位置数。例如,对于明文字母 H,其在字母表中的位置数为 8,设 k=4,则按照上式计算出来的密文为 L:

E(8) = (m+k) mod n = (8+4) mod 26 = 12 = L

2( 置换密码

置换密码算法的原理是不改变明文字符,只将字符在明文中的排列顺序改变,从而实现明文信息的加密。置换密码有时又称为换位密码。

矩阵换位法是实现置换密码的一种常用方法。它将明文中的字母按照给的顺序安排在一个矩阵中,然后用根据密钥提供的顺序重新组合矩阵中字母,从而形成密文。例如,明文为 attack begins at five,密钥为 cipher,将明文按照每行 6 列的形式排在矩阵中,形成如下形式:

a t t a c k

b e g i n s

a t f i v e

根据密钥 cipher中各字母在字母表中出现的先后顺序,给定一个置换:

1 2 3 4 5 6

f =

1 4 5 3

2 6

3 列,根据上面的置换,将原有矩阵中的字母按照第 1 列,第

4 列,第

5 列,第第 2列,第

6 列的顺序排列,则有下面形式:

a a c t t k

b i n g e s

a I v f t e

从而得到密文:abatgftetcnvaiikse

其解密的过程是根据密钥的字母数作为列数,将密文按照列、行的顺序写出,再根据由密钥给出的矩阵置换产生新的矩阵,从而恢复明文。二(实验目的通过编程实现替代密码算法和置换密码算法,加深对古典密码体制的了解,为深入学习密码学奠定基础。

三(实验环境

运行 windows 或 linux 操作系统的 PC 机,具有 gcc(linux)、VC(windows)等 C语言编译环境。

四(实验内容和步骤

1( 根据实验原理部分对替代密码算法的介绍,自己创建明文信息,并选择一个密钥 k,编写替代密码算法的实现程序,实现加密和解密操作。 2( 根据实验原理部分对置换密码算法的介绍,自己创建明文信息,并选择一个密钥,编写置换密码算法的实现程序,实现加密和解密操作。五(实验报告要求

要求上述密码算法最后的实现程序提供加密和解密两个接口:int encrypt ( )和 int decrypt ( ),当加密或者解密成功时返回 CRYPT_OK,失败时返回CRYPT_ERROR。

六、实验结果

(1) 替换密码的加密解密

先是加密

实现程序为:

#include "stdio.h"

#include "conio.h"

main()

{

int k,i=0;

char a[100],b[100];

printf("please input your ming wen:\n");

gets(a);

printf("please input mi shi \n"); scanf("%d",&k);

printf("\n");

do{

b[i]=(char)(a[i]+k); if(b[i]>122){

b[i]=(char)(b[i]-26); }

i++;

}while(a[i]!='\0'); puts(b);

getch();

}

输入明文a:amy is good 输入密匙:k=3

密文c=a+k

实验结果为:

再是解密:

实现程序为:

#include "stdio.h" #include "conio.h" main()

{

int k,i=0;

char a[100],b[100]; printf("please input mi wen: \n"); gets(a);

printf("please input mi shi: \n");

scanf("%d",&k); printf("\n");

do{

b[i]=(char)(a[i]-k); if(b[i]<0){

b[i]=(char)(b[i]+26);不知道三哪里的问题结果中的Y输不出来}

i++;

}while(a[i]!='\0'); puts(b); getch();

}

结果为:

(2) 置换密码

先是加密

实现程序

#include #define TRUE 1 #define FALSE 0 #define N 1000 #define M 50

int Glength(char *a) {

char *pt;

int nlen=0;

pt=a;

while((*pt)!='\0')

{

nlen++;

pt++;

}

return nlen;

}

void encrypt(char *a,int n,int *b) {

int i,j,k,t,x,y;

char c[M][M],d[M][M];

k=Glength(a);

puts(a);

t=k%n;

if(t==0)

{

x=k/n;

}

else

{

x=(k/n)+1;

}

printf("%d\n",x);

for(i=0;i

{

for(j=0;j

{

if(((a[i*n+j])>96)&&(a[i*n+j]<123)) {

c[i][j]=a[i*n+j];

printf("%c",c[i][j]);

}

else

{

c[i][j]=' ';

printf("%c",c[i][j]);

}

}

}

printf("\n hehe\n");

for(j=0;j

{

for(i=0;i

{

y=b[j];

printf("encrypt %d\t",y); d[i][y]=c[i][j];

printf("--%c\t",d[i][y]); }

}

printf("\n");

for(i=0;i

{

for(j=0;j

{

a[i*n+j]=d[i][j];

}

}

a[x*n+j+1]='\0';

puts(a);

}

void bubble_sort(char *a,int n,int *b) {

int i,j,nTemp,k,x;

char change;

char c[N];

x=0;

strcpy(c,a);

for(i=n-1,change=TRUE;i>=1&&change;--i) {

change=FALSE;

for(j=0;j

{

if(a[j]>a[j+1])

{

nTemp=a[j];

a[j]=a[j+1];

a[j+1]=nTemp;

change=TRUE;

}

}

}

i=0;

while((c[i])!='\0') {

for(k=0;k

if((c[i])==a[k]) {

b[x]=k;

printf("%d\t",b[x]); }

}

i++;

x++;

}

printf("\n");

puts(a);

}

int main()

{

int k;

char nArr[N],a[N];

int b[N];

clrscr();

printf("Please input key:\n");

gets(nArr);

k=Glength(nArr);

printf("Please input M word:\n");

gets(a);

printf("The data items in ascending order:\n"); bubble_sort(&nArr,k,&b);

puts(nArr);

encrypt(&a,k,&b);

puts(a);

printf("\n");

return 0;

}

输入明文:attack begins at five

输入密钥:cipher

排序为:0 3 4 2 1 5

加密结果为:

解密不知道怎么弄,不好意思啦~

实验二 古典密码

实验2 古典密码 1.实验目的 (1)了解古典密码中的基本加密运算。 (2)了解几种典型的古典密码体制。 (3)掌握古典密码的统计分析方法。 2.实验内容 (1)古典密码体制 ①简单移位加密(单表代换) 该加密方法中,加密时将明文中的每个字母向前推移K位。经典恺撒密码加密变换就是这种变换,取k=3。 步骤1:打开CAP4软件,并加载实验一附带的“mw.txt”,如图2-1所示。 图2-1加载文件

步骤2:采用恺撒加密方法手工加密“mw.txt”;打开CAP4菜单栏“Cipher”菜单项选择“simple shift”选项,并选择移位值“shift value”为3,加密步骤1中加载的文件,如图2-2所示。 图2-2 参数设置 图2-3加密文件

步骤3:比较二者的加密结果是否相同。 步骤4:点击CAP4软件中的“Simple analysis”下的“shift”键,观察恺撒加密法的可能密钥值,并分析其攻击的难度,如图2-4所示。 图2-4密钥分析 ②仿射密码加密(单表代换) 在仿射密码加密(affine cipher)中,字母表中的字母被赋予一个数字,例如,a=0,b=1,c=2,…,z=25.仿射密码加密法的密钥为0~25之间的数字对(a,b)。a与26的最大公约数必须为1,这就是说能整除a和26的数只有1.现在假设m为明文字母的数字,而c为密文字母的数字,那么,这两个数字之间有如下关系: c=(am+b)(mod 26) m=a-1(c-b)(mod 26) 其中,(mod 26)的操作是:除以26,得其余数。 例如,选取密钥为(7,3)。因为7与26互素,也就是只有公约数1,所以(7,3)可以作为仿射密码的加密钥。将“hot”转换成数字7、14、19,利用仿射等式生成: c(H)=(7×7+3) mod 26=52 mod 26=0,即为字母“a“。 c(O)=(7×14+3) mod 26=101 mod 26=23,即为字母“x“. c(T)=(7×19+3) mod 26=136 mod 26=6,即为字母”g”. 这样,对于这个密钥,”hot”变成了“axg“.

密码学

密码学 ——信息战中的一把利剑 中文摘要:密码技术是保障信息安全的核心技术。密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的应用,已成为一门综合性的尖端技术科学。Abstract:Cryptographic techniques to protect the information security of the core technology. Cryptography is the practice of encoding and decoding of the struggle gradually developed, and along with the application of advanced science and technology has become a comprehensive cutting-edge technological sciences. 中文关键字:密码学密码技术信息安全 Keyword:Cryptology Crytography Security 第一章引言 密码学是研究编制密码和破译密码的技术科学。研究密码变化的客观规律,应用于编制密码以保守通信秘密的,称为编码学;应用于破译密码以获取通信情报的,称为破译学,总称密码学。 一般来讲,信息安全主要包括系统安全及数据安全两方面的内容。系统安全一般采用防火墙、病毒查杀、防范等被动措施;而数据安全则主要是指采用现代密码技术对数据进行主动保护,如数据保密、数据完整性、数据不可否认与抵赖、双向身份认证等。 密码技术是保障信息安全的核心技术。密码技术在古代就已经得到应用,但仅限于外交和军事等重要领域。随着现代计算机技术的飞速发展,密码技术正在不断向更多其他领域渗透。它是集数学、计算机科学、电子与通信等诸多学科于一身的交叉学科。密码技术不仅能够保证机密性信息的加密,而且完成数字签名、身份验证、系统安全等功能。所以,使用密码技术不仅可以保证信息的机密性,而且可以保证信息的完整性和确证性,防止信息被篡改、伪造和假冒。 密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。依照这些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。密码在早期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据等都可实施加、脱密变换。 密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的应用,已成为一门综合性的尖端技术科学。它与语言学、数学、电子学、声学、信息论、计算机科学等有着广泛而密切的联系。它的现实研究成果,特别是各国政府现用的密码编制及破译手段都具有高度的机密性。

密码学实验报告模板总结模板计划模板.doc

密码学应用与实践课程实验报告 实验 1:实现 DES密码体制 一、实验目的 1.编写程序实现 DES的加、解 密:1)编程构造 DES的密钥; 2)应用上述获得的密钥将一段英文或文件进行加、解密。 2.用 DES算法实现口令的安全 二、实验内容 1.DES原理 DES综合运用了置换,代换,移位多种密码技术,是一种乘积密码。在算法结构上采用迭代 结构,从而使其结构清晰,调理清楚,算法为对合运算,便于实现,运行速度快。DES使用了初始置换IP 和 IP-1 各一次(相应的置换看算法描述图表)置换P16 次,安排使用这 3 个置换的目的是把数据彻底打乱重排。选择置换 E 一方面把数据打乱重排,另一方面把32 位输入扩展为48 位,算法中除了S- 盒是非线性变换外,其余变换均为显示变换,所以保密 的关键是选择S- 盒。符合以下 3 条准则: (1)对任何一个 S- 盒而言,没有任何线性方程式等价于此S-盒的输出输入关系,即是S- 盒是非线性函数。 (2)改变 s- 盒的任何一位输入,都会导致两位以上的输出改变,即满足" 雪崩效应 " 。(3)当固定某一个位的输入时,S- 盒的 4 个出位之间,其中0 和 1 的个数之差小。这个准 则的本质是数据压缩,把四位输入压缩为 4 位输出。选择 S-盒函数的输入中任意改变数位, 其输出至少变化两位。因为算法中使用了16 次迭代,大大提高了保密性。 2.DES算法由加密、解密和子密钥的生成三部分组成 1)加密 DES算法处理的数据对象是一组64 比特的明文串。设该明文串为m=m1m2m64 (mi=0 或 1) 。明文串经过64 比特的密钥K 来加密,最后生成长度为64 比特的密文E。其加密过程图示如下:

古典密码学实验

一、实验背景与目的 通过实现简单的古典密码算法,理解密码学的相关概念如明文(plaintext)、密文(ciphertext)、加密密钥(encryption key)、解密密钥(decryption key)、加密算法(encryption algorithm)、解密算法(decryption algorithm)等。 二、实验环境 Visual C++6.0 三、实验内容 (1)用C\C++语言实现仿射变换(Affine)加/解密算法;2) (2)用C\C++语言实现统计26个英文字母出现的频率的程序; (3)利用仿射变换加/解密程序对一段较长的英文文章进行加密,再利用统计 软件对明文和密文中字母出现的频率进行统计并作对比,观察有什么规 律。 其中a, b为密钥, 25 , 0≤ ≤b a ,且gcd(a, 26)=1 实验要求:加/解密程序对任意满足条件的a、b都能够处理。仿射变换: 加密: ()26 mod , b am m E c b a + = = 解密: ()()26 mod 1 , b c a c D m b a - = =- 四、实验原理 一个仿射变换对应于一个矩阵和一个向量的乘法,而仿射变换的复合对应于普通的矩阵乘法,只要加入一个额外的行到矩阵的底下,这一行全部是0除了最右边是一个1,而列向量的底下要加上一个1。仿射变换原理在基于MQ问题的多变元公钥密码中,公钥一般是方程组,但是这种没有处理的方程组很容易受到插值法的攻击,例如:首先在q元有限域上选取个变量以及个变量。构造方程组:这里面公钥信息方程组就是:其中是明文信息,而则是密文。可以看出这样的公钥信息很容易受到插值法的攻击,下面使用仿射将

密码学实验指导

密码学实验指导

目录 实验一凯撒密码算法实验 1 实验二维吉利亚密码算法实验 5 实验三普莱费尔密码算法实验 9 实验四 IDEA密码算法实验 17 实验五 BCH纠错编码算法任务书 27

实验一凯撒密码算法实验 1 实验目的 通过实验熟练掌握凯撒密码算法,学会凯撒密码算法程序设计,提高C++程序设计能力。 2 实验学时:2 实验类别:验证实验■综合性实验□设计性实验□ 3 实验环境 软件环境Windows Xp/Windows 2000 Visual c++/Turbo c++ 3.0 硬件系统Pentium 4 3.0G 512MRAM 计算机等 4 算法原理 按照a~z依次对应0~25编码,变量K存放密钥-正整数。变量M存放一明文字符ASCII码,变量C存放M中的数据经加密后得到的一密文字符的ASCII码。 加密算法:C≡(M+K)mod 26,如此继续下去,实现逐个字符进行加密。 5 实验步骤与内容 1)编写程序 2)编辑录入 3)记录调试及进行情况 4)程序结构说明文档 5)程序使用说明文档 6 思考密钥K的有效的最小取值范围 7 实验总结与体会 8 要求提交完整的实验报告 9 参考程序代码 #include #include using namespace std; //获取密钥函数getKey()

int getKey() { int key; cout<<"请输入密钥:"; cin>>key; return key; } //将明文中的字符全部转化为大写的函数change() void change(char s[]) { int i; for(i=0;i96&&s[i]<122) s[i] = s[i]-32; } } //判断输入的明文格式是否有误的函数getError() //有误则返回0,否则就返回1 int getError(char s[]) { int i,error; for(i=0;i65&&s[i]<=82)||(s[i]>96&&s[i]<=122)) { error = 1;

实验一_经典密码学实验_

实验一经典密码学实验 【实验原理】 古典密码算法历史上曾被广泛应用,大都比较简单,使用手工和机械操作来实现加密和解密。它的主要应用对象是文字信息,利用密码算法实现文字信息的加密和解密。下面介绍两种常见的具有代表性的古典密码算法,以帮助读者对密码算法建立一个初步的印象。 1.替代密码 替代密码算法的原理是使用替代法进行加密,就是将明文中的字符用其它字符替代后形成密文。例如:明文字母a、b、c、d ,用D、E、F、G做对应替换后形成密文。 替代密码包括多种类型,如单表替代密码、多明码替代密码、多字母替代密码、多表替代密码等。下面我们介绍一种典型的单表替代密码,恺撒(caesar)密码,又叫循环移位密码。它的加密方法,就是将明文中的每个字母用此字符在字母表中后面第k个字母替代。它的加密过程可以表示为下面的函数: E(m)=(m+k) mod n 其中:m为明文字母在字母表中的位置数;n为字母表中的字母个数;k为密钥;E(m)为密文字母在字母表中对应的位置数。 例如,对于明文字母H,其在字母表中的位置数为8,设k=4,则按照上式计算出来的密文为L: E(8) = (m+k) mod n = (8+4) mod 26 = 12 = L 2.置换密码 置换密码算法的原理是不改变明文字符,只将字符在明文中的排列顺序改变,从而实现明文信息的加密。置换密码有时又称为换位密码。 矩阵换位法是实现置换密码的一种常用方法。它将明文中的字母按照给的顺序安排在一个矩阵中,然后用根据密钥提供的顺序重新组合矩阵中字母,从而形成密文。例如,明文为attack begins at five,密钥为cipher,将明文按照每行6列的形式排在矩阵中,形成如下形式: a t t a c k b e g i n s

实验一 古典密码-Vigernere算法

实验一古典密码-Vigenere算法 班级:学号:姓名: 一、实验目的 1、理解简单加密算法的原理; 2、掌握Vigenere密码的原理,完成Vigenere密码加解密程序的编写; 3、通过实验,加深对古典密码体制的了解,掌握对字符进行灵活处理的方法。 二,实验要求 根据Vigenere密码的原理编写程序,对输入的符号串能够根据设置的密钥分别正确实现Vigenere加密和解密功能。 三,实验过程及内容 源程序 #include "stdio.h" #include "string.h" #define BUF_MAX 100 static int square[27][27]; //密钥统一转换为大写字母 void UpperKey(char key[]) { int key_length = strlen(key); for(int i = 0; i < key_length; i++) { if (key[i] >= 'a' && key[i] <= 'z') { key[i] -= 32; } } } //Vigenere加密 void VigenereEncrypt(char word[], char key[]) { char text[BUF_MAX]; int key_length = strlen(key);

int word_length = strlen(word); int i, j, k; for(i = 0; i < word_length; i++) { j = i % key_length; if (word[i] >= 'a' && word[i] <= 'z') { k = word[i] - 'a'; k = (k + key[j] - 'A') % 26; text[i] = k + 'a'; } else if (word[i] >= 'A' && word[i] <= 'Z') { k = word[i] - 'A'; k = (k + key[j] - 'A') % 26; text[i] = k + 'A'; } else { text[i] = word[i]; } } text[i] = '\0'; printf("Encrypt string:"); puts(text); } //Vigenere解密 void VigenereDecript(char en_word[], char key[]) { char word[BUF_MAX]; int key_length = strlen(key); int word_length = strlen(en_word); int i, j, k; for(i = 0; i < word_length; i++) { j = i % key_length; if (en_word[i] >= 'a' && en_word[i] <= 'z')

密码学实验报告总结

密码学实验报告(本文档为Word版本,下载后可自由编辑) 项目名称:××××××××× 项目负责人:××× 联系电话:××××× 编制日期:×××××

密码学实验报告 实验目的:掌握Caesar密码加密解密原理,并利用VC++编程实现。 实验内容:Caesar密码的加密原理是对明文加上一个密钥(偏移值)而得到密文。假设密钥为3,那么字母“a”对应的ASCII码为97,加上3得100正好是字母“d”的ASCII码值, 实验说明:加密实现的两种方式,只限定英文字母(区分大小写),加密时,根据明文字符是小(大)写字母,采用加密运算: 密文字符=“a”或“A”+(明文字符-“a”或“A”+password%26+26)%26 如果输入其他字符,则直接原样输出,不作处理 可以是任意字符 加密时,我们不做任何区分,直接利用Caesar密码算法 密文字符=明文字符+password 解密反之。 实验结果: void CCaesarDlg::OnButton1() //加密按钮 { UpdateData(TRUE); //从界面上的输入的值传入成员变量 m_crypt=m_plaintxt; //密文进行初始化,它与明文的长度是相同的 for(int i=0;i=48&&m_plaintxt.GetAt(i)<=57) //如果输入的字符是数字 { m_crypt.SetAt(i,'0'+(m_plaintxt.GetAt(i)-'0'+m_password%10 +10)%10);

古典密码学

古典密码学 爱伦坡所说:密码可破!人类的智慧不可能造成这样的密码,使得人类本身的才智即使运用得当也无法破开它! 一、密码学的发展历程 密码学在公元前400多年就早已经产生了,正如《破译者》一书中所说“人类使用密码的历史几乎与使用文字的时间一样长”。密码学的起源的确要追溯到人类刚刚出现,并且尝试去学习如何通信的时候,为了确保他们的通信的机密,最先是有意识的使用一些简单的方法来加密信息,通过一些(密码)象形文字相互传达信息。接着由于文字的出现和使用,确保通信的机密性就成为一种艺术,古代发明了不少加密信息和传达信息的方法。例如我国古代的烽火就是一种传递军情的方法,再如古代的兵符就是用来传达信息的密令。就连闯荡江湖的侠士,都有秘密的黑道行话,更何况是那些不堪忍受压迫义士在秘密起义前进行地下联络的暗语,这都促进了密码学的发展。 事实上,密码学真正成为科学是在19世纪末和20世纪初期,由于军事、数学、通讯等相关技术的发展,特别是两次世界大战中对军事信息保密传递和破获敌方信息的需求,密码学得到了空前的发展,并广泛的用于军事情报部门的决策。例如在希特勒一上台时,德国就试验并使用了一种命名为“谜”的密码机,“谜”型机能产生220亿种不同的密钥组合,假如一个人日夜不停地工作,每分钟测试一种密钥的话,需要约4.2万年才能将所有的密钥可能组合试完,希特勒完全相信了这种密码机的安全性。然而,英国获知了“谜”型机的密码原理,完成了一部针对“谜”型机的绰号叫“炸弹”的密码破译机,每秒钟可处理2000个字符,它几乎可以破译截获德国的所有情报。后来又研制出一种每秒钟可处理5000个字符的“巨人”型密码破译机并投入使用,至此同盟国几乎掌握了德国纳粹的绝大多数军事秘密和机密,而德国军方却对此一无所知;太平洋战争中,美军成功破译了日本海军的密码机,读懂了日本舰队司令官山本五十六发给各指挥官的命令,在中途岛彻底击溃了日本海军,击毙了山本五十六,导致了太平洋战争的决定性转折。因此,我们可以说,密码学为战争的胜利立了大功。在当今密码学不仅用于国家军事安全上,人们已经将重点更多的集中在实际应用,在你的生活就有很多密码,例如为了防止别人查阅你文件,你可以将你的文件加密;为了防止窃取你钱物,你在银行账户上设置密码,等等。随着科技的发展和信息保密的需求,密码学的应用将融入了你的日常生活。 二、密码学的基础知识 密码学(Cryptogra phy)在希腊文用Kruptos(hidden)+graphein(to write)表达,现代准确的术语为“密码编制学”,简称“编密学”,与之相对的专门研究如何破解密码的学问称之为“密码分析学”。密码学是主要研究通信安全和保密的学科,他包括两个分支:密码编码学和密码分析学。密码编码学主要研究对信息进行变换,以保护信息在传递过程中不被敌方窃取、解读和利用的方法,而密码分析学则于密码编码学相反,它主要研究如何分析和破译密码。这两者之间既相互对立又相互促进。密码的基本思想是对机密信息进行伪装。一个密码系统完成如下伪装:加密者对需要进行伪装机密信息(明文)进行伪装进行变换(加密变换),得到另外一种看起来似乎与原有信息不相关的表示(密文),如果合法者(接收者)获得了伪装后的信息,那么他可以通过事先约定的密钥,从得到的信息中分析得到原有的机密信息(解密变换),而如果不合法的用户(密码分析者)试图从这种伪装后信息中分析得到原有的机密信息,那么,要么这种分析过程根本是不可能的,要么代价过于巨大,以至于无法进

现代密码学-古典密码实验报告

现代密码学 实 验 报 告 院系:理学院 班级:信安二班 姓名: 学号:

前言 密码学(Cryptology)是研究秘密通信的原理和破译秘密信息的方法的一门学科。密码学的基本技术就是对数据进行一组可逆的数学变换,使未授权者不能理解它的真实含义。密码学包括密码编码学(Cryptography)和密码分析学(Cryptanalyst)两个既对立又统一的主要分支学科。研究密码变化的规律并用之于编制密码以保护信息安全的科学,称为密码编码学。研究密码变化的规律并用之于密码以获取信息情报的科学,称为密码分析学,也叫密码破译学。 密码学在信息安全中占有非常重要的地位,能够为信息安全提供关键理论与技术。密码学是一门古老而深奥的学问,按其发展进程,经历了古典密码和现代密码学两个阶段。现代密码学(Modern Cryptology)通常被归类为理论数学的一个分支学科,主要以可靠的数学方法和理论为基础,为保证信息的机密性、完整性、可认证性、可控性、不可抵赖性等提供关键理论与技术。

古典密码算法实验 在密码编码体制中有两种基本也是古老的编码体制一直沿用至今,它们是代替密码和置换密码,其历史悠久并且是现代密码体制的基本组成部分,在密码学中占有重要地位。古典密码是密码学发展的一个阶段,也是近代密码学产生的渊源,一般把Shannon 在1949 年发表“保密系统的通信理论”之前的时期称为古典密码时期。尽管古典密码大多比较简单,一般可用手工或机械方式实现,且都可用统计分析方法破译,目前已很少采用。但是,古典密码所采用的代替技术和置换技术仍然是现代分组密码算法设计的基础,了解它们的设计原理,有助于理解、设计和分析现代密码。 一、实验目的 通过编程实现经典的代替密码算法和置换密码,包括移位密码、维吉尼亚密码、周期置换密码、列置换密码,加深对代替技术的了解,为现代分组密码实验奠定基础。 二、实验原理 代替(Substitution)是古典密码中基本的处理技巧,就是将明文字母由其他字母表中

古典加密实验报告

古典密码算法 一、实验目的 学习常见的古典密码学算法,通过编程实现替代密码算法和置换密码算法,加深对古典密码体制的了解,为深入学习密码学奠定基础。 二、实验要求 分析替代密码算法和置换密码算法的功能需求,详细设计实现替代密码算法和置换密码算法的数据结构和流程,给出测试用例和测试步骤,得出测试和结论。替代密码算法和置换密码算法的实现程序必须提供加密和解密两个接口:int encrypt()和int decrypt()。当加密或者解密成功时返回CRYPT_OK,失败时返回CRYPT_ERROR。 三、实验原理 古典密码算法曾被广泛应用,大都比较简单,使用手工和机械操作来实现加密和解密。它的主要应用对象是文字信息,利用密码算法实现文字信息的加密和解密。下面介绍两种算法:替代密码和置换密码。 1.替代密码的原理是使用替代法进行加密,就是将明文由其它的字母、数字或符合所代替后形成密文。这里每个明文字母对应的密文字母可能是一个,也可能是多个。接收者对密文进行逆向替换即可得到明文。 2.置换密码算法的原理是不改变明文字符,而是按照某一规则重新排列消息中的比特或字符顺序,才而实现明文信息的加密。置换密码有时又称为换位密码。 我实验过程中替代密码是单表替换,用字母的下一个字母代替:for(j = 0; j < i; j++)

{ if(96 < Mingwen[j]&&Mingwen[j] < 123) { Miwen[j] = 'a' + (Mingwen[j] - 'a' + 1) % 26; } else { Miwen[j] = 'A' + (Mingwen[j] - 'A' + 1) % 26; } } 置换加密主要是对密钥进行整理,还有就是动态分配二维数组,将明文和密文填充置的过程,换密码关键代码如下: for(a = 0; a < k; a++) { for(b = 0; b < hang; b++) { Miwen[i] = p[b][ord[j]]; i++; } j++; } for(a = 0; a < 26; a++) { for(b = 0; b < k; b++) { if(key1[b] == alphatable[a]) { ord[b] = ind++; } } } 具体加密见下图:

古典密码

实验1: 古典密码 一、实验名称和性质 二、实验目的 掌握古典密码体制中的基本加密解密运算,如加法密码、仿射密码等,几种典型的古典密码体制,如Hill体制,以及关于这些古典密码体制的一些破译方法。 三、实验的软硬件环境要求 硬件环境要求: 单机,无需上Internet网。 使用的软件名称、版本号以及模块: 使用Matlab,版本6.0或以上。 四、知识准备 前期要求掌握的知识: Matlab编程 实验相关理论或原理: 古典密码的基本加密解密运算,几种典型古典密码的加密解密算法。 实验流程: 五、实验要求和注意事项 1.完成给出的程序中标有“-----------------------”部分的编程。 2.参照例子的做法,完成实验题目。要求给出完整的过程,包括程序,实验结果。 六、实验步骤和内容 1.基本的加密解密运算 例1. 使用加法密码(或称为移位密码)获得密文kddkmu,尝试所有的可能性来解密它。解:编写allshift程序,调用该程序 allshift('kddkmu') 运行结果为 kddkmu leelnv mffmow nggnpx ohhoqy piiprz qjjqsa rkkrtb sllsuc tmmtvd unnuwe voovxf wppwyg

xqqxzh yrryai zsszbj attack 是列表上出现的唯一单词,所以它就是明文buubdl cvvcem dwwdfn exxego fyyfhp gzzgiq haahjr ibbiks jccjlt function y = allshift(x); % This function displays all of the shifts of the message x for j=0:25, ------------ ; disp(z); end function y = shift(x,b); % This function performs the shift encryption function % y = x + b mod 26 % We assume that x is a text string and b is a number % The result is kept in text representation xnum=text2int(x); -----------------------; y=int2text(ynum); function y = text2int (x) % This function takes the letter in the string x and converts % it to an integer. % The convention for this function is % a --> 0 % b --> 1 % and so on... if ( (x < 'a') | (x > 'z') ), error('Text character out of range a-z'); end; y=x - 'a'; %It helps to know Matlab tricks

杭电密码学DES密码实验介绍

课程实验报告 课程密码学实验 学院通信工程学院 专业信息安全 班级14083611 学号14084125 学生姓名刘博 实验名称DES密码实验 授课教师胡丽琴

DES密码实验 一、实验要求: 1、了解分组密码的起源与涵义。 2、掌握DES密码的加解密原理。 3、用Visual C++实现DES密码程序并输出结果。 二、实验内容: 1、1949年,Shannon发表了《保密系统的通信理论》,奠定了现代密码学的基础。他还指出混淆和扩散是设计密码体制的两种基本方法。扩散指的是让明文中的每一位影响密文中的许多位,混淆指的是将密文与密钥之间的统计关系变得尽可能复杂。而分组密码的设计基础正是扩散和混淆。在分组密码中,明文序列被分成长度为n的元组,每组分别在密钥的控制下经过一系列复杂的变换,生成长度也是n的密文元组,再通过一定的方式连接成密文序列。 2、DES是美国联邦信息处理标准(FIPS)于1977年公开的分组密码算法,它的设计基于Feistel对称网络以及精心设计的S盒,在提出前已经进行了大量的密码分析,足以保证在当时计算条件下的安全性。不过,随着计算能力的飞速发展,现如今DES已经能用密钥穷举方式破解。虽然现在主流的分组密码是AES,但DES的设计原理仍有重要参考价值。在本实验中,为简便起见,就限定DES 密码的明文、密文、密钥均为64bit,具体描述如下: 明文m是64bit序列。 初始密钥K是64 bit序列(含8个奇偶校验bit)。 子密钥K1, K2…K16均是48 bit序列。 轮变换函数f(A,J):输入A(32 bit序列), J(48 bit序列),输出32 bit序列。 密文c是64 bit序列。 1)子密钥生成: 输入初始密钥,生成16轮子密钥K1, K2 (16) 初始密钥(64bit)经过置换PC-1,去掉了8个奇偶校验位,留下56 bit,接着分成两个28 bit的分组C0与D0,再分别经过一个循环左移函数LS1,得到C1与D1,连成56 bit数据,然后经过置换PC-2,输出子密钥K1,以此类推产生K2至K16。

信息安全 实验五 古典密码算法

实验五古典密码算法 实验目的: 通过编程实现替代密码算法和置换密码算法,加深对古典密码体制的了解,为深入学习密码学奠定基础。 实验环境: 运行Windows 或Linux 操作系统的PC 机,具有gcc(Linux)、VC(Windows)等C 语言编 译环境。 实验原理: 古典密码算法曾被广泛应用,大都比较简单,使用手工和机械操作来实现加密和解密。它的主要应用对象是文字信息,利用密码算法进行文字信息的加密和解密。下面介绍两种常见的具有代表性的古典密码算法,以帮助读者对密码算法建立一个初步的印象。 1. 替代密码 替代密码算法的原理是使用替代法进行加密,就是将文中的字符用其它字符替代后形成密文。例如,明文字母a、b、c、d,用D、E、F、G 做对应替换后形成密文。 替代密码包括多种类型,如单表替代密码、多明码替代密码、多字母替代密码、多表替 代密码等。下面我们介绍一种典型的单表替代密码——凯撒(Caesar)密码,又叫循环移位密码。它的加密方法就是将文中的每个字母用此字符在字母表中后面第K 个字母替代。它的加密过程可以表示为下面的函数: E(m)=(m+k) mod n 其中,m 为明文字母在字母表中的位置数;n 为字母表的字母个数;k 为密钥;E(m)为 密文字母在字母表中对应的位置数。 例如,对于明文字母H,其在字母表中的位置数为8,设k=5,则按照上式计算出来的 密文为L,计算过程如下: E(8)=(m+k) mod n=(8+5) mod 26=13=I 2. 置换密码 置换密码算法的原理是不改变明文字符,只将字符在明文中的排列顺序改变,从而实现 明文信息的加密。置换密码有时又称为换位密码。 矩阵换位法是实现置换密码的一种常用方法。它将明文中的字母按照给定的顺序安排在 一个矩阵中,然后根据密钥提供的顺序重新组合矩阵中的字母,从而形成密文。例如,明文为attack begins at five,密钥为cipher,将明文按照每行6 个字母的形式排在矩阵中,形成如 下形式: a t t a c k b e g i n s a t f i v e 根据密钥cipher 中各字母在字母表中出现的先后顺序,给定一个置换:

密码学实验报告

《—现代密码学—》 实验指导书 适用专业:计算机科学与技术 江苏科技大学计算机科学学院 2011年11 月 实验一古典密码 实验学时:2学时 实验类型:验证 实验要求:必修 一、实验目的

编程实现古典密码的加解密方法。 二、实验内容 (1)移位密码的加密和解密函数。 (2)仿射密码的加密和解密函数。 (3)维吉尼亚密码的加密和解密函数。 三、实验原理、方法和手段 (1)移位密码 对于明文字符x ,加密密钥k ,加密方法为 ,1,2,,25y x k k =+= 解密方法为 ,1,2,,25x y k k =-= (2)仿射密码 对于明文字符x ,加密密钥(,)a b ,加密方法为 ,gcd(,26)1,1,2,,25y ax b a b =+== 解密方法为 1()x a y b -=- (3)维吉尼亚密码 选取密钥字Key ,将明文按照密钥字长度分组,将明文与密钥字对应字符相加并对26求余,即为密文字符。 i i i y x k =+ 解密过程为 i i i x y k =- 四、实验组织运行要求 本实验采用集中授课形式,每个同学独立完成上述实验要求。 五、实验条件 每人一台计算机独立完成实验,有如下条件: (1)硬件:微机;

(2)软件:VC++6.0、VC++.Net 2005。 六、实验步骤 (1)将各函数编写完成; (2)在主函数中调用各函数,实现加密和解密。 七、实验报告 实验报告主要包括实验目的、实验内容、实验原理、源程序及结果。移位密码加密: #include #define n 3 //移位位数 void change(char string[]) { int i; for(i=0;string[i]!='\0';i++) { if(string[i]>='a'&&string[i]<='z') string[i]=(string[i]+n>='z'?string[i]+n-26:string[i]+n); } } void main() { char str[100]; printf("请输入一段明文"); gets(str); change(str); printf("密文为:\n"); puts(str); }

信息安全 实验一 古典密码算法C语言

信息安全实验报告 课程名称: _ 专业:计算机科学与技术 _2010_级_02班 实验编号:实验项目_ 指导教师_ _ 姓名:闫斌学号: 2010012854 实验成绩:___ 实验一古典密码算法 实验名称:古典密码算法 实验类型: 设计性实验 学时:4 适用对象: 信息安全 1.实验原理 古典密码算法历史上曾被广泛应用,大都比较简单,使用手工和机械操作来实现加密和解密。它的主要应用对象是文字信息,利用密码算法实现文字信息的加密和解密。下面介绍两种常见的具有代表性的古典密码算法,以帮助读者对密码算法建立一个初步的印象。 2.实验目的 通过变成实现替代密码算法和置换密码算法,加深对古典密码体质的了解,为深入学习密码学奠定基础。 3.实验环境 运行windows或linux操作系统的pc机,具有gcc(linux)、VC(Windows)等C语言编译环境。 4.实验内容 4.1替代密码算法 4.1.1 根据实验远离部分对替代密码算法的介绍,创建明文信息,并选择一个密钥k,编写替代密码算法的实现程序,实现加密和解密操作。 替代密码包括多种类型,如单表替代密码、多明码替代密码、多字母替代密码、多表替代密码等。 4.1.2 替代密码算法的远离是使用替代法进行加密,就是将明文的字符用其他字符替代后形成密文。例如字母a、b、c、d,用D、E、F、G做对应替换后形成密文。 4.1.3 代码

#include #include #include #define N 500 int main() { /*--------------------------------*/ int i=0,k,m,n,l; char str1[N],str2[N]; /*C=M+K...K is key...*/ clrscr(); /*--------------------------------*/ printf("This is a code password program......\n"); printf("Please input proclaimed in writing(M)::\n"); gets(str1);/*输入要加密的明文M*/ printf("Please input the key(K)(int)::\n"); scanf("%d",&k);/*输入密钥K*/ m=strlen(str1);/*测试明文的长度*/ printf("The M length is %d\n",m); printf("\n *\n *\n *\n***\n *\n"); printf("ciphertext(C) is ::\n\n"); for(i=0;i96&&n<123)/*对小写进行加密*/ { n=(n-97+k)%26; if(n<0) n=26+n; l=(char)(n+97); printf("%c",l); str2[i]=l; } else if(n>64&&n<91)/*对大写进行加密*/ { n=(n-65+k)%26; if(n<0)

密码学的发展历史简介

密码学的发展简史 中国科学院研究生院信息安全国家重点实验室聂旭云学号:2004 密码学是一门年轻又古老的学科,它有着悠久而奇妙的历史。它用于保护军事和外交通信可追溯到几千年前。这几千年来,密码学一直在不断地向前发展。而随着当今信息时代的高速发展,密码学的作用也越来越显得重要。它已不仅仅局限于使用在军事、政治和外交方面,而更多的是与人们的生活息息相关:如人们在进行网上购物,与他人交流,使用信用卡进行匿名投票等等,都需要密码学的知识来保护人们的个人信息和隐私。现在我们就来简单的回顾一下密码学的历史。 密码学的发展历史大致可划分为三个阶段: 第一个阶段为从古代到1949年。这一时期可看作是科学密码学的前夜时期,这段时间的密码技术可以说是一种艺术,而不是一门科学。密码学专家常常是凭直觉和信念来进行密码设计和分析,而不是推理证明。这一个阶段使用的一些密码体制为古典密码体制,大多数都比较简单而且容易破译,但这些密码的设计原理和分析方法对于理解、设计和分析现代密码是有帮助的。这一阶段密码主要应用于军事、政治和外交。 最早的古典密码体制主要有单表代换密码体制和多表代换密码体制。这是古典密码中的两种重要体制,曾被广泛地使用过。单表代换的破译十分简单,因为在单表代换下,除了字母名称改变以外,字母的频度、重复字母模式、字母结合方式等统计特性均未发生改变,依靠这些不变的统计特性就能破译单表代换。相对单表代换来说,多表代换密码的破译要难得多。多表代换大约是在1467年左右由佛罗伦萨的建筑师Alberti发明的。多表代换密码又分为非周期多表代换密码和周期多表代换密码。非周期多表代换密码,对每个明文字母都采用不同的代换表(或密钥),称作一次一密密码,这是一种在理论上唯一不可破的密码。这种密码可以完全隐蔽明文的特点,但由于需要的密钥量和明文消息长度相同而难于广泛使用。为了减少密钥量,在实际应用当中多采用周期多表代换密码。在

密码学实验报告AESRSA

华北电力大学 实验报告| | 实验名称现代密码学课程设计 课程名称现代密码学 | | 专业班级:学生姓名: 学号:成绩: 指导教师:实验日期:

[综合实验一] AES-128加密算法实现 一、实验目的及要求 (1)用C++实现; (2)具有16字节的加密演示; (3)完成4种工作模式下的文件加密与解密:ECB, CBC, CFB,OFB. 二、所用仪器、设备 计算机、Visual C++软件。 三. 实验原理 3.1、设计综述 AES 中的操作均是以字节作为基础的,用到的变量也都是以字节为基础。State 可以用4×4的矩阵表示。AES 算法结构对加密和解密的操作,算法由轮密钥开始,并用Nr 表示对一个数据分组加密的轮数(加密轮数与密钥长度的关系如表2所示)。AES 算法的主循环State 矩阵执行1 r N 轮迭代运算,每轮都包括所有 4个阶段的代换,分别是在规范中被称为 SubBytes(字节替换)、ShiftRows(行位移变换)、MixColumns(列混合变换) 和AddRoundKey ,(由于外部输入的加密密钥K 长度有限,所以在算法中要用一个密钥扩展程序(Keyexpansion)把外部密钥 K 扩展成更长的比特串,以生成各轮的加密和解密密钥。最后执行只包括 3个阶段 (省略 MixColumns 变换)的最后一轮运算。 表2 AES 参数 比特。

3.2、字节代替(SubBytes ) AES 定义了一个S 盒,State 中每个字节按照如下方式映射为一个新的字节:把该字节的高4位作为行值,低4位作为列值,然后取出S 盒中对应行和列的元素作为输出。例如,十六进制数{84}。对应S 盒的行是8列是4,S 盒中该位置对应的值是{5F}。 S 盒是一个由16x16字节组成的矩阵,包含了8位值所能表达的256种可能的变换。S 盒按照以下方式构造: (1) 逐行按照升序排列的字节值初始化S 盒。第一行是{00},{01},{02},…,{OF}; 第二行是{10},{l1},…,{1F}等。在行X 和列Y 的字节值是{xy}。 (2) 把S 盒中的每个字节映射为它在有限域GF(k 2)中的逆。GF 代表伽罗瓦域,GF(82) 由一组从0x00到0xff 的256个值组成,加上加法和乘法。 ) 1(] [2)2(3488++++= x x x x X Z GF 。{00}被映射为它自身{00}。 (3) 把S 盒中的每个字节记成),,,,,,,,(012345678b b b b b b b b b 。对S 盒中每个字节的每位 做如下变换: i i i i i i c b b b b b i b ⊕⊕⊕⊕⊕='++++8mod )7(8mod )6(8mod )5(8mod )4( 上式中i c 是指值为{63}字节C 第i 位,即)01100011(),,,,,,,,(012345678=c c c c c c c c c 。符号(')表示更新后的变量的值。AES 用以下的矩阵方式描述了这个变换: ?? ? ?? ? ? ? ? ? ??? ? ????????????+???????????????????????????????????????? ????????????=??????????????????????????0110001111111000011111000011111000011111100011111100011111100011111100017654321076543210b b b b b b b b b b b b b b b b 最后完成的效果如图:

相关主题
文本预览
相关文档 最新文档