当前位置:文档之家› 【精品】浅埋偏压软弱围岩隧道施工控制浅埋偏压软弱围岩隧道施工控制

【精品】浅埋偏压软弱围岩隧道施工控制浅埋偏压软弱围岩隧道施工控制

【精品】浅埋偏压软弱围岩隧道施工控制浅埋偏压软弱围岩隧道施工控制
【精品】浅埋偏压软弱围岩隧道施工控制浅埋偏压软弱围岩隧道施工控制

浅埋偏压软弱围岩隧道施工控制浅埋偏压软弱围岩隧道施工控制

具体介绍铁路双线隧道浅埋偏压软弱围岩的施工工

摘要:本文结合金温铁路麻芝川隧道工程实例,艺和施工控制,为浅埋偏压软弱围岩隧道洞口的施工提供了很好的借鉴。

关键词:铁路隧道浅埋偏压软弱围岩施工控制

1前言随着我国高速铁路发展规模日益扩大,地质条件日趋复杂,标准化的要求不断提高,铁路隧道施工技术要求也就越来越高.一般情况下隧道洞口位置的地质情况较差,主要不良地质表现为顺层偏压、覆盖层薄、土质松散、边坡失稳,围岩体结构承载力差,若处理不当易发生塌方、冒顶、边仰坡塌滑风险事件。麻芝川隧道是金温铁路的重点工程之一,进口地段就属这类情况。

2工程概况

2.1概述麻芝川隧道进口段位于浙江省温州市泽雅镇。隧道起迄里程为

DK168+673~DK171+515,全长2842m。隧道全部位于左偏曲线上,纵坡为单面下坡,坡率为4.0‰。按新奥法设计,采用复合式衬砌。

2。2工程地质麻芝川隧道地处剥蚀丘陵区,地形起伏,植被茂盛,山体自然坡度25~45°,局部可见基岩裸露。进出口均有混凝土或沥青路面的乡村公路通达。

隧道区地层分布较简单,基岩多有出露。地表出露第四系人工填土层Qml、第四系残坡积层Qel+dl,下伏侏罗系上统西山头组J3x流纹质玻屑凝灰岩.

地下水为松散岩类孔隙水和火山碎石屑岩类基岩裂隙水.区内地表流水活跃,地下水不发育,影响隧道的地下水主要为构造裂隙水。隧道区地处副热带季风气候区,气候温和,雨量充沛,四季分明.雨量充沛,年降雨量达1723。0毫米,4~9月最集中。化学环境作用等级为H2,地震动峰值加速度为0.05g,地震动反应谱特征周期为0.35s。隧道进口进口工程特点

2。3隧道进口工程特点从现场看,隧道进口进洞条件差,边仰坡的坡度陡峭。进口洞口段处于浅埋偏压严重,位于第四系残积层内。进口段表层为含砾粉质黏土,硬塑,厚0~2.5m,下伏基岩流纹质玻屑凝灰岩,强风化厚1~7。5m,下为弱风化,岩质较硬,裂隙发育,岩体破碎。地下水为基岩裂隙水,不发育。洞口浅埋段全长77m,埋深0~18m。因此,如何根据地形、围岩地质的基本特性,确定合理、快捷的施工方法,顺利穿过偏压、浅埋、破碎段是本隧道施工的关键。麻芝川隧道进口平面布置图见图1所示。图1麻芝川隧道进口平面布置图3施工总体方案隧道明洞采用明挖法施工,暗洞采用新奥法施工,进洞采用套拱进洞。隧道半明半暗部分采用套拱、超前支护等措施减小偏压力.超前支护采用108mm超前管棚注浆支护。明洞采用明挖法施工。暗洞软弱围岩地段坚持“管超前、严注浆、弱爆破、短进尺、强支护、早封闭、勤量测、紧衬砌”的施工原则。暗洞V级围岩采用三台阶四步法开挖。4浅埋偏压破碎段施工方法浅埋偏压破碎段施工方法破碎浅埋偏压隧道进洞施工技术以新奥法原理为依据,通过人工配合机械开挖及控制爆破,减少对岩体的扰动。在进洞前完成洞口段地表处理、超前支护、锚喷钢架支护、二次衬砌受力体系转换.4。1地表处理

⑴明洞段施工过程避开雨季进行,在边仰坡刷坡线外5m施做截水天沟,保证排水通畅,防止仰坡不受雨水冲刷,使洞门结构稳定。⑵尽可能在少破坏植被的情况下刷边仰坡,除去地表杂草后进行边仰坡防护,临时坡面采取锚网喷防护,永久性边坡采用锚杆框架梁的形式进行防护加固。边仰坡支护4。2边仰坡支护⑴隧道洞口施工的原则是避开雨季,施工前对隧道洞口边仰坡及影响洞门安全的崩坍、落石、易滑动土层等采取清除或加固措施,消除安全隐患。施工前做好洞顶截水天沟和洞口的截、排水,同时在施工过程避免大挖大刷,保持自上至下逐段分层开挖,保持边仰坡稳定,跟进施做

喷锚防护,及时施作洞门。⑵明洞土石方开挖前做好洞外的截水天沟等排水系统,截水天沟中线距边、仰坡开挖线边缘不小于5m,且每20m设置伸缩缝一道,天沟向排水方向为顺坡,坡度不小于2‰,天沟两侧夯填密实。将地表水排除隧道范围,防止水流冲刷边仰坡坡面造成边、仰坡坍塌。⑶隧道进口段围岩地质条件较差,开挖前必须进行中线、水平复测,确保准确无误.开挖时应在洞口施工放样的线位上进行边坡及仰坡自上而下的开挖。本隧道为Ⅴ级偏压路堑式明洞,

DK168+692~DK168+700起拱线上明挖,保留核心土,边墙挖井,纵向拉槽施工,先墙后拱衬砌,纵向拉槽长度不宜大于8m,然后施作防水层及回填。仰坡坡比为1:边、0.75,边墙采用开挖表层土质采用挖掘机,当深层遇到石质,挖机无法松动时采用小型松动爆破后再用挖掘机开挖。爆破时规定适宜装药量,尽量减少对原底层的扰动,以保证洞口围岩不被

浅埋偏压隧道的设计研究

浅埋偏压隧道的设计研究 发表时间:2016-09-01T15:06:14.747Z 来源:《基层建设》2015年6期作者:缪小金[导读] 摘要:在隧道修建中,通常会出现浅埋偏压的情况,特别是在隧道进出口处和沿山傍河处浅埋偏压隧道围岩多为IV级以上软弱围岩 衢州市科峰工程规划设计研究有限公司 摘要:在隧道修建中,通常会出现浅埋偏压的情况,特别是在隧道进出口处和沿山傍河处浅埋偏压隧道围岩多为IV级以上软弱围岩,力学性质复杂,而且受偏压影响,地应力分布不均,这就使浅埋偏压隧道稳定性分析变得很困难,使得在隧道进洞施工中很难实现施工质量、安全质量的精准控制。本文以某工程隧道出口浅埋偏压地段为研究对象,针对隧道出口段埋深较浅且存在偏压、围岩破碎、节理裂隙发育、稳定性能等特点,对隧道洞口浅埋段采取地表预注浆设计进行加固,阐述注浆施工工艺,改善软弱围岩成拱稳定条件。 关键词:洞口浅埋;偏压;隧道设计 引言 近年来,伴随着我国社会经济水平的不断发展,人们的生活水平有了很大提高,同时生活理论也有了很大的转变,越来越注重绿色环保。对工程建设环保要求也越来越高,尤其是对隧道洞口段的环保要求,相关设计施工规范均作了洞口位置规范性要求,强调早进洞、晚出洞,即适当延长洞VI和隧道长度,提倡零开挖洞口。让隧道洞口周围的植被、建筑物得到妥善保护,洞口段围岩一般比较破碎、地质条件较差,如何遵循尽量减少对岩体扰动原则提高洞口段岩体和边、仰坡稳定性,确保安全、环保进洞方式值得研究,笔者通过对隧道口浅埋段地表预注浆软弱围岩预加固措施作出了研究分析,并对如何处理这些问题提出了自己的看法。以供参考。 1 工程概况 该隧道位于改建工程Kl+364-KI+474段,隧道出口紧邻村庄,距离民房约30m.隧道全长110m,整个隧道位于R=350圆曲线上。为降低公路建设对隧道附近居民带来影响,避免原设计方案进洞深挖方造成环境破坏,着力保护山区村庄周围原始风貌,采用隧道早进洞、晚出洞环保设计理念达到零开挖进洞要求,隧道出口端洞口浅埋偏压段衬砌长度达56 m。隧道位于两大山脉间,地形起伏大,沟壑纵横。隧道轴线海拔高程介于241.2m-268.1m,隧道最大埋深31.3m,山体地势陡峭,中部起伏不平,植被发育,隧道洞口段风化非常严重,为角砾粉质粘土及强-中风化千枚状板岩,稳定性极差,洞口段均为V级围岩。 2 洞口浅埋段衬砌结构及施工方案设计 2.1衬砌结构设计 隧道洞口浅埋段衬砌形式采用V级围岩加强段复合式衬砌支护设计断面,针对隧道洞口段软弱围岩、浅埋偏压特点,结合地表预注浆加固对超前支护、初期支护及二衬进行加强设计,支护参数如下。 1)钢架,采用I18工字钢弯制而成,接头形式为垫板加高强螺栓,考虑到浅埋偏压等多种不利因素,拱架设计间距取0.8m一榀,纵向采用担2钢筋连接,环向间距取1.0m。 2)系统锚杆,采用L=4.0m25mm中空注浆锚杆,拱部及侧墙设置,环向间距0.8m,纵向间距配合钢拱架使用取0.6m,锚杆呈梅花形布置,锚杆尾部与钢拱架连接,锚杆必须设计钢垫板。 3)喷射混凝土,采用25cm厚C25网喷射混凝土,钢筋网间距20cm×20cm,钢筋网焊接钢拱架。 4)二次衬砌,采用50cm厚FS型C25钢筋混凝土,主筋采用22钢筋,纵向间距20cm,构造筋采用12钢筋,环向间距25cm。洞口范围20m 内超前支护采用注浆长管棚,设置范围为拱部120,环向间距40cm,管棚采用108×6cm热轧无缝钢管,每节长4m-6m,管棚注浆采用1:1水泥浆,注浆压力0.5MPa-2.0MPa。 2.2施工方案设计 V级围岩加强段采用台阶分部法开挖,要求先进行上弧形导坑开挖,留核心土支挡开挖工作面,有利于及时施作拱部初期支护以加强开挖工作面稳定性,核心土以及下部开挖在初期支护保护下进行,施工安全性好,一般环形进尺0.5m-1.0m,下台阶长度为开挖毛洞径1.5倍,为避免初支拱脚下沉,隧道下部断面开挖时上部断面初期支护每榀钢拱架增加4根锁脚锚杆.隧道施工开挖时少扰动岩体,严格控制超、欠挖,用风镐修边,修去欠挖部分,钢筋网和钢支撑密贴围岩面,支撑紧密,再加C15混凝土预制垫块楔紧使初期支护及时可靠。二次衬砌采用混凝土运输车、输送泵和衬砌模板台车机械化配套施工方案确保混凝土质量达到内实外光。 3隧道地表预注浆加固处理 根据隧道洞口段地形地貌以及地质特征,结合工程本身特点,通过分析确定洞口段软弱围岩加同采用水泥-水玻璃双液注浆,注浆从施工作用上看施工工艺属于静压注浆之固结注浆,在注浆理论上属于渗透注浆,主要通过注浆管将浆液均匀注入地层中,利用浆液速凝且凝固时间可控、浆液结石率高、结合体早期强度大特征,在相对较高灌浆压力,浆液以充填渗透和挤密等方式,赶走碎石土及岩体裂隙中水分和空气后占据位置使双浆液在劈裂孔隙或裂隙中混合并迅速凝结,形成结合体使原来松散围岩胶结成一个整体,改善隧道成拱稳定条件,保证工程安全顺利掘进。 3.1 地表预注浆方案设计 隧道出口洞门左侧发育有洼地,右侧地形陡峻,洞口段浅埋偏压较明显,隧道洞口处为河流.隧道出口K1+429-K1+464浅埋暗洞段隧道轴线位置埋深仅7m-9m,为确保施工安全顺利进洞,通过分析需要对隧道进洞段地表软弱围岩进行地表注浆预加固,即开挖进洞前在洞身轴线两侧各8m范嗣地表进行竖向钻孔分段注入l:1水泥-水玻璃双浆液,将松散围岩胶结成足够强度复合围岩,保证隧道安全顺利进洞.注浆需要在原地面清表及整平后方可进行。注浆管采用妒5×5mmPVC打孔塑料管,间距2.0mx2.0m,梅花形布置;塑料花管段埋入原地面不小于1.5m,管壁每隔15cm交错布孔眼,孔眼直径10mm,详见图1

浅埋软弱围岩隧道变形控制

浅埋软弱围岩隧道变形控制 摘要:本文以宁安铁路钟鸣2#隧道为例,重点阐述在浅埋软弱围岩隧道施工,通过各种技术措施对围岩变形进行控制的方法。 关键词:隧道,浅埋,软弱围岩,变形控制 abstract: this article to ning an railway chiming 2 # tunnel as an example, focuses on the shallow buried tunnel in weak rock construction, through various technical measures to control surrounding rock deformation method. key words: tunnel, shallow buried and weak surrounding rock, deformation control. 中图分类号:u452.1+2 文献标识码:a文章编号:2095-2104(2013)引言 在高铁建设过程中,出现了越来越多的地质条件复杂,浅埋软弱围岩的高风险隧道。由于这些浅埋地层的埋藏比较浅,大多是强风化破碎的围岩,地质条件变化较大,围岩应力分布复杂,且开挖断面大,造成了隧道施工过程中,施工难度增大,初支变形复杂和隧道整体稳定难以控制的情况,隐含着很多坍塌等安全隐患。本文以钟鸣2#隧道为研究对象,阐述在浅埋软弱围岩隧道施工过程中如何采取对策减小初支变形,确保施工安全的方法。 1 工程概况 钟鸣2#隧道位于宁安铁路铜陵境内,双线全长798m,施工里程为dk140+830~dk141+628。隧道穿越地层主要为含砾粉质黏土及泥质

试比较浅埋偏压隧道的几种施工方法

试比较浅埋偏压隧道的几种施工方法 发表时间:2010-06-11T08:35:09.437Z 来源:《赤子》2009年第22期供稿作者:王宇[导读] 山区公路的布线一般沿沟谷进行,沿线隧道多存在一定的偏压效应。 王宇贵州省公路桥梁工程总公司 550001 摘要结合某隧道工程所采用的三种施工方法,探讨了在不同的施工方法下,施工的受力与变形的不同数值。并对不同的施工方法的优点和注意事项作以分析。 关键词偏压隧道现场监测数值计算施工方法对比研究 1.引言 山区公路的布线一般沿沟谷进行,沿线隧道多存在一定的偏压效应。传统的防偏压方法,一般注重采用设计措施,如增设锚杆与管棚、在偏压较小的一侧增设重力式挡墙或加大衬砌的厚度等,而对施工方法则只简单地提及而没有进行对比研究,这样无形中会加大施工成本,造成施工中不安全因素的增加。本文以具体例子为依托,对施工过程中的监测资料进行分析,提出了适合该隧道的施工方法;同时,采用数值分析的手段,从受力的角度提出了最佳的施工方案。 为以后类似工程的设计与施工提供了依据。该隧道的设计为“CD”施工方法,考虑到施工工期及经济因素,拟对进口段采用正台阶施工进行试开挖并进行施工量测,通过对量测数据、施工进度、经济条件等因素的综合分析提出最终适合于该隧道的施工方法。 2 监测数据分析 根据现场条件及一般隧道的监测内容,该隧道的主要监测项目为:周边位移量测、拱顶下沉量测、地表下沉量测、钢支撑内力量测和锚杆轴力量测。各元件的具体布置,见图1。 2 1地表下沉 从地表下沉的监测曲线图可以看出,当围岩开挖历经20天之后,其地表下沉基本上就处于稳定状态,而此时掌子面已经推进了将近100m左右。上述情况表明:该断面的地表沉降经过20天以后基本完成,可以进行下一步的工作。 2.2 收敛变形 根据量测断面上台阶开挖30~97m的收敛变形血线图可以看出,量测时间共45d。在上台阶开挖过程中收敛量在3mm以内,说明在上台阶开挖过30m时围岩的大部分应力已经释放,围岩的位移大部分已发生。水平测线AC数值最大,表明隧道侧压力比竖直压力大,其中的主要原因可能是隧道左侧成拱效应比右侧成拱效应差,因此隧道左侧受到更大的围岩压力。 2.3 拱顶位移 上台阶开挖后典型断面拱顶实测位移曲线图,该断面围岩主要为炭质板岩,属于Ⅲ类围岩,围岩较破碎。通过对测量线进行拟合可知:(1)最终位移u∞=3883mm,该值较大,这主要是由于该断面所处围岩比较破碎,且节理裂隙较发育。但在第6天位移即为33.43m m,已达到最终位移的81%,这说明围岩很快趋于稳定。(2)当t =16d时,位移速率为0.1mm/d,以后随着时间的增长,位移速率将越来越小。 2.4钢支撑内力 所选取的典型断面主要围岩类型为泥岩,属于Ⅲ类围岩。 内力变化曲线时间上可分为4个阶段。其中上台阶开挖后数据曲线形成了急剧增大一缓慢增大一趋于平缓这I、Ⅱ、Ⅲ三个阶段,下台阶开挖后形成了第Ⅳ阶段。下台阶开挖后,钢支撑左右两侧的内力变化并不一致,说明钢支撑所受的左、右两侧的压力并不相等。 由于各部位内力变化在上台阶开挖后基本一致,因此可以对其中某个部位的内力变化进行分析,从而得到一般的规律,现选取钢支撑内层的左侧部位,经分析其内力最终值为2.393kN;在L =50 m 时为1.56k N,占其最终值的6 5%;在L=100m时,为1.93 k N,占其最终值的81%,可见内力的大部分在上台阶开挖后50m内产生。 2.5锚杆内力量测结果 锚杆内力量测结果,见下图。从图中可以看出,围岩变形超过20天之后,其变形基本处于稳定状态,在最初的一周之内,其变形发展是最为显著的时期,过此之后,其变形将逐渐趋于稳定。因此,围岩开挖之后的初始阶段是值得注意的时期。 2.6 施工方法调整 鉴于实测的位移、支护结构的轴力较小且收敛较快,因此将原设计中采用的“CD”法开挖并辅助超前锚杆支护的施工方法变更为采用台阶法开挖的施工方法即可满足要求。 3数值模型的建立与计算参数的选取 为了更好地了解在不同施工方法下偏压隧道的受力变形规律,以便从隧道受力变形的角度寻找出这种隧道的最佳施工方法,本文采用数值分析的手段,对其进行建模分析。 3.1数值模型的建立 根据不同的施工方法建立的数值模型如下图所示。为节省篇幅,在本文中只列出CD法开挖的网格剖分图。 计算参数的选取:综合国际《工程岩体分级标准》GB50218—94、《公路隧道设计规范》JTJ026-90、《铁路隧道设计规范》TB10003—2001等资料对各类围岩物理力学参数的取值情况,取各类围岩中值作为岩体的计算参数。对锚杆与型钢拱架材料参数则根据实验结果取值。 3.2计算结果与分析 采用数值模拟得出的几种不同施工方法下隧道周边与地表最大位移、隧道周边最大围岩应力。而锚杆轴力和钢支撑内力由于受篇幅限制,不再一一列出。 321不同施工方法下受力共同点 (1)拱顶部分的锚杆与钢支撑在不同的施工阶段受力都很小。 (2)完工后受偏压较大的右墙所承受的围岩应力最大,而且拱脚与墙角往往都是应力集中的地方。 (3)锚杆与钢支撑的受力在施工中间阶段往往是右侧受力稍大,而完工后则左侧稍大。

隧道浅埋偏压方案

浅埋、偏压、冲沟段隧道施工方案 1 引言 在浅埋、偏压、冲沟段及软弱围岩隧道施工中,由于施工技术运用或处理不当,经常会造成较大面积的坍方,由此带来人身伤害、财产损失及工期延误等是无法估量的。黄土隧道,施工难度相当大,工期要求也非常紧张,保证隧道按期安全贯通成为当前的首要任务,为此制定了隧道过浅埋、偏压、冲沟及软弱围岩隧道段专项方案。 2工程概况 武家岭隧道位于吕梁山西坡黄土梁茆区,冲沟发育,地形起伏大,高程957~1143.1m之间。隧道进出口沟底及沟壁见基岩出露,上层覆盖黄土。隧道进口里程为DK14+715,出口里程为DK18+840,全长为4125m。隧道最大埋深为156.71m,为单洞双线隧道。本隧道设计行驶速度120km/h,正线采用60kg/m的钢轨,有砟道床。以Ⅳ、Ⅴ级围岩为主,地层为新生界第四系新黄土、老黄土、砂及卵砾石,第三系黏土和粉质黏土、半胶结砾岩,下伏中生界砂岩、页岩、泥岩,地质构造复杂。武家岭隧道共3处浅埋偏压段,埋深为3~25m,分别是:DK14+727~DK15+080、DK17+110~DK17+460、DK18+450~DK18+832隧道进出口位于土石分界线上施工安全风险高。 3 施工组织 因隧道均处于软弱围岩及黄土V级加强围岩段,为保证施工安全,采取早进晚出的进洞方案,即洞门修建应尽量避免对山体的扰动,尽可能减少边仰坡刷坡范围。洞口处已有部分按路基开挖,且边仰坡较高,不宜再破坏洞口边坡,以采取套拱、超前长管棚等辅助施工措施,确保施工安全。 首先,我项目部成立了专门的地表测量小组,对所有隧道进行了地表测量,每5-10米一个测点,分别对应相应里程的隧道与地表断面图,由

隧道软弱围岩(断层)专项施工方案

石山隧道进口软弱围岩(断层)专项施工方案 一、编制依据 1、xxx合同段工程施工总承包招标文件及设计文件、两阶段施工图设计等; 2、国家、交通部现行的公路工程建设施工规范、设计规范、验收标准、安全规范等; 3、国家及福建省相关法律、法规及条例等; 4、现场踏勘收集到的地形、地质、气象和其它地区性条件等资料; 5、近年来高速公路等类似施工经验、施工工法、科技成果; 6、福建省高速公路标准化建设指南和施工要点; 7、我单位拥有的国家级、部级工法、科技成果和长期从事高等级公路建设所积累的丰富施工经验。 二、工程概况 1、工程概况 我部承建的石山隧道0.5座,为分离式双洞隧道,隧道全长855.8m,为长隧道,左洞长854.1m,右洞长857.5m。隧道进出口均位于平面曲线内,进口左右线曲线半径分别为R左=3000m和R右=2850m;隧道纵坡坡率/坡长:左洞为0.7%/854.1m,右洞0.7%/857.5m;隧道进口设计桩号:左洞为ZK63+572,右洞为YK63+565;进口设计高程:左洞为586.69m,右洞为586.64m。。 2、地形、地貌 隧址区属剥蚀低山地貌,隧道轴线大致呈南北走向,地形呈波状起伏,起伏较大,隧道最大埋深约为160m,地表植被较发育,覆盖层较薄。进口侧山坡自然坡度25~30°,出口侧山坡自然坡度35~40°。 3、地层岩性 本隧址场区表层多为第四系残坡积土,一般厚度3-6m,冲沟底部及陡坎略薄些,下伏侏罗系南园组(J3n)凝灰熔岩及其风化层。

隧道洞身围岩为侏罗系南园组(J3n)的凝灰熔岩,属较硬-坚硬岩,岩体一般较完整,对隧道洞身围岩的稳定较有利,据地质调绘及钻孔揭露隧道区主要发育有3条裂隙带及断裂构造带,对隧道围岩不利,影响隧道围岩级别,隧道开挖时,围岩稳定性较差,易产生塌方掉块,应加强支护和监测措施,各段的具体评价见隧道纵断面图。 拟建隧道最大埋深约160m,深部围岩主要为微风化凝灰熔岩,节理裂隙发育较少-较发育,较有利于地应力的释放和调整,但钻孔中未见有岩芯饼化等高应力作用现象,综合临近泉三高速公路等工程经验分析,本隧道在隧洞区内出现高地应力的可能性不大。 隧址区未见有矿体分布,不会产生瓦斯等有害气体。但施工中粉尘可能较大,施工中应注意粉尘污染监测工作,并做好通风工作。 4、地质构造及地震动参数 根据《厦门至沙县高速公路(安溪至沙县)泉州段线路工程地震安全性评价》,线路地震设防烈度属于6度区,测区内50年超越概率10%的平均土质条件下峰值加速度为0.05g,中硬土场地动反应谱特征周期为0.45s,区域地质相对稳定,建议抗震设计按《公路工程抗震设计规范》(JTJ004-89)规范执行。 5、水文地质条件 隧道位于当地侵蚀基准面之上,山坡坡体起伏较大,隧道地表水系不发育,仅部分冲沟底部见有小水流。隧址区四周地形较陡,一般坡度25-35°,地形切割较强烈,降雨后地表水沿坡排泄迅速,无有利地表水蓄积之地形。 地下水按埋藏条件及赋存介质不同主要有:①基岩风化网状裂隙水:赋存于碎块状强风化岩~中风化岩层的网状裂隙中。隧道区岩性为侏罗系南园组(J3n)凝灰熔岩,碎块状强风化岩层裂隙较发育,富水性及导水性相对较强,接受大气降水的补给,厚度相对较小,勘察期间水量较贫乏,对洞身围岩及开挖影响较小,主要对隧道进、出口及浅埋段围岩的施工有影响。②基岩裂隙水:洞身围岩主要为微风化凝灰熔岩,主要受节理裂隙等控制,受大气降水的补给和基岩风化裂隙水的补给,向山体附近的沟谷中排泄,富水性一般较差,节理密集带相对较富水,但本隧道3条节理带宽度小,故地下水贫乏。

浅埋偏压软弱围岩隧道施工控制浅埋偏压软弱围岩隧道施工控制(参考模板)

浅埋偏压软弱围岩隧道施工控制浅埋偏压软弱围岩隧道施 工控制 具体介绍铁路双线隧道浅埋偏压软弱围岩的施工工 摘要:本文结合金温铁路麻芝川隧道工程实例,艺和施工控制,为浅埋偏压软弱围岩隧道洞口的施工提供了很好的借鉴。 关键词:铁路隧道浅埋偏压软弱围岩施工控制 1 前言随着我国高速铁路发展规模日益扩大,地质条件日趋复杂,标准化的要求不断提高,铁路隧道施工技术要求也就越来越高。一般情况下隧道洞口位置的地质情况较差,主要不良地质表现为顺层偏压、覆盖层薄、土质松散、边坡失稳,围岩体结构承载力差,若处理不当易发生塌方、冒顶、边仰坡塌滑风险事件。麻芝川隧道是金温铁路的重点工程之一,进口地段就属这类情况。 2 工程概况 2.1 概述麻芝川隧道进口段位于浙江省温州市泽雅镇。隧道起迄里程为 DK168+673~DK171+515,全长 2842m。隧道全部位于左偏曲线上,纵坡为单面下坡,坡率为 4.0‰。按新奥法设计,采用复合式衬砌。 2.2 工程地质麻芝川隧道地处剥蚀丘陵区,地形起伏,植被茂盛,山体自然坡度 25~45°,局部可见基岩裸露。进出口均有混凝土或沥青路面的乡村公路通达。隧道区地层分布较简单,基岩多有出露。地表出露第四系人工填土层 Qml、第四系残坡积层 Qel+dl,下伏侏罗系上统西山头组 J3x 流纹质玻屑凝灰岩。地下水为松散岩类孔隙水和火山碎石屑岩

类基岩裂隙水。区内地表流水活跃,地下水不发育,影响隧道的地下水主要为构造裂隙水。隧道区地处副热带季风气候区,气候温和,雨量充沛,四季分明。雨量充沛,年降雨量达 1723.0 毫米,4~9 月最集中。化学环境作用等级为 H2,地震动峰值加速度为 0.05g,地震动反应谱特征周期为 0.35s。隧道进口进口工程特点

公路浅埋偏压隧道的常用施工方法探究

公路浅埋偏压隧道的常用施工方法探究 发表时间:2015-12-15T11:21:50.750Z 来源:《基层建设》2015年16期供稿作者:赵光华[导读] 浙江省义乌市针对浅埋偏压隧道洞口段的施工方法举措比较丰富,比较常见的施工方法举措有砂浆锚杆表层打设法、表层压浆法、平衡压力法等。赵光华 身份证号码:330125************ 浙江省义乌市 322000 摘要:在公路隧道施工中,浅埋偏压隧道因其施工难度较大,其施工方法的选择作为施工控制的关键。本文首先简要介绍公路浅埋隧道的定义,随后结合笔者多年参与公路浅埋偏压隧道工程经验阐述常用施工方法举措,期望为今后公路浅埋隧道的施工常用施工方法的选择提供参考。 关键词:公路;浅埋偏压隧道;常用施工方法;探究 1 概述 浅埋偏压隧道是指既具有浅埋特征又同时具有偏压情况的隧道,具体指开挖过后,隧道将承受全部上层覆土层所产生的全部土压力,同时因实际地形不对称或岩层岩性不同致使隧道结构体自身所受到两侧荷载不平衡的隧道;根据隧道段落埋深与隧道自身直径的的比值小于2.5的,判定属于浅埋段,反之,属于深埋段;偏压隧道的压力根据隧道设计规范中的具体计算公式并结合隧道的实际埋深、具体尺寸及周边围岩具体级别等来判定,同时在隧道施工过程中,因采用的施工方法及顺序不一也会造成偏压情况出现。在公路隧道施工过程中,浅埋偏压隧道地段大都位于进、出洞口段因地形及覆土深度等形成浅埋偏压情况;在隧道进洞后的洞身段施工过程中,很少遇到浅埋和偏压情况,如遇到两者叠加属于地质地层属性影响造成的隧道两侧受力不均的情况。在《公路隧道设计规范》(JTG D70-2004)及《公路隧道设计细则》(JTG D70-2010)中就浅埋偏压隧道的规定均通过具体数据予以明确。 对于浅埋偏压隧道,覆盖层松散、软弱的围岩条件以及地质岩性地层的偏压造成隧道出现超过设计规定的变形、甚至出现坍塌情况的关键因素。在隧道设计阶段,针对处于浅埋段且受到严重偏压的情况,应进行专门设计防止隧道成型结构物受到影响而出现失稳事故。在施工阶段,针对浅埋偏压段的施工严格按照设计要求并结合现场实际采取可行有效的措施进行施工,防止出现质量问题及安全事故。 2 常用施工方法举措 浅埋偏压隧道属于公路不良地质隧道开挖施工中较为复杂的浅埋段及偏压段等不良地质地段的组合,同时一般还伴有岩石破碎、属于软弱岩层、含水量大等其他不良地质条件,给施工过程带来较大的难度。因此,针对浅埋偏压隧道洞口及洞身施工分别选择合适的施工方法是确保浅埋偏压隧道段施工质量及安全的前提条件。 2.1 洞口段常用施工方法举措 针对浅埋偏压隧道洞口段的施工方法举措比较丰富,比较常见的施工方法举措有砂浆锚杆表层打设法、表层压浆法、平衡压力法等。具体施工方法举措及适用范围如下。一是砂浆锚杆表层打设法举措,就是根据现场情况按设计以一定间距和深度打设锚杆孔,经检查合格后再插入锚杆在及时填入设计强度的水泥砂浆予以锚固加固土体;表层打设加固范围通过具体计算确定,主要适应于洞口浅埋开挖段中洞口顶土体处于斜坡体的地段。二是表层压浆法举措,按梅花型或方形布置打设压浆孔道,根据设计及现场实际情况确定压浆处理范围及孔道深度,插设压浆管道,拌和制作合格压浆浆液,通常采用纯水泥拌制,特殊情况可增加水玻璃等其他速凝材料进行拌制,并按设计及现行相关规范要求进行压浆作业,压浆完毕后及时对压浆通道顶部进行加强连接使之形成整体受力;主要适应用浅埋偏压隧道洞口附近地表岩层破碎、空隙大且极易出现整体塌方的地段。三是平衡压力法举措,针对浅埋偏压段,侧重于偏压的处治,即通过在临空面处设置反挡混凝土、钢筋混凝土以及预应力钢筋混凝土构筑物、对产生偏压的源头即高的山体土石方进行消减反压在临空面侧的双重平衡措施予以处理;一般先进行偏压临空侧的反挡工程的施工,即根据岩体情况选择相应工法,在岩体完整性较好的情况下,通过按一定间距设置抗滑桩或锚索抗滑桩或为加快施工进度采用型钢桩、钢管桩等抗滑设;在岩体比较差甚至是土体的情况下,建议采用预应力锚索与板及格构配合使用,或者在石料丰富地区直接采取挡墙加固举措予以处理;在采用平衡压力法的开始,及时对原状山体软弱部分进行夯实平整,根据山体实际地形开挖环形排水沟和截水沟,保证排水通畅;平衡压力法主要适用于浅埋偏压段洞口段各种地质情况。 2.2 洞身段常用施工方法举措 对于浅埋偏压隧道洞身段的施工方法举措主要有超前强(超强)支护方法、分部分块开挖方法、初期强(超强)支护方法、二衬衬砌早强(提高)强度方法等,减少或消除浅埋偏压隧道所受到的超设计及规范的偏压力。具体如下。一是超前强支护甚至超强支护的施工方法举措,在浅埋偏压段隧道洞身为开挖前,在待开挖作业面的上部设计指定范围内,采用专用机械设备进行孔道的打设钻机施工,根据设计及实际地质情况,决定孔道加密数量及插设的关键性加固材料如加强型锚杆、大钢管、加强小导管等强度高的钢管,并根据情况进行压浆作业,并及时对管间采取措施进行连接,确保整体受力效果;主要适用于具有显著的浅埋偏压且岩体软弱破碎地段。二是分部分块开挖方法举措,主要采取新奥法里的适用于软弱浅埋偏压型隧道岩层的开挖作业,具体有分两级或三级台阶进行分部分块开挖、环向留取核心土体进行分部分块开挖、中(交叉中)隔壁(C(R)D)法进行分部分块开挖、单(双)侧壁导坑开挖几大类;其中,两级或三级类多台阶开挖方法一般分上、下或上、中、下台阶,台阶间长度根据设计及现场地层地质情况以及施工作业实际划分,同时根据地质情况配合好超前强支护措施。主要适用于浅埋偏压段较好地层和较好地质地段;环向留取核心土开挖方法一般将开挖划分为三大区域,即环向上拱形部位、底部以及中间预留核心土部位,通过先进行环向上拱形部位的开挖及支护,在进行留取核心土部位开挖,最后再进行底部开挖的主要顺序进行开挖作业,主要适用于处于软弱岩层地质中的浅埋偏压地段的隧道开挖施工;中隔壁(CD)法主要以多级台阶开挖为基础将隧道开挖再从大致中间进行竖向划分,按设计及现行规范规定的既定程序进行有序开挖,且需及时设置临时中隔壁构造物,主要适用于存在不稳定岩层以及地层较差的浅埋偏压隧道段的开挖施工;而交叉中隔壁(CRD)法主要也是以多级台阶开挖为基础将隧道开挖再从大致中间进行竖向的划分,与CD法不同的是,无论开挖划分的跨度大小还是台阶间距都设置较短,以确保施工安全,再按设计及现行规范规定的既定程序进行有序开挖,且需及时设置临时中隔壁构造物,主要适用于存在极不稳定岩层以及地层极差的浅埋偏压隧道段的开挖施工。三是初期强支护甚至采取超前支护的方法举措,即通过设置加强型锚杆或锚喷结合方式甚至采取钢拱架、钢格栅等具有超前支撑能力的钢结构来快速封闭掌子面,确保围岩变形可控及施工安全。四是二次衬砌采用早强型混凝土或者采取高一等级强度的混凝土,让二衬衬砌尽可能早的发挥作用。

浅埋偏压隧道施工技术

浅埋偏压隧道施工技术 浅埋偏压隧道施工技术 摘要:随着现代科学技术的逐步完善,在不断进步的经济社会对现代交通运输行业高标准要求的推动下,浅埋偏压性隧道进洞交通建设工作正面临着前所未有的发展空间与潜力。本文对某隧道浅埋偏压段的处理进行了分析,并对地面注浆加固、超前管棚及锁脚钢管的施工工艺进行了探讨。 Abstract: with the gradual improvement of modern science and technology, in the economic and social progress of modern transportation industry to promote the high standard requirement, shallow buried bias into the hole of the tunnel traffic construction work are facing unprecedented development space and potential. In this paper a tunnel of shallow buried bias segment of the treatment was analyzed, and the ground grouting strengthening, lead tube tent and lock the construction process of the steel tube feet are discussed in this paper. 中图分类号:TU74文献标识码: A 文章编号: 一、工程概况 某隧道全长648m,该隧道属于典型的浅埋偏压隧道,且围岩松散,溶槽、裂隙发育,充填大量的碎石土和黄粘土,地质条件较差,对开挖带来很大的安全隐患,极易出现塌方甚至冒顶事故。为保证施工质量、安全以及运营的安全,我们在浅埋偏压地段施工时采取必要的加固措施。一是在外侧增设应力挡墙,以抵抗山体的侧压力,挡墙采用C 25片石混凝土,与围岩之间填充C25片石混凝土同步浇筑。二是增加拱部Φ108管棚长度,由设计15 m改为36 m,以便更好地控制隧道初期支护变形和下沉,可以有效的控制开挖和支护施工质量以及

软弱围岩隧道安全施工技术

软弱围岩隧道安全施工技术 摘要:介绍软弱围岩对隧道施工的影响,结合工程实践,详细 地介绍了隧道安全施工控制的方法和措施,阐述了施工方法的特点、施工工艺等,对类似隧道施工有一定的参考价值。 关键词:软弱;隧道;施工 abstract: the weak surrounding rock of tunnel construction, engineering practice, and detailed description of the tunnel construction safety control methods and measures, described the characteristics of the construction methods, construction techniques, etc., similar to the tunneling of some reference value. key words: weak; tunnel; construction 中图分类号:文献标识码:a 文章编号:2095-2104(2012) 1.前言 软弱围岩由于其本身的地质特性,一般力学指标低,岩性松散、承载力差,压缩性高,遇到有岩隙水的作用时,就容易引起隧道施工时产生较大的沉降变形,造成安全隐患。同时,工后沉降过大也会对运营使用和处理带来很大的困难。所以,在软弱围岩地段时,需要特别注意隧道施工方法的选择和正确的处理措施。软弱围岩隧道的施工方法,主要有台阶法和双侧壁导坑法、crd法、环形开挖 留核心土法等。双侧壁导坑法和crd法限制了大型施工机械的使用,降低了工效;工序多,相互干扰大,施工进度缓慢,且临时施工支

浅埋偏压隧道洞口施工技术

总636期第四期2018年4月 河南科技 Henan Science and Technology 浅埋偏压隧道洞口施工技术 袁健生 (福建省闽西交通工程有限公司,福建 龙岩364000) 摘要:洞口段施工是隧道施工的关键环节。本文结合国省干线横九线何家陂隧道进洞方案的成功工程实 例,采用反压护拱、大管棚超前支护、砂浆锚杆、超前小导管及锚喷联合支护加固洞口岩体,利用监控量测技术指导施工,保证洞口浅埋段的施工安全。关键词:浅埋偏压隧道;洞口;施工技术中图分类号:U455.4 文献标识码:A 文章编号:1003-5168(2018)10-0129-03 Construction Technology of Tunnel Opening with Shallow Buried Partial Pressure YUAN Jiansheng (Fujian Minxi Transportation Engineering Co.,Ltd.,Longyan Fujian 364000) Abstract:the construction of Dongkou section is the key link of tunnel construction.In this paper,combined with the successful project example of the project of the ho Jibei tunnel in the nine line of the trunk line of the provincial trunk line,this paper adopted the anti pressure arch,the front support of the large pipe shed,the mortar bolt,the ad?vanced small catheter and the bolt and shotcrete support to reinforce the rock mass in the tunnel,and guided the con? struction by monitoring and measuring technology.The construction safety of the shallow buried section of the hole was ensured.Keywords:shallow buried bias tunnel ;portal ;construction technology 1 工程概况 何家陂隧道位于福建省龙岩市小池镇境内,全长1432.5m 。该隧道进口采用削竹式洞门,出口采用端墙式洞门;采用单端掘进,由进口端(小桩号侧)进洞。何家陂隧道右洞,拱顶以上覆土层厚约4.5m ,隧道洞口横断面方向山体呈左侧高右侧低走向,属浅埋偏压洞口。根据地质调绘可知,有一条F10断层破碎带,该破碎带与隧道轴线相交,倾角77°,围岩为粉砂岩,岩体破碎,裂隙发育,呈碎块状、泥状。详见图1。 根据地勘报告,隧道正常涌水量达3500m 3/d 。隧 道区地下水主要为基岩裂隙水,地下水位高于设计行车标高。 2洞口段施工难点及处理措施2.1 洞口段施工难点 本洞口进洞施工困难,具体施工难点包括以下几方面。Y K 1+630 进口成洞面 进口YK1+615.00 设计高:559.948SK10553.99 Q dl 碎石土3-2 D 3t z 微风化泥质粉砂岩7-14D 3t z 微风 化石英砂岩7-23XSK10561.17 图1 何家陂隧道右洞地质纵断面图 ①地下水处理。基岩高压裂隙水的治理是隧道工程施工中的一大难题,虽积累了一定的经验,但困扰施工的一系列关键技术依然存在。 ②洞口右侧偏压处理。该洞口地形不对称造成隧道 结构两面荷载应力不对称,影响结构的受力及边仰坡的稳定性,施工时易引起地表侧移,偏压是引发隧道衬砌裂缝的主要原因。 收稿日期:2018-03-05 作者简介:袁健生(1966—),男,本科,中级工程师(公路与桥梁),研究方向:公路与隧道。 交通与建筑

隧道软弱围岩浅埋段地表加固技术研究

隧道软弱围岩浅埋段地表加固技术研究 摘要坪岗二号隧道地表邻近水库区浅埋段,涌水量大,围岩为砂土状强风化花岗岩,大部分已风化成土状,泡水易崩解,岩体自稳性级差,防止浅埋段洞内用水和坍塌是该段隧道施工的关键所在,采用浅埋段地表注浆加固技术可以有效地起到围岩加固、止水的效果,进而保证该浅埋段顺利通过。本文结合工程实例,隧道软弱围岩浅埋段地表加固技术做一些研究和探讨。 关键词隧道软弱围岩;浅埋段;地表加固技术 1 工程概况 坪岗2#隧道为分离式双洞,左右线相距约20m,左线ZK67+330~+370及ZK67+420~+460段(总长80m)为山间沟谷;右线ZK67+320~+445段(125m)为山间沟谷,地表邻近水库区,隧道建筑净空为8.75m×6.92m,最大开挖断面面积为111.07m2。左线ZK67+320~+380(60m)、ZK67+410~+470(60m)和右线YK67+310~+455(145m)为Ⅵ级围岩浅埋段,围岩为全风化花岗岩,风化剧烈,大部分已风化成土状,泡水易崩解,层厚7.4~17.9m,隧道洞身主要穿过此地层;隧底基岩为砂土状强风化花岗岩和碎块状强风化花岗岩,砂土状强风化花岗岩为砂土夹少量碎块,裂隙发育,呈碎石土状。地下水在沟谷段主要以砂层中的孔隙水为主,水量集中在沟谷,受地表降水补给的影响大,溝谷内有洪水或季度性水流经过。围岩饱水性差,遇水后的自稳能力会大幅降低,如不对浅埋围岩进行处理,墙腰易开裂,隧道开挖中极易发生塌方、突水、突泥[1]。 2 地表注浆加固方案 在Ⅵ级围岩浅埋隧道开挖前,采用三重管高压旋喷桩从地表加固洞身围岩,加固地层主要为全风化花岗岩,旋喷至路面深度。沿洞轴线两侧布置15~16列旋喷孔,横向布置范围为16.5m,桩孔列间距为a=0.9m(横向间距),排间距为b=0.8m(纵向间距),梅花形布置。旋喷扩散半径R=0.5m,成桩直径大于1.0m,咬合大于10cm。从地表钻进至衬砌外轮廓线处,置换土体成孔,再旋喷水泥浆液,提升喷头旋喷形成桩体,桩体长度为3~4m,拱部外侧桩体长度为3m,边墙外侧桩体为4m,旋喷桩组合固结形成混凝土应力环。旋喷钻机是通过高压水、高压气对土体进行切割成孔,高压喷入水泥浆置换土体或部分土体空间,旋喷形成固结体,达到改良地层和围岩的目的。旋喷浆液水泥用量为400km/m(初喷100kg/m,复喷300kg/m),水灰比选用0.8:1,成桩无侧限抗压强度大于1.5MPa。 3 旋喷桩施工工艺介绍 3.1 施工准备 (1)修建临时生活设施,平整场地,接通施工用水、用电,设置回浆池。检查机器运转情况并做好各易损件的储备工作。

浅埋偏压隧道进洞施工技术及应用

浅埋偏压隧道进洞施工技术及应用 浅埋偏压隧道进洞施工技术及应用 摘要:浅埋偏压隧道由于其浅埋偏压的不利因素,在施工和后续的运营中极易产生病害,造成人身财产的损失。本文对施工过程中遇到的问题、处理方法及爆破施工技术进行了探讨。 关键词:浅埋偏压;隧道;进洞;施工 中图分类号:U455文献标识码: A 文章编号: 1.工程概况 西源隧道工程,为双线隧道,最大埋深约35.34m,平均埋深约 18m,Ⅳ级围岩占17.1%,Ⅴ级围岩占82.9%,部分地段地下水较发育。隧道进出口桩号分别为K101+762、K102+230。本隧道地层岩性自上而下为第四系残坡积层粉质黏土,下伏基岩为二叠系上统P21炭质页岩、粉砂岩及二叠系下统P1q灰岩。围岩破碎,节理裂隙发育,空隙潜水较发育,多处浅埋,沟谷。隧道围岩较差,遇水极易软化,施工安全风险极大。 2.设计施工方法 衬砌及施工辅助措施情况见表1。 表1西源隧道正洞衬砌与施工辅助措施一览表 管棚采用Φ108mm×108m热轧无缝钢管,外插脚为3□,压注水泥浆液。 3.施工过程中遇到的问题及处理方法 (1)在洞口边仰坡开挖过程中,隧道进口右侧坡体上有滑坡现象出现,滑坡面光滑。处理方法:在滑坡体处加设锚杆、再挂网喷浆。 (2)在洞口长管棚施工时,发现导向墙右侧下沉,但导向墙整体完好,导向墙上部土体有开裂现象。经各方现场勘查研究,一致认为施工恰处梅雨季节,隧址处围岩孔隙水发育,导向墙两基脚地基为炭质页岩,遇水后承载力急剧下降造成导向墙下沉,经检测实际地基土承载力只有40KPa左右,远小于设计显示的200KPa。处理方法:

将导向墙两基脚从设计上的120°改为180°,并增大基脚尺寸,同时采用小导管注浆加固导向墙基脚(采用ф42小导管,L=4~5m,左、右两侧纵横向各设置12根)。对基脚下岩体进行注浆板结加固,以满足导向墙地基承载力的要求。加固处理完5天开始连续观测7天,导向墙平面位置无变化,没有水平位移。 (3)采用设计图纸推荐的六步CD法施工,在6步CD第3步开挖时,发现6步CD第1步与6步CD第2步连接处中隔壁9榀钢架出现了变形,介于此情况,现场马上进行6步CD第3步回填,并及时开挖了6步CD第4步和6步CD第5步,减少了右侧土体对中隔壁的侧压力,避免中隔壁垮塌。中隔壁稳定后对掌子面挂网并喷射20cm 厚混凝土,并按30cm间距插打两排超前小导管并注浆。在隧道地表沉降观测中发现洞顶地表开裂、洞内沉降明显,为确保洞口施工安全和坡体稳定,决定对DK101+793~+833段采用准50mmPVC袖阀管注浆加固,注浆孔深度至仰拱下1m范围,注浆宽度25m,间距2.0m*2.0m。DK101+793~+813注浆压力控制在0.8Mpa左右,DK101+813~+833注浆压力控制在0.4Mpa左右。注浆采用1:1水泥浆。 (4)施工至DK101+810断面时,掌子面滑坡,但滑坡体不大,滑坡面光滑。处理方法为:回填反压,掌子面挂网并喷射15cm厚混凝土,30cm间距插打两排超前小导管并注浆,待稳固后进行开挖进尺。 (5)施工至DK101+815断面时,拱顶右侧塌方冒顶,坍塌处至掌子面约5米,埋深约6米。坍坑近似直径10米的圆坑,呈漏斗状,隧道内坍体近300m3左右。 经分析,造成此次冒顶的主要原因有:①围岩破碎,围岩为Ⅴc 级围岩,表层Qe1+d1粉质黏土,褐黄色,硬塑。塌方前两天连续下雨,粉质黏土遇水软化、松散,失去承载力。②DK101+813~+833段注浆压力为0.4Mpa左右,注浆压力小,仅对注浆孔周围小部分岩体起到板结效果,达不到注浆加固围岩的作用。注浆压力0.8Mpa时围岩板结效果注浆压力0.4Mpa时围岩板结效果③此处正处于纵向土、岩交界面,两介质性能差异较大,粘结较差。④洞口长管棚未能很好的起到超前支护作用。由于施工误差,设计的长管棚钢管间距为40cm,

隧道浅埋偏压段施工处理方案

隧道左洞出口浅埋偏压段施工处理方案隧道浅埋偏压,采取加强施工辅助措施,以确保工程安全。 一、浅埋偏压情况勘察 进出、口端覆盖层埋深较浅,并且岩体空隙裂隙水发育,下雨时容易形成洞内拱部淋雨状,极易产生冒顶坍塌现象,隧道出口端山坡自然坡度较陡,洞身段围岩级别低,易产生滑坡或崩塌现象。整个隧道全长范围勘察分析,山体坡度向线路右侧倾斜,左侧偏压。 洞口浅埋段处理方案 1、对山体表面植被清理,进出口地段纵向25米,横向左洞拱脚至右洞拱脚范围内,进行山体注浆加固,采用ф89钢管压浆,管身按梅花状布眼。间距1米,按梅花形布置。注浆压力2.0~2.5mpa,钢管端部插入初期支护范围,隧道开挖施工时与钢支撑施焊连结。确保洞内施工安全,施工中,短进尺,强支护。 2、同时洞内施工加强辅助措施,在原设计的基础上采用双层超前小导管加强,钢支撑间距调整至50cm。 3、偏压对洞身影响 由于隧道洞身受到承载力相差较大,特别是左洞室,整个洞室受力不对称,支护结构承受显著不对称的围岩压力,将造成支护结构开裂,整个隧道净空断面变形。 4、偏压对中隔墙的影响 中隔墙浇筑后,由于整个山体全部作用于隧道左洞室,且围岩较差,那么整个山重荷载作用在支体上,即中隔墙上。左侧剪应力相对较大,

中隔墙受力不平衡,中隔墙会失稳,将导致中隔墙开裂,或中隔墙倾陷。中隔墙在连拱隧道施工中起到关键作用,一旦中隔墙出现问题,整个隧道将受到致命的影响,而且中隔墙质量问题是无法弥补的。因此偏压处理是一个关键,将关系到整个隧道质量能否达标的关键。 采取措施 a、长管棚超前支护 通过管棚花管扩散注浆可以改变岩体结构,使破碎岩体固结,钢管注浆,可以提高管棚抗剪切能力,整个管棚通过洞口承重墙来减轻山体对围岩的压力,从而改变偏压造成不利影响。 b、隧道的开挖方式 三车道双连拱隧道,跨度大,埋深浅,洞身受压不平横,围岩级别低,所以采取三导坑开挖法,先开挖中导坑,再开挖侧导坑,在中隔墙施工结束后,由于隧道左洞偏压,所以及时对隧道中隔墙右侧进行架设水平支撑,防止左侧偏压对中隔墙产生向右的推力,导致中隔墙倒塌。 C、通过卸载方式改变偏压 对于隧道出口偏压地段,采取卸载反压回填土的方式,来调整隧道出口段的偏压,进行卸载反压回填施工后,对回填面进行喷射砼施工。

相关主题
文本预览
相关文档 最新文档