当前位置:文档之家› 高考大题专项突破函数、导数、方程、不等式1.1

高考大题专项突破函数、导数、方程、不等式1.1

高考大题专项突破函数、导数、方程、不等式1.1
高考大题专项突破函数、导数、方程、不等式1.1

高考大题专项突破一

1.1导数与函数的单调性、极值、最值

1.(优质试题广西桂林模拟)已知函数f(x)=(x-k)e x.

(1)求f(x)的单调区间;

(2)求f(x)在区间[0,1]上的最小值.

?优质试题21500794?2.(优质试题浙江,20)已知函数f(x)=(x--)e-x

(1)求f(x)的导函数;

(2)求f(x)在区间上的取值范围.

?优质试题21500795?3.(优质试题福建福州一模)已知函数f(x)=a ln x+x2-ax(a∈R).

(1)若x=3是f(x)的极值点,求f(x)的单调区间;

(2)求g(x)=f(x)-2x在区间[1,e]的最小值h(a).

4.(优质试题福建龙岩一模)已知函数f(x)=x2-2x+m ln x(m∈R),g(x)=-e x.

(1)若m=-1,函数φ(x)=f(x)--(0

(2)若f(x)存在两个极值点x1,x2(x1

5.(优质试题湖南邵阳一模)已知函数f(x)=x ln x-x2,直线l:y=(k-2)x-k+1,且k ∈Z.

(1)若?x0∈[e,e2],使得f(x0)>0成立,求实数a的取值范围;

(2)设a=0,当x>1时,函数f(x)的图象恒在直线l的上方,求k的最大值.

?优质试题21500796?6.(优质试题河北衡水中学三调,理21)已知函数f(x)=-ax,e为自然对数的底数.

(1)若函数f(x)的图象在点(e2,f(e2))处的切线方程为3x+4y-e2=0,求实数a,b的值;

(2)当b=1时,若存在x1,x2∈[e,e2],使f(x1)≤f'(x2)+a成立,求实数a的最小值.

参考答案

高考大题专项突破答案与解析

高考大题专项突破一函数、

1.1导数与函数的单调性、

极值、最值

1.解 (1)由题意知f'(x)=(x-k+1)e x.

令f'(x)=0,得x=k-1.

当x∈(-∞,k-1)时,f'(x)<0,当x∈(k-1,+∞)时,f'(x)>0.

所以f(x)的单调递减区间是(-∞,k-1),单调递增区间是(k-1,+∞).

(2)当k-1≤0 即k≤1时,f(x)在[0,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(0)=-k;

当0

当k-1≥1 即k≥2时,f(x)在[0,1]上单调递减,

所以f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.

综上,当k≤1时,f(x)在[0,1]上的最小值为f(0)=-k;

当1

当k≥2时,f(x)在[0,1]上的最小值为f(1)=(1-k)e.

2.解 (1)因为(x--)'=1-

,(e-x)'=-e-x,

-

e-x-(x--)e-x

所以f'(x)=

-

-) --)-

.

=

-

(2)由f'(x)

-) --)-

=0,

=

-

解得x=1或x=.

因为

又f(x)=--1)2e-x≥0

所以f(x)在区间上的取值范围是-.

3.解 (1)f'(x)=+2x-a(x>0).

∵x=3是函数f(x)的一个极值点,

∴f'(3)=+6-a=0,解得a=9,

∴f'(x)=-) -),

∴当03时,f'(x)>0,当

∴f(x)的单调递增区间为,(3,+∞);f(x)的单调递减区间为.

(2)g(x)=a ln x+x2-ax-2x,x∈[1,e],g'(x)=-) -).

①当≤1 即a≤2时,g(x)在[1,e]上递增,g(x)min=g(1)=-a-1;

②当1<

故g(x)min=g=a ln-a;

③当≥e 即a≥2e时,g(x)在[1,e]上递减,

故g(x)min=g(e)=a(1-e)+e(e-2).

综上,

h(a)=--

--

-)-)

4.解 (1)当m=-1时,φ(x)=x-ln x,φ'(x)=-,

当a<0时,φ'(x)<0,φ(x)在(0,e]上是减函数,φ(x)min=φ(e)=-1<0,不合题意.

当a>0时,由φ'(x)>0,解得x>a,由φ'(x)<0,解得0

∴φ(x)在(0,a]上是减函数,φ(x)在(a,+∞)上是增函数.

当0

φ(x)在(a,e)上是增函数,φ(x)min=φ(a)=1-ln a=2,∴a=,合题意.

当a>e时,φ(x)在(0,e]上是减函数,φ(x)min=φ(e)=-1=2,∴a=,不合题意.综上所述a=.

(2)f'(x)=2x-2+-(x>0),令f'(x)=0,得2x2-2x+m=0,①

∵f(x)存在两个极值点x1,x2(x1

∴-

?0

x1-x2=x1-(1-x1)=2x1-1∈(-1,0),

g'(x)=e x,当x∈--时,g'(x)<0;当x∈-时,g'(x)>0.

g(x)在--上是减函数,g(x)在-上是增函数,

∴g(x1-x2)的最小值为g-=--.

5.解 (1)由题意可得x2

∴t'(x)=-,令t'(x)>0,解得0e,

∴t(x)在x∈(0,e)上递增,在x∈[e,e2]上递减,

∴当x=e时,t(x)max=t(e)=,

∴a<,即a的取值范围是-.

(2)由题意可知x ln x>x(k-2)-k+1在x∈(1,+∞)上恒成立,

即k<-

-,令h(x)=-

-

(x>1),∴h'(x)=--

-)

,

令φ(x)=x-ln x-2(x>1),φ'(x)=1-->0,

∴φ(x)在x∈(1,+∞)上递增,又φ(3)=1-ln 3<0,φ(4)=2-ln 4>0,

∴存在唯一实数x0∈(3,4),使得φ(x0)=0,即x0-ln x0-2=0,∴ln x0=x0-2,

方程不等式与一次函数专题(实际应用)

方程、不等式与一次函数专题练习(实际应用) 题型一:方程、不等式的直接应用 典型例题1:(2009,株洲)初中毕业了,孔明同学准备利用暑假卖报纸赚取140~200元钱,买一份礼物送给父母.已知: 在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得0.1元;如果卖出的报纸超过1000份,则超过部分.... 每份可得0.2元. (1)请说明:孔明同学要达到目的,卖出报纸的份数必须超过1000份. (2)孔明同学要通过卖报纸赚取140~200元,请计算他卖出报纸的份数在哪个范围内. 典型例题2:(2007,福州,10分)李晖到“宁泉牌”服装专卖店做社会调查.了解到商店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息: 假设月销售件数为x 件,月总收入为y 元,销售1件奖励a 元,营业员月基本工资 为b 元. (1)求a ,b 的值; (2)若营业员小俐某月总收入不低于1800元,则小俐当月至少要卖服装多少件? 配套练习: 3、(2009,益阳)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元 买了同样的钢笔2支和笔记本5本. (1)求每支钢笔和每本笔记本的价格; (2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运 会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出. 4、(2009,济南)自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年五 月份的工资情况信息: (1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各多少元? (2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品? 5、(2009,青岛)北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种运动服多少套? (2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=?利润成本 ) 题型二:方案设计 典型例题6、(2009,深圳)迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A 、B 两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆. (1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来. (2)若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元? 典型例题7:(2008、湖北咸宁)“5、12”四川汶川大地震的灾情牵动全国人民的心,某市A 、B 两个蔬菜基地得知四川C 、D 两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区。已知A 蔬菜基地有蔬菜200吨,B 蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C 、D 两个灾民安置点。从A 地运往C 、D 两处的费用分别为每吨20元和25元,从B 地运往C 、D 两处的费用分别为每吨15元和18元。设从地运往处的蔬菜为x 吨。 x 的值; ⑵、设A 、B 两个蔬菜基地的总运费为w 元,写出w 与x 之间的函数关系式,并求总运费最小的调运方案; ⑶、经过抢修,从B 地到C 地的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m >0),其余路线的运费不变,试讨论总运费最小的调运方案。

一次函数与一次方程一次不等式

13.3 一次函数与一次方程、一次不等式 ◆知识概述 1、通过简单的实例发现并了解一次函数、一元一次方程与一元一次不等式之间的联系. 2、通过用函数观点处理方程(组)与不等式问题,体验用函数观点认识问题和处理问题的意义和方法,进一步体验数与形的相互联系的紧密性和相互转化的灵活性. 3、任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值. 4、任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0 (a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围. 5、一次函数y=kx+b与一元一次方程kx+b=0和一元一次不等式的关系:函数y=kx+b的图象在x轴上方点所对应的自变量x的值,即为不等式kx+b>0的解集;在x轴上所对应的点的自变量的值即为方程kx+b=0的解;在x轴下方所对应的点的自变量的值即为不等式kx+b<0的解集. ◆典型例题 例1、若正比例函数y=(1-2m)x的图象经过点A(x,y)和点B(x,y),当x<x时,y>1211212 >.m< 0C<mO B.m>.mD),则ym的取值范围是( A.2答案:D.例2、一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,则这个函数的解读式为____________. 分析: 本题分两种情况讨论:①当k>0时,y随x的增大而增大,则有:当x=-3,y=-5;当x =6中可得b +,把它们代入y=-2y=kx时,=x-y∴∴函 数解读式为4. 1 / 7 ②当k

构造函数法证明导数不等式的八种方法Word版

构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<< -x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f , 即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-++ +=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-++ +x x ∴111) 1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要 证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 2 1)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f =F

一次函数与方程和不等式的关系

一次函数与方程和不等式的关系 1.如图1,直线y=kx+b与x轴交于点A(-4,0),则当y>0时,x的取值范围是(?)A.x>-4 B.x>0 C.x<-4 D.x<0 (1)(2) 2.已知一次函数y=kx+b的图像,如图2所示,当x<0时,y的取值范围是(?)A.y>0 B.y<0 C.-2y2时,x的取值范围是(). A.x>5 B.x<1 2 C.x<-6 D.x>-6 4.函数y=1 2 x-3与x轴交点的横坐标为(). A.-3 B.6 C.3 D.-6 5.对于函数y=-x+4,当x>-2时,y的取值范围是(). A.y<4 B.y>4 C.y>6 D.y<6 6.如图是一次函数y=kx+b的图象,当y<2时,x的取值范围是() A、x<1 B、x>1 C、x<3 D、x>3 7.直线l1:y=k1x+b与直线l1:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x的解为() A、x>﹣1 B、x<﹣1 C、x<﹣2 D、无法确定

8.对于一次函数y=2x+4,当______时,2x+4>?0;?当________?时,?2x+?4

3 用导数证明函数不等式的四种常用方法

用导数证明函数不等式的四种常用方法 本文将介绍用导数证明函数不等式的四种常用方法. 例1 证明不等式:)0)1ln(>+>x x x (. 证明 设)0)(1ln()(>+-=x x x x f ,可得欲证结论即()(0)(0)f x f x >>,所以只需证明函数()f x 是增函数. 而这用导数易证: 1()10(0)1 f x x x '=- >>+ 所以欲证结论成立. 注 欲证函数不等式()()()f x g x x a >>(或()()()f x g x x a ≥≥),只需证明()()0()f x g x x a ->>(或()()0()f x g x x a -≥≥). 设()()()()h x f x g x x a =->(或()()()()h x f x g x x a =-≥),即证()0()h x x a >>(或()0()h x x a ≥≥). 若()0h a =,则即证()()()h x h a x a >>(或()()()h x h a x a ≥≥). 接下来,若能证得函数()h x 是增函数即可,这往往用导数容易解决. 例2 证明不等式:)1ln(+≥x x . 证明 设()ln(1)(1)f x x x x =-+>-,可得欲证结论即()0(1)f x x >>-. 显然,本题不能用例1的单调性法来证,但可以这样证明:即证)1)(1ln()(->+-=x x x x f 的最小值是0,而这用导数易证: 1()1(1)11 x f x x x x '=-=>-++ 所以函数()f x 在(1,0],[0,)-+∞上分别是减函数、增函数,进而可得 min ()(1)0(1)f x f x =-=>- 所以欲证结论成立. 注 欲证函数不等式()()()(,f x g x x I I >≥∈是区间),只需证明()()()0(f x g x x I ->≥∈.

一次函数与方程,不等式基础知识

一次函数与方程、不等式 一、一次函数与一元一次方程的关系 直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。求直线y b kx =+与x 轴交点时,可令0y =,得到方程b 0kx +=,解方程得x b k =-,直线y b kx =+交x 轴于(,0)b k -,b k -就是直线y b kx =+与x 轴交点的横坐标。 二、一次函数与一元一次不等式的关系 任何一元一次不等式都可以转化为a b 0x +>或a b 0x +<(b a 、为常数,0a ≠)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值围。 三、一次函数与二元一次方程(组)的关系 一次函数的解析式y b k 0kx =+≠()本身就是一个二元一次方程,直线y b k 0kx =+≠() 上有无数个点,每个点的横纵坐标都满足二元一次方程y b k 0kx =+≠(),因此二元一次方程的解也就有无数个。 知识点睛

一、一次函数与一元一次方程综合 【例1】 已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( ) A .2- B .2 C .1- D .0 【例2】 已知一次函数y x a =-+与y x b =+的图象相交于点()8m , ,则a b +=______. 【例3】 已知一次函数y kx b =+的图象经过点()20,,()13,,则不求k b ,的值,可直接 得到方程3kx b +=的解是x =______. 二、一次函数与一元一次不等式综合 【例4】 已知一次函数25y x =-+. (1)画出它的图象; (2)求出当3 2 x = 时,y 的值; (3)求出当3y =-时,x 的值; (4)观察图象,求出当x 为何值时,0y >,0y =,0y < 【例5】 当自变量x 满足什么条件时,函数41y x =-+的图象在: (1)x 轴上方; (2)y 轴左侧; (3)第一象限. 【例6】 已知15y x =-,221y x =+.当12y y >时,x 的取值围是( ) A .5x > B .1 2 x < C .6x <- D .6x >- 【例7】 已知一次函数23y x =-+ 例题精讲

函数、方程、不等式之间的关系

很多学生在学习中把函数、方程和不等式看作三个独立的知识点。实际上,他们之间的联系非常紧密。如果能熟练地掌握三者之间的联系,并在做题时灵活运用,将会有事半功倍的收效。 ★函数与方程之间的关系。 先看函数解析式:(0)y ax b a =+≠,这是一个一次函数,图像是一条直线。对于这个函数而言,x 是自变量,对应的是图像上任意点的横坐标;y 是因变量,也就是函数值,对应的是图像上任意点的纵坐标。如果令0y =,上面的解析式也就变成了0ax b +=,也就是一个一元一次方程了。我们知道,一般在求一个函数图像与x 轴交点的时候,令0y =(同理求一个函数图像与y 轴交点的时候,令0x =)。所以上面的意义可以这样表达:将函数解析式中的y 变为0,那么就得到相应的方程。这个方程的解也就是原先的函数图像与x 轴交点的横坐标。这就是函数解析式与方程之间的关系,它适用于所有的函数解析式。举例说明如下: 例如函数23y x =-的图像如右所示: 该函数与x 轴的交点坐标为3 (,0)2 ,也就是在函数 解析式23y x =-中,令0y =即可。令0y =也 就意味着将一元一次函数23y x =-变成了一元 一次方程230x -=,其解和一次函数与x 轴的交 点的横坐标是相同的。接下来推广到二次函数: 例如函数2 252y x x =-+的图像如右图所示: 很容易验证,该函数图象与x 轴的交点的横坐标 正是方程2 2520x x -+=的解。 如果右边的函数图象是通过列表、描点、连线 的方式作出来的,虽然比较精确,但过程十分繁琐。 在实际中,很多时候并不要求我们把函数图象作得 很精准。有时候只需要作出大致图像即可。 既然上面讲述了函数图象与对应的方程之间 的关系,我们可不可以通过利用方程的根来绘制 对应的函数图象呢 函数2 252y x x =-+对应的方程是2 2520x x -+=,先求出这个方程的两个解。很容 易根据十字相乘法(21)(2)0x x --=得出该方程的两个解分别为 1 2 和2。这样,根据函数

函数导数不等式(含答案)

函数、导数和不等式 1i.(北京卷8)某棵果树前n前的总产量S与n之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高.m值为() A.5 B.7 C.9 D.11 由已知中图象表示某棵果树前n年的总产量S与n之间的关系,可 分析出平均产量的几何意义为原点与该点边线的斜率,结合图象可得答 案. 解答:解:若果树前n年的总产量S与n在图中对应P(S,n)点 则前n年的年平均产量即为直线OP的斜率 由图易得当n=9时,直线OP的斜率最大 即前9年的年平均产量最高, 故选C 2ii(北京卷14) 已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若同时满足条件: ①x∈R,f(x)<0或g(x)<0; ②x∈(-∞,-4),f(x)g(x)<0. 则m的取值范围是________. iii 3(全国卷10) 已知函数y=x2-3x+c的图像与x轴恰有两个公共点,则c=() (A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1 求导函数可得y′=3(x+1)(x-1) 令y′>0,可得x>1或x<-1;令y′<0,可得-1<x<1; ∴函数在(-∞,-1),(1,+∞)上单调增,(-1,1)上单调减 ∴函数在x=-1处取得极大值,在x=1处取得极小值 ∵函数y=x^3-3x+c的图象与x轴恰有两个公共点

∴极大值等于0或极小值等于0 ∴1-3+c=0或-1+3+c=0 ∴c=-2或2 4iv (福建卷9)若函数y=2x 图像上存在点(x ,y )满足约束条件30,230,,x y x y x m +-≤??--≤??≥? ,则实数m 的最大值为( )A . 12 B.1 C. 32 D.2 解:约束条件 x +y ?3≤0 x ?2y ?3≤0 x ≥m 确定的区域为如图阴影部分,即△ABC 的边与其内部区域, 分析可得函数y=2x 与边界直线x+y=3交与点(1,2), 若函数y=2x 图象上存在点(x ,y )满足约束条件, 即y=2x 图象上存在点在阴影部分内部, 则必有m≤1,即实数m 的最大值为1, 故选B . 5v .(湖北卷9)函数f (x )=xcosx 2在区间[0,4]上的零点个数为( ) A.4 B.5 C.6 D.7 f(x)=xcosx2,0<=x<=4,0<=x2<=16<5.5π x=0是零点之一 cos2x=0,cosx=0,x=π/2或者x=3π/2或者x=5π/2或者x=7π/2或者x=9π/2 所以:零点共有6个 6vi (江苏卷13)已知函数2 ()(,)f x x ax b a b R =++∈的值域为[)0,+∞,若关于x 的不等式()f x c <的解集为(,6)m m +,则实数c 的值为

八年级数学 一次函数与方程、不等式综合专题复习讲义

一次函数与方程、不等式综合专题复习讲义 一、一次函数与一元一次方程的关系 直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。求直线y b kx =+与x 轴交点时,可令0y =,得到方程b 0kx +=,解方程得x b k =-,直线y b kx =+交x 轴于(,0)b k -,b k - 就是直线y b kx =+与x 轴交点的横坐标。 二、一次函数与一元一次不等式的关系 任何一元一次不等式都可以转化为a b 0x +>或a b 0x +<(b a 、为常数,0a ≠)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围。 三、一次函数与二元一次方程(组)的关系 一次函数的解析式y b k 0kx =+≠()本身就是一个二元一次方程,直线y b k 0kx =+≠()上有无数个点,每个点的横纵坐标都满足二元一次方程y b k 0kx =+≠(),因此二元一次方程的解也就有无数个。 一、一次函数与一元一次方程综合 【例1】 若直线(2)6y m x =--与x 轴交于点()60, ,则m 的值为( ) A.3 B.2 C.1 D.0 【例2】 已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( ) A .2- B .2 C .1- D .0 知识点睛 中考要求 例题精讲

【巩固】已知一次函数y x a =-+与y x b =+的图象相交于点()8m , ,则a b +=______. 二、一次函数与一元一次不等式综合 【例3】 已知一次函数25y x =-+. (1)画出它的图象; (2)求出当3 2 x =时,y 的值; (3)求出当3y =-时,x 的值; (4)观察图象,求出当x 为何值时,0y >,0y =,0y < 【例4】 当自变量x 满足什么条件时,函数23y x =-+的图象在: (1)x 轴下方; (2)y 轴左侧; (3)第一象限. 【巩固】当自变量x 满足什么条件时,函数41y x =-+的图象在: (1)x 轴上方; (2)y 轴左侧; (3)第一象限.

函数方程不等式综合应用专题

2011年中考复习二轮材料 函数、方程、不等式综合应用专题 一、专题诠释 函数思想就是用联系和变化的观点看待或提出数学对象之间的数量关系。函数是贯穿在中学数学中的一条主线;函数思想方法主要包括建立函数模型解决问题的意识,函数概念、性质、图象的灵活应用等。函数、方程、不等式的结合,是函数某一变量值一定或在某一范围下的方程或不等式,体现了一般到特殊的观念。也体现了函数图像与方程、不等式的内在联系,在初中阶段,应该深刻认识函数、方程、不等式三部分之间的内在联系,并把这种内在联系作为学生学习的基本指导思想,这也是初中阶段数学最为重要的内容之一。而新课程标准中把这个联系提到了十分明朗、鲜明的程度。因此,第二轮中考复习,对这部分内容应予以重视。 这一专题,往往以计算为主线,侧重决策问题,或综合各种几何知识命题,近年全国各地中考试卷中占有相当的分量。这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活。考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力,要求学生熟练掌握三角形、四边形、三角函数、圆等几何知识,较熟练地应用转化思想、方程思想、分类讨论思想、数形结合思想等常见的数学思想。解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决。 二、解题策略和解法精讲 函数与方程、函数与不等式密不可分,紧密联系。 利用kx+b=0或ax2+bx+c=0可以求函数与x轴的交点坐标问题,利用Δ与0的关系可以判定二次函数与x轴的交点个数等。等式与不等式是两种不同的数量关系,但在一定条件下又是可以转化的,如一元二次方程有实数根,可得不等式Δ≥0等。 一次函数及其图像与一元一次方程及一元一次不等式有着密切的关系,函数y=ax+b(a≠0,a,b为常数)中,函数的值等于0时自变量x的值就是一元一次方程ax+b=0(a≠0)的解,所对应的坐标(-b/a,0)是直线y=ax+b与x轴的交点坐标,反过来也成立;?直线y=ax+b在x轴的上方,也就是函数的值大于零,x的值是不等式ax+b>0(a≠0)的解;在x轴的下方也就是函数的值小于零,x的值是不等式ax+b<0(a≠0)的解. 一般地,每个二元一次方程组,都对应着两个一次函数,于是也就是对应着两条直线,从“数”的角度看,解方程相当于考虑自变量为何值时两个函数的值相等,以及这两函数值是何值;从形的角度考虑,解方程组相当于确定两条直线的交点坐标。 两条直线的位置关系与二元一次方程组的解: (1)二元一次方程组有唯一的解直线y=k1x+b1不平行于直线y=k2x+b2 k1≠k2.(2)二元一次方程组无解直线y=k1x+b1∥直线y=k2x+b2 k1=k2,b1≠b2. (3)二元一次方程组有无数多个解直线y=k1x+b1与y=k2x+b2重合k1=k2,b1=b2.在复习中,本专题应抓好两个要点:第一个要点是各个内容之间相关概念之间的联系、第二个要点是各个内容之间相关性质之间的联系,以期在综合运用中灵活把握。 三、考点精讲 考点一:函数与方程(组)综合应用 例1.(2010广西梧州)直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b =0的解是x=______ 【分析】∵直线y=2x+b与x轴的交点坐标是(2,0),则x=2时,y=0,∴关于x的方程2x+b=0的解是x=2。

2-3-23函数、导数与不等式、解析几何、数列型解答题

高考专题训练二十三 函数、导数与不等式、解析几何、数列型解答题 班级_______ 姓名_______ 时间:45分钟 分值:72分 总得分________ 1.(12分)(2011·成都市高中毕业班第二次诊断性检测)设△ABC 的三内角A 、B 、C 所对应的边长分别为a 、b 、c ,平面向量m =(cos A ,cos C ),n =(c ,a ),p =(2b,0),且m ·(n -p )=0. (1)求角A 的大小; (2)当|x |≤A 时,求函数f (x )=sin x cos x +sin x sin ? ?? ?? x -π6的值域. 解:(1)m ·(n -p )=(cos A ,cos C )·(c -2b ,a ) =(c -2b )cos A +a cos C =0 ?(sin C -2sin B )cos A +sin A cos C =0?-2sin B cos A +sin B =0. ∵sin B ≠0,∴cos A =12?A =π3 . (2)f (x )=sin x cos x +sin x sin ? ????x -π6=1 2 sin x cos x +32sin 2x =14sin2x +32·1-cos2x 2=34+1 4sin2x - 34cos2x =34+12sin ? ?? ?? 2x -π3. ∵|x |≤A ,A =π3,∴-π3≤x ≤π3-π≤2x -π3≤π3∴-1≤sin ? ????2x -π3≤32?3-24≤34+12sin ? ????2x -π3≤3 2. ∴函数f (x )的值域为[3-24,3 2 ].

中考数学复习:函数与方程、不等式的关系

中考数学复习:函数与方程、不等式的关系 1.函数与方程的关系 (1)关于x的一元二次方程ax2+bx+c=0(a≠0)的解?抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标的值; (2)关于x的一元二次方程ax2+bx+c=mx+n(am≠0)的解?抛物线y=ax2+bx+c (a≠0)与直线y=mx+n(m≠0)交点的横坐标的值. 2.函数与不等式的关系 (1)关于x的不等式ax2+bx+c>0(a≠0)的解集?抛物线y=ax2+bx+c(a≠0)位于x轴上方的所有点的横坐标的值; (2)关于x的不等式ax2+bx+c<0(a≠0)的解集?抛物线y=ax2+bx+c(a≠0)位于x轴下方的所有点的横坐标的值; (3)关于x的不等式ax2+bx+c>mx+n(ma≠0)的解集?抛物线y=ax2+bx+c(a≠0)位于直线y=mx+n(m≠0)上方的所有点的横坐标的值; (4)关于x的不等式ax2+bx+c<mx+n(ma≠0)的解集?抛物线y=ax2+bx+c(a≠0)位于直线y=mx+n(m≠0)下方的所有点的横坐标的值. 例题讲解 例1在平面直角坐标系xOy中,抛物线y=mx2-2mx-2(m≠0)与y轴交于点A,其对称轴与x轴交于点B.若该抛物线在-2<x<-1这一段位于直线l:y=-2x+2的上方,并且在2<x<3这一段位于直线AB的下方,求该抛物线的表达式. 解:如图,因为抛物线的对称轴是x=1,且直线l与直线AB关于对称轴对称. 所以抛物线在-1<x<0这一段位于直线l的下方. 又因为抛物线在-2<x<-1这一段位于直线l的上方,所以抛物线与直线l的一个交点的横坐标为-1. 当x=-1时,y=-2×(-1)+2=4,则抛物线过点(-1,4),将(-1,4)代入y=mx2-2mx-2,得m+2m-2=4,则m=2.所以抛物线的表达式为y=2x2-4x-2. 例2已知y=ax2+bx+c(a≠0)的自变量x与函数值y满足:当-1≤x≤1时,-1≤y≤1,且抛物线经过点A(1,-1)和点B(-1,1).求a的取值范围. 解:因为抛物线y=ax2+bx+c经过A(1,-1)和点B(-1,1),代入得a+b+c=-1,a-b+c=1, 所以a+c=0,b=-1,则抛物线y=ax2-x-a,对称轴为x=1 2a . ①当a<0时,抛物线开口向下,且x=1 2a <0,

一次函数与方程(或不等式)结合的问题

一次函数与方程(或不等式)结合的问题 一般地,一次函数中,令是一元一次方程,它的根就是的图象与x轴交点的横坐标,一元一次不等式(或)可以看作是取正值(或负值)的特殊情况,其解集可以看作相应的自变量x的取值范围。两直线的交点坐标,就是由这两条直线的解析式组成的二元一次方程组的解。下面举例说明。 例1. 在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图1所示,请根据图象所提供的信息解答下列问题: (1)甲、乙两根蜡烛燃烧前的高度分别是__________,从点燃到燃尽所 用的时间分别是_________; (2)分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式; (3)燃烧多长时间,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)在什么时间段内,甲蜡烛比乙蜡烛高在什么时间内,甲蜡烛比乙蜡烛低 析解:(1)由图1知,燃烧前两根蜡烛的高度分别为30厘米、25厘米;燃尽所用的时间分别是2小时、小时。(2)设甲蜡烛燃烧时,y与x之间的函数关系式为。由图1可知,函数的图象过点 (2,0),(0,30),所以,解得 所以甲蜡烛燃烧时y与x的关系式为:;同理乙蜡烛燃烧时y与x的关系式为。 (3)由题意得,解得。 ; 所以,当燃烧1小时的时候,甲、乙两根蜡烛的高度相等。观察图象知当时,甲蜡烛比乙蜡烛高;当时,甲蜡烛比乙蜡烛低。 说明:本题是一次函数与二元一次方程的结合,利用图象的信息,提供数据解决问题。 例2. 某零件制造车间有工人20名,已知每人每天可以制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利润150元,每制造一个乙种零件可获利润260元,在这20人中,车间每天安排x人制

一次函数与方程不等式专项练习60题(有答案)

一次函数与方程、不等式专项练习60题(有答案)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为() A.x=2 B.y=2 C.x=﹣1 D.y=﹣1 2.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为() A. x<B.x<3 C. x> D.x>3 3.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是() A.x>0 B.x<0 C.x>1 D.x<1 4.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x﹣1)﹣b >0的解集为() A.x<﹣1 B.x>﹣1 C.x>1 D.x<1 5.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为() A.x>1 B.x>2 C.x<1 D.x<2 6.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x<k1x+b的解集为()

A.x<﹣1 B.x>﹣1 C.x>2 D.x<2 7.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为() A.x<﹣2 B.﹣2<x<﹣1 C.﹣2<x<0 D.﹣1<x<0 8.已知整数x满足﹣5≤x≤5,y1=x+1,y2=﹣2x+4,对任意一个x,m都取y1,y2中的较小值,则m的最大值是()A.1B.2C.24 D.﹣9 9.如图,直线y1=与y2=﹣x+3相交于点A,若y1<y2,那么() A.x>2 B.x<2 C.x>1 D.x<1 10.一次函数y=3x+9的图象经过(﹣,1),则方程3x+9=1的解为x=_________. 11.如图,已知直线y=ax+b,则方程ax+b=1的解x=_________. 12.如图,一次函数y=ax+b的图象经过A,B两点,则关于x的方程ax+b=0的解是_________. 13.已知直线与x轴、y轴交于不同的两点A和B,S△AOB≤4,则b的取值范围是_________.

函数方程不等式之间的关系

? a及函数的图 像图像 与x 轴相 交的 情况 对应 方程 的实 数根 对应不等式的解集 图像上的最 高(低)点单调区间及单调性极(最)值 0 >? > a 与x 轴有 两个 交点 有两 个不 相等 的实 数根 2> + +c bx ax的解集是 ). , ( ) , ( 2 1 +∞ ? -∞ ∈x x x 2< + +c bx ax的解集是). , ( 2 1 x x x∈ 顶点是函数 图像上的最 低点 ) 2 , ( a b x- -∞ ∈时为减 函数,) , 2 (+∞ - ∈ a b x 时为增函数 a b x 2 - =时,函数有极(最) 小值 a b ac 4 42 -0 < a 2> + +c bx ax的解集是 ). , ( 2 1 x x x∈0 2< + +c bx ax的解集是 ). , ( ) , ( 2 1 +∞ ? -∞ ∈x x x 顶点是函数 图像上的最 高点 ) 2 , ( a b x- -∞ ∈时为增 函数,) , 2 (+∞ - ∈ a b x 时为减函数 a b x 2 - =时,函数有极(最) 大值 a b ac 4 42 - 0 =? > a 与x 轴有 一个 交点 有两 个相 等的 实数 根 2> + +c bx ax的解集是 . , 2 1 x x x x≠ ≠ 顶点是函数 图像上的最 低点 ) 2 , ( a b x- -∞ ∈时为减 函数,) , 2 (+∞ - ∈ a b x 时为增函数 a b x 2 - =时,函数有极(最) 小值0

0a 与x 轴没有交点 没有实数根 02>++c bx ax 的解集是 .R x ∈02<++c bx ax 的解集是空集. 顶点是函数图像上的最低点 )2,(a b x - -∞∈时为减函数,) ,2(+∞-∈a b x 时为增函数 a b x 2- =时,函数有极(最)小值a b a c 442 - 0++c bx ax 的解集是空集. 02<++c bx ax 的解集是.R x ∈ 顶点是函数图像上的最高点 )2,(a b x - -∞∈时为增函数,) ,2(+∞-∈a b x 时为减函数 a b x 2- =时,函数有极(最)大值a b a c 442 -

导数与函数零点、不等式证明、恒成立问题

第5讲 导数与函数零点、不等式证明、恒成立问题 高考定位 在高考压轴题中,函数与方程、不等式的交汇是考查的热点,常以含指数函数、对数函数为载体考查函数的零点(方程的根)、比较大小、不等式证明、不等式恒成立与能成立问题. 真 题 感 悟 1.(2016·全国Ⅲ卷)设函数f (x )=ln x -x +1. (1)讨论函数f (x )的单调性; (2)证明当x ∈(1,+∞)时,11,证明当x ∈(0,1)时,1+(c -1)x >c x . (1)解 由f (x )=ln x -x +1(x >0),得f ′(x )=1 x -1. 令f ′(x )=0,解得x =1. 当00,f (x )单调递增. 当x >1时,f ′(x )<0,f (x )单调递减. 因此f (x )在(0,1)上是增函数,在(1,+∞)上为减函数. (2)证明 由(1)知,函数f (x )在x =1处取得最大值f (1)=0.∴当x ≠1时,ln x 1,设g (x )=1+(c -1)x -c x , 则g ′(x )=c -1-c x ln c .令g ′(x )=0,

解得x0=ln c-1 ln c ln c. 当x0,g(x)单调递增;当x>x0时,g′(x)<0,g(x)单调递减. 由(2)知10. ∴当x∈(0,1)时,1+(c-1)x>c x. 2.(2017·全国Ⅱ卷)设函数f(x)=(1-x2)e x. (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤ax+1,求a的取值范围. 解(1)f′(x)=-2x e x+(1-x2)e x=(1-2x-x2)e x. 令f′(x)=0,得x2+2x-1=0, 解得x1=-2-1,x2=2-1, 令f′(x)>0,则x∈(-2-1,2-1),令f′(x)<0,则x∈(-∞,-2-1)∪(2-1,+∞). ∴f(x)在区间(-∞,-2-1),(2-1,+∞)上单调递减,在区间(-2-1,2-1)上单调递增. (2)f(x)=(1+x)(1-x)e x. 当a≥1时,设函数h(x)=(1-x)e x,h′(x)=-x e x<0(x>0),因此h(x)在[0,+∞)上单调递减,而h(0)=1,故h(x)≤1,所以f(x)=(x+1)h(x)≤x+1≤ax+1. 当00(x>0),所以g(x)在[0,+∞)上单调递增,而g(0)=0,故e x≥x+1. 当0(1-x)(1+x)2,(1-x)(1+x)2-ax-1=x(1-a-x-x2), 取x0=5-4a-1 2,则x0∈(0,1), (1-x0)(1+x0)2-ax0-1=0,故f(x0)>ax0+1. 当a≤0时,取x0=5-1 2,

函数与方程不等式 专题

函数与方程、不等式相结合问题 一、考情分析 函数与方程、函数与不等式都是高中数学的重要内容,也都是高考的热点和重点,在每年的高考试题中这部分内容所占的比例都很大,函数与方程、函数与不等式是高中数学的主线,它们贯穿于高中数学的各个内容,求值的问题就要涉及到方程,求取值范围的问题就离不开不等式,但方程、不等式更离不开函数,函数与方程、函数与不等式思想的运用是我们解决问题的重要手段. 二、经验分享 (1) 确定函数零点所在区间,可利用零点存在性定理或数形结合法. (2)判断函数零点个数的方法:①解方程法;②零点存在性定理、结合函数的性质; ③数形结合法:转化为两个函数图象的交点个数. (3) 已知函数零点情况求参数的步骤 ①判断函数的单调性;②利用零点存在性定理,得到参数所满足的不等式(组);③解不等式(组),即得参数的取值范围. (4)函数零点个数可转化为两个函数图象的交点个数,利用数形结合求解参数范围. (5)“a=f(x)有解”型问题,可以通过求函数y=f(x)的值域解决. 三、知识拓展 1.有关函数零点的结论 (1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点. (2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.

(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号. 2.三个等价关系 方程f (x )=0有实数根?函数y =f (x )的图象与x 轴有交点?函数y =f (x )有零点. 四、题型分析 (一) 函数与方程关系的应用 函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f (x )=0的解就是函数y =f (x )的图像与x 轴的交点的横坐标,函数y =f (x )也可以看作二元方程f (x )-y =0通过方程进行研究.就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决.函数与方程的思想是中学数学的基本思想,也是各地模考和历年高考的重点. 【例1】已知函数2|| ()2 x f x kx x =-+(x R ∈)有四个不同的零点,则实数k 的取值范围是 【分析】把函数2|| ()2 x f x kx x = -+(x R ∈)有四个不同的零点转化为方程1(2)k x x = +有三个不同的根,再利用函数图象求解

相关主题
文本预览
相关文档 最新文档