当前位置:文档之家› 潮流计算收敛性问题研究综述

潮流计算收敛性问题研究综述

潮流计算收敛性问题研究综述
潮流计算收敛性问题研究综述

潮流计算的相关问题2011

§4.5牛顿-拉夫逊法计算潮流有关问题 一、初值、收敛性和多值解 1.初值:初值选择不好,比较大,破坏了牛顿 法的基础,不收敛。选择的原则。 2.收敛性:牛顿-拉夫逊法具有平方收敛特性,高斯-塞德尔法、PQ 分解法为一阶收敛特性。 X Δ

3.多值解 对于非线性方程组,解的可能性有: ?有实际意义的解 ?有解,但在实际中无意义 (PV节点或平衡节点的无功功率超过允许值,平衡节点 的有功功率超过允许值;节点的电压过高或过低) 对策:调整运行参数,PV节点、PQ节点相互转化 ?无解,或无实数解 给定的网络结构和运行方式不合理;PV节点数目过少 对策:调整运行方式,增加PV节点 z问题很复杂,至今尚未很好解决

二、稀疏矩阵技术 1.稀疏矩阵表示法 ?节点导纳矩阵:高度稀疏的N阶复数对称方阵。因此记录矩阵的下三角。 用数组表示 数组1:记录矩阵对角元素的数值; 数组2:记录矩阵非对角元素的数值(按列存储); 数组3:记录矩阵非对角元素的行号; 数组4:记录矩阵非对角元素的按行排的位置数;

?雅可比矩阵:高度稀疏的2N阶实数方阵,其形式对称但数值不对称。其稀疏程度与节点导纳矩阵相同,可根据节点导纳矩阵形成。

2.高斯消去法 求解牛顿-拉夫逊法潮流计算的修正方程,可以采用矩阵求逆的方法。但是由于潮流计算的雅可比矩阵通常是一个高度稀疏的矩阵,其逆阵则是一个满矩阵,因此用求逆的方法会增加额外的存储单元和计算工作量。而用高斯消去法则可以保持方程组原有的稀疏性,可以大大减少计算所需的内存和时间。

3.节点的优化编号 ?静态优化法:按静态联结支路数的多少编号。 统计好网络中各节点联结的支路数后,按联结支路数的多少,由少到多,顺序编号。 ?半动态优化法:按动态联结支路数的多少编号。 先只编一个联结支路数最小的节点号,并立即将其消去;再编消去第一个节点后联结支路数最小的节点号,再立即将其消去……依此类推。 ?动态优化法:按动态增加支路数的多少编号。 不首先进行节点编号,而是寻找消去后出现的新支路数最少的节点,并为其编号,且立即将其消去; 然后再寻找第二个消去后出现的新支路数最少的节 点并为其编号,再立即将其消去……依此类推。

两机五节点网络潮流计算

内蒙古科技大学 电力系统稳态分析课程设计 题目:两机五节点网络潮流计算 —牛拉法 姓名:朱润民 学号:1167130230 学院:信息工程学院 专业:电气工程及其自动化 班级:11级电气2班 指导教师:刘景霞

目录 目录 ........................................................................... - 1 - 摘要 ........................................................................ - 2 - ABSTRACT ....................................................................... - 3 - 内蒙古科技大学课程设计任务书.................................................... - 3 - 第一章电力系统潮流计算简述...................................................... - 7 - 1.1 潮流计算简介............................................................ - 7 - 1.2潮流计算的意义及发展史.................................................. - 7 - 第二章潮流计算的数学模型....................................................... - 9 - 2.1 导纳矩阵的原理及计算方法............................................... - 9 - 2.2 潮流计算的基本方程.................................................... - 11 - 2.2 电力系统节点分类...................................................... - 11 - 2.4 潮流计算的约束条件.................................................... - 11 - 第三章牛顿-拉夫逊法概述...................................................... - 16 - 3.1 牛顿-拉夫逊法基本原理................................................. - 16 - 3.2 牛顿-拉夫逊法潮流求解过程............................................. - 16 - 3.3 牛顿—拉夫逊法的程序框图.............................................. - 22 - 第四章关于电力系统潮流计算手工计算........................................... - 23 - 4.1.节点导纳矩阵........................................................... - 23 - 4.2简化雅可比矩阵......................................................... - 24 - 4.3 修正、迭代 ............................................................ - 24 - 第五章牛顿—拉夫逊法潮流具体计算............................................. - 25 - 5.1 牛顿—拉夫逊直角坐标潮流计算Matlab程序及运行结果..................... - 25 - 5.1.1 Matlab程序...................................................... - 25 - 5.1.2 Matlab程序运行结果.............................................. - 25 - 5.1.3本程序的符号说明................................................. - 49 - 总结及感想 .................................................................... - 50 - 参考文献及资料; .............................................................. - 51 -

潮流计算(matlab)实例计算

潮流例题:根据给定的参数或工程具体要求(如图),收集和查阅资料;学习相关软件(软件自选:本设计选择Matlab进行设计)。 2.在给定的电力网络上画出等值电路图。 3.运用计算机进行潮流计算。 4.编写设计说明书。 一、设计原理 1.牛顿-拉夫逊原理 牛顿迭代法是取x0 之后,在这个基础上,找到比x0 更接近的方程的跟,一步一步迭代,从而找到更接近方程根的近似跟。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0 的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。电力系统潮流计算,一般来说,各个母线所供负荷的功率是已知的,各个节点电压是未知的(平衡节点外)可以根据网络结构形成节点导纳矩阵,然后由节点导纳矩阵列写功率方程,由于功率方程里功率是已知的,电压的幅值和相角是未知的,这样潮流计算的问题就转化为求解非线性方程组的问题了。为了便于用迭代法解方程组,需要将上述功率方程改写成功率平衡方程,并对功率平衡方程求偏导,得出对应的雅可比矩阵,给未知节点赋电压初值,一般为额定电压,将初值带入功率平衡方程,得到功率不平衡量,这样由功率不平衡量、雅可比矩阵、节点电压不平衡量(未知的)构成了误差方程,解误差方程,得到节点电压不平衡量,节点电压加上节点电压不平衡量构成新的节点电压初值,将新的初值带入原来的功率平衡方程,并重新形成雅可比矩阵,然后计算新

的电压不平衡量,这样不断迭代,不断修正,一般迭代三到五次就能收敛。 牛顿—拉夫逊迭代法的一般步骤: (1)形成各节点导纳矩阵Y。 (2)设个节点电压的初始值U和相角初始值e 还有迭代次数初值为0。 (3)计算各个节点的功率不平衡量。 (4)根据收敛条件判断是否满足,若不满足则向下进行。 (5)计算雅可比矩阵中的各元素。 (6)修正方程式个节点电压 (7)利用新值自第(3)步开始进入下一次迭代,直至达到精度退出循环。 (8)计算平衡节点输出功率和各线路功率 2.网络节点的优化 1)静态地按最少出线支路数编号 这种方法由称为静态优化法。在编号以前。首先统计电力网络个节点的出线支路数,然后,按出线支路数有少到多的节点顺序编号。当由n 个节点的出线支路相同时,则可以按任意次序对这n 个节点进行编号。这种编号方法的根据是导纳矩阵中,出线支路数最少的节点所对应的行中非零元素也2)动态地按增加出线支路数最少编号在上述的方法中,各节点的出线支路数是按原始网络统计出来的,在编号过程中认为固定不变的,事实上,在节点消去过程中,每消去一个节点以后,与该节点相连的各节点的出线支路数将发生变化(增加,减少或保持不变)。因此,如果每消去一个节点后,立即修正尚未编号节点的出线支路数,然后选其中支路数最少的一个节点进行编号,就可以预期得到更好的效果,动态按最少出线支路数编号方法的特点就是按出线最少原则编号时考虑了消去过程中各节点出线支路数目的变动情况。 3.MATLAB编程应用 Matlab 是“Matrix Laboratory”的缩写,主要包括:一般数值分析,矩阵运算、数字信号处理、建模、系统控制、优化和图形显示等应用程序。由于使用Matlab 编程运算与人进行科学计算的思路和表达方式完全一致,所以不像学习高级语言那样难于掌握,而且编程效率和计算效率极高,还可在计算机上直接输出结果和精美的图形拷贝,所以它的确为一高效的科研助手。 二、设计内容 1.设计流程图

电力系统最优潮流算法综述

电力系统最优潮流算法综述 赵 爽 任建文 华北电力大学 河北省 保定市 071003 摘 要 在电力系统中,实现系统的安全经济运行对国民经济发展具有重大的意 义。最优潮流是同时考虑网络的安全性和系统的经济性的一种实现电力系统优化的 问题。由于其安全约束条件众多、数学模型求解复杂,故难以实现经济性与安全性 的统一,因此一直是研究的热点问题。从理论出发论述了研究电力系统最优潮流问 题的意义,回顾近20年来国内外关于最优潮流的逐步发展的过程,介绍求解最优潮 流的线性方法、非线性方法和其他新型方法,并对主要的优化方法列出具有代表性 的文献,指出其优缺点,提出最优潮流有待深入研究的方向。 关键词 电力系统 最优潮流 线性算法 非线性算法 中国图书分类法分类号 TM The Summarize of Optimal Power Flow Methods of the Power System Zhao Shuang Ren Jianwen North China of Electric Power University Baoding Hebei 071003 Abstract: In the power system, the realization of the safety and economic function is important to the national economic. Optimal power flow is a problem to realize the optimization of the system which the safety of the network and the economic of the system are considered at the same time. For many restricted safe conditions and the complex of the mathematic models, it is difficult to realize the unite of the economic and security, so this question is the hotspot all along. This paper discusses the meaning of making research on the optimal power flow problem of power system. The research history and actuality on optimal power flow problem home and abroad are also summarized. And it introduces the linear method、the non-linear method and other new methods to solve the optimal power flow. Furthermore, some research directions that need to study in depth are put forward. Key words power system optimal power flow linear method non-linear method 1 引言 电力系统最优潮流的发展可以回溯到60年代初基于协调方程式的经典经济调度方法。

电力系统分析潮流计算

电力系统分析潮流计算报告

目录 一.配电网概述 (3) 1.1 配电网的分类 (3) 1.2 配电网运行的特点及要求 (3) 1.3 配电网潮流计算的意义 (4) 二.计算原理及计算流程 (4) 2.1 前推回代法计算原理 (4) 2.2 前推回代法计算流程 (7) 2.3主程序清单: (9) 2.4 输入文件清单: (11) 2.5计算结果清单: (12) 三.前推回代法计算流程图 (13) 参考文献 (14)

一.配电网概述 1.1 配电网的分类 在电力网中重要起分配电能作用的网络就称为配电网; 配电网按电压等级来分类,可分为高压配电网(35—110KV),中压配电网(6—10KV,苏州有20KV的),低压配电网(220/380V); 在负载率较大的特大型城市,220KV电网也有配电功能。 按供电区的功能来分类,可分为城市配电网,农村配电网和工厂配电网等。 在城市电网系统中,主网是指110KV及其以上电压等级的电网,主要起连接区域高压(220KV及以上)电网的作用。 配电网是指35KV及其以下电压等级的电网,作用是给城市里各个配电站和各类用电负荷供给电源。 从投资角度看,我国与国外先进国家的发电、输电、配电投资比率差异很大,国外基本上是电网投资大于电厂投资,输电投资小于配电投资。我国刚从重发电轻供电状态中转变过来,而在供电投资中,输电投资大于配电投资。从我国城网改造之后,将逐渐从输电投资转入配电建设为主。 本文是基于前推回代法的配电网潮流分析计算的研究,研究是是以根节点为10kV的电压等级的配电网。 1.2 配电网运行的特点及要求 配电系统相对于输电系统来说,由于电压等级低、供电范围小,但与用户直接相连,是供电部门对用户服务的窗口,因而决定了配电网运行有如下特点和基本要求:

牛拉法潮流计算

%本程序的功能是用牛拉法进行潮流计算 %原理介绍详见鞠平著《电气工程》 %默认数据为鞠平著《电气工程》例8.4所示数据 %B1是支路参数矩阵 %第一列和第二列是节点编号。节点编号由小到大编写 %对于含有变压器的支路,第一列为低压侧节点编号,第二列为高压侧节点编号 %第三列为支路的串列阻抗参数,含变压器支路此值为变压器短路电抗 %第四列为支路的对地导纳参数,含变压器支路此值不代入计算 %第五烈为含变压器支路的变压器的变比,变压器非标准电压比 %第六列为变压器是否是否含有变压器的参数,其中“1”为含有变压器,“0”为不含有变压器 %B2为节点参数矩阵 %第一列为节点注入发电功率参数 %第二列为节点负荷功率参数 %第三列为节点电压参数 %第四列 %第五列 %第六列为节点类型参数,“1”为平衡节点,“2”为PQ节点,“3”为PV节点参数 %X为节点号和对地参数矩阵 %第一列为节点编号 %第二列为节点对地参数 clear; clc; num=input('是否采用默认数据?(1-默认数据;2-手动输入)'); if num==1 n=4; n1=4; isb=4; pr=0.00001; B1=[1 2 0.1667i 0 0.8864 1;1 3 0.1302+0.2479i 0.0258i 1 0;1 4 0.1736+0.3306i 0.0344i 1 0;3 4 0.2603+0.4959i 0.0518i 1 0]; B2=[0 0 1 0 0 2;0 -0.5-0.3i 1 0 0 2;0.2 0 1.05 0 0 3;0 -0.15-0.1i 1.05 0 0 1]; X=[1 0;2 0.05i;3 0;4 0];

电力系统分析潮流计算例题

电力系统的潮流计算 西安交通大学自动化学院 2012.10 3.1 电网结构如图3—11所示,其额定电压为10KV 。已知各节点的负荷功率及参数: MVA j S )2.03.0(2 +=, MVA j S )3.05.0(3+=, MVA j S )15.02.0(4+= Ω+=)4.22.1(12j Z ,Ω+=)0.20.1(23j Z ,Ω+=)0.35.1(24j Z 试求电压和功率分布。 解:(1)先假设各节点电压均为额定电压,求线路始端功率。 0068.00034.0)21(103.05.0)(2 2223232232323j j jX R V Q P S N +=++=++=?0019.00009.0)35.1(10 15.02.0)(2 2 224242242424j j jX R V Q P S N +=++=++=?

则: 3068.05034.023323j S S S +=?+= 1519.02009.024424j S S S +=?+= 6587.00043.122423' 12 j S S S S +=++= 又 0346 .00173.0)4.22.1(106587.00043.1)(2 2 212122'12'1212j j jX R V Q P S N +=++=++=? 故: 6933.00216.112'1212 j S S S +=?+= (2) 再用已知的线路始端电压kV V 5.101 =及上述求得的线路始端功率 12 S ,求出线 路 各 点 电 压 。

kV V X Q R P V 2752.05 .104.26933.02.10216.1)(11212121212=?+?=+=? kV V V V 2248.101212=?-≈ kV V V V kV V X Q R P V 1508.100740.0) (24242 2424242424=?-≈?=+=? kV V V V kV V X Q R P V 1156.101092.0) (23232 2323232323=?-≈?=+=? (3)根据上述求得的线路各点电压,重新计算各线路的功率损耗和线路始端功率。 0066.00033.0)21(12.103.05.02 2 223j j S +=++=? 0018.00009.0)35.1(15 .1015.02.02 2 224j j S +=++=? 故 3066.05033.023323j S S S +=?+= 1518.02009.024424j S S S +=?+= 则 6584.00042.122423' 12 j S S S S +=++= 又 0331.00166.0)4.22.1(22 .106584.00042.12 2 212j j S +=++=? 从而可得线路始端功率 6915.00208.112 j S +=

牛拉法潮流计算

自动化07-1班段佳 07051101 function nl; %------------------------------------------------------------------------ %=================================================================== %======================牛顿——拉夫逊法============================== %===========================潮流计算================================= %=================================================================== %----------------------------------------------------------------------- % % %---------------使用说明部分--------------------------- display('% %本程序的功能是用牛顿——拉夫逊法进行潮流计算'); display('% %本程序要求用户按照一定的格式将电力系统的参数制成excel表格,系统运行时将从excel中加载这些参数,随后后即可进行潮流计算'); display('% %为了方便运算,用户再给系统节点进行编号时,请按照先PQ节点,再PV节点,最后平衡节点的顺序从小到大编号'); display('% %电力系统潮流计算excel格式——支路参数:1、支路首端号;2、末端号;3、支路阻抗;4、支路对地电纳;5、支路的变比K:1;6、支路首端处于K侧为1,1侧为0'); display('% %电力系统潮流计算excel格式——节点参数:1、节点号;2、电压大小;3、相位角;4、发电机有功;5、发电机无功;6、负载有功;7、负载无功;8、节点类型'); %=================================================================== %==============================数据准备============================== %=================================================================== % %---------------------电力系统数据加载部分----------------------------------------------- clear x=0; Branch=0;%支路参数 Note=0;%节点参数 [filename, pathname] = uigetfile('*.xls', 'please choose the excel file with your powersystem parameters ');%从外部excel导入电力系统潮流计算相关参数 try if filename ~= 0 x=xlsread([pathname,filename],'sheet1', 'A3:F3'); Branch=xlsread([pathname,filename],'sheet1', 'A5:G10');%读支路参数 Note=xlsread([pathname,filename],'sheet1', 'A15:H19');%读节点参数 end catch %进行出错处理 errmsg = lasterr; errordlg(errmsg,'Save as Error'); rethrow(lasterror); end % %---------------------支路参数初始化部分-----------------------------------------------

潮流计算问题

潮流计算的定义(课后题) 各种潮流计算模型和算法的特点、适用范围以及相互之间的区别和联系(课后题) 影响潮流收敛性的因素,以及如何改善潮流计算的收敛性(课后题) 通过功率方程说明为什么潮流计算的数学模型是非线性的应该采用什么样的数学方法求解(03A、05A) 电力系统的潮流计算有哪些常规算法有哪些扩展算法(05B) 潮流计算的目的是什么其数学模型是什么有何特点(06B) 简要说明潮流计算的概念、模型及计算方法。(07B) 高斯赛德尔迭代法和牛顿拉夫逊迭代法是常规的潮流计算方法,请介绍一下最优潮流(OPF)算法的原理及其应用。(04电科院) 潮流计算的目的: 常规潮流计算的目的是在已知电力网络参数和各节点的注入量的条件下,求解各节点电压。 目的1: 1.在电网规划阶段,通过潮流计算,合理规划电源容量和接入点,合理规划网架,选择无 功补偿方案,满足规划水平年的大小方式下潮流交换控制、调峰、调相、调压的要求。 2.在编制年运行方式,在预计复合增长及新设备投运基础上,选择典型方式进行潮流计算, 发现电网中的薄弱环节,供调度人员异常调度控制参考,并对规划、基建部门提出改进网架结构,加快基建进度的建议。 3.正常检修及特殊运行方式下的潮流计算,用于日常运行方式的编制,指导发电厂开机方 式,有功、无功调整方案及负荷调整方案,满足线路、变压器热稳定要求及电压质量要求。 4.预想事故、设备退出运行对静态安全分析的影响及做出预想的运行方式调整方案。 目的2: A.检查电力系统各元件是否过负荷; B.检查电力系统各节点的电压是否满足电压质量的要求; C.根据对各种运行方式的潮流分布计算,可以正确的选择系统接线方式,合理调整负荷,

matlab潮流计算

附录1 使用牛顿拉夫逊法进行潮流计算的Matlab程序代码 % 牛拉法计算潮流程序 %----------------------------------------------------------------------- % B1矩阵:1、支路首端号;2、末端号;3、支路阻抗;4、支路对地电纳 % 5、支路的变比;6、支路首端处于K侧为1,1侧为0 % B2矩阵:1、该节点发电机功率;2、该节点负荷功率;3、节点电压初始值% 4、PV节点电压V的给定值;5、节点所接的无功补偿设备的容量% 6、节点分类标号:1为平衡节点(应为1号节点);2为PQ节点;3为PV节点; %------------------------------------------------------------------------ clear all; format long; n=input('请输入节点数:nodes='); nl=input('请输入支路数:lines='); isb=input('请输入平衡母线节点号:balance=');

pr=input('请输入误差精度:precision='); B1=input('请输入由各支路参数形成的矩阵:B1='); B2=input('请输入各节点参数形成的矩阵:B2='); Y=zeros(n);e=zeros(1,n);f=zeros(1,n);V=zeros(1,n);sida=zeros(1,n);S1=zeros(nl); %------------------------------------------------------------------ for i=1:nl %支路数 if B1(i,6)==0 %左节点处于1侧 p=B1(i,1);q=B1(i,2); else %左节点处于K侧 p=B1(i,2);q=B1(i,1); end Y(p,q)=Y(p,q)-1./(B1(i,3)*B1(i,5)); %非对角元 Y(q,p)=Y(p,q); %非对角元 Y(q,q)=Y(q,q)+1./(B1(i,3)*B1(i,5)^2)+B1(i,4); %对角元K侧 Y(p,p)=Y(p,p)+1./B1(i,3)+B1(i,4); %对角元1侧 end %求导纳矩阵

P-Q分解法潮流计算方法改进综述

P-Q分解法潮流计算方法改进综述 摘要:本文介绍了P-Q分解法潮流计算方法的数学模型,简化假设及特点,总 结了P-Q分解法在低压配电网络中,随着支路R/X比值的增大所带来的迭代次数 增大和不收敛性的解决方法,及该方法在不同假设条件下收敛性,并提出了自己 的见解。 关键词: P-Q分解法;收敛性;大R/X比支路 1 潮流计算的数学模型 P-Q分解法又称为快速解耦法,是基于牛顿-拉夫逊法的改进,其基本思想是:把节点功率表示为电压向量的极坐标方程式,抓住主要矛盾,把有功功率误差作 为修正电压向量角度的依据,把无功功率误差作为修正电压幅值的依据,把有功 功率和无功功率迭代分开进行【1】。 对一个有 n 个节点的系统,假定第1个为平衡节点,第 2~m+1号节点为PQ 节点,第m+2~n号节点为PV节点,则对于每一个PQ或PV节点,都可以在极坐 标形式下写出一个有功功率的不平衡方程式: 这些假设密切地结合了电力系统的某些固有特点,作为电力系统潮流计算广泛使用的一 种算法,P-Q分解法无论是内存占用量还是计算速度方面都比牛顿-拉夫逊法有了较大的改进,主要反映在以下三点: ① 在修正方程式中,B’和B’’二者的阶数不同。B’为n-1 阶,B ‘’为m阶方阵,简化了牛 顿法的一个n+m-1的方程组,显著减少了方程组的求解难度,相应地也提高了计算速度。 ②用常系数矩阵B’和B’’代替了变系数雅可比矩阵,而且系数矩阵的元素在迭代过程中 保持不变。系数矩阵的元素是由导纳矩阵元素的虚部构成的,可以在进行迭代过程以前,对 系数矩阵形成因子表,然后反复利用因子表对不同的常数项△P/V 或△Q/V进行前代和回代 运算,就可以迅速求得电压修正量,从而提高了迭代速度,大大地缩短了每次迭代所需的时 间【2】。 ③用对称的B’和B’’代替了不对称的雅可比矩阵,因此只需要存储因子表的上三角部分,这样减少了三角分解的计算量和内存【2】。 3 P-Q分解法的收敛性改进 在各种文献中,都有对P-Q分解法从不同方面提出了讨论和改进,有些是对硬件的改进,如使用并行算法和相应的并行软件来替代原来的串行处理,有些是对算法程序做出了改进, 方法众多,不在此累述。但是我注意到,在实际应用中,由于理论与实际复杂多变的差别, 一些网络如果不满足P-Q分解法的前提假设,可能会出现迭代次数增加或不收敛的情况,而 一些病态系统或重负荷系统,特别是放射状电力网络的系统,也会出现计算过程的振荡或不 收敛的情况。针对此类异常网络,从网络参数改进的角度出发,对此做出了总结。 3.1 大R/X比支路的处理 一般来说,110KV以上的高压电力网中,输电线支路易满足R<

潮流计算

信息工程学院 课程设计报告书 题目: 潮流计算的手算以及matlab计算 专业:电气工程及其自动化 班级:班 学号: 学生姓名: 指导教师: 2014年6月1日

信息工程学院课程设计任务书 年月日

信息工程学院课程设计成绩评定表

摘要 潮流计算是电力系统非常重要的分析计算,用以研究系统规划和运行中提出的各种问题。对规划中的电力系统,通过潮流计算可以检验所提出的电力系统规划方案能否满足各种运行方式的要求;对运行中的电力系统,通过潮流计算可以预知各种负荷变化和网络结构的改变会不会危及系统的安全,系统中所有母线的电压是否在允许的范围以内,系统中各种元件(线路、变压器等)是否会出现过负荷,以及可能出现过负荷时应事先采取哪些预防措施等。 潮流计算是电力系统分析最基本的计算。除它自身的重要作用之外,在《电力系统分析综合程序》(PSASP)中,潮流计算还是网损计算、静态安全分析、暂态稳定计算、小干扰静态稳定计算、短路计算、静态和动态等值计算的基础。 传统的潮流计算程序缺乏图形用户界面,结果显示不直接难与其他分析功能集成。网络原始数据输入工作大量且易于出错。本文采用MATLAB语言运行WINDOWS操作系统的潮流计算软件。而采用MATLAB 界面直观,运行稳定,计算准确。 关键词:电力系统潮流计算牛顿-拉夫逊算法 MATL AB

目录 1 需求分析 (1) 2 原理概述 (2) 2.1 手算潮流原理 (2) 2.2牛顿-拉夫逊算法 (2) 3 详细设计 (4) 3.1等值电路 (4) 3.2手算潮流(手算过程在附页上) (4) 3.3牛顿拉夫逊算法的MATLAB实现 (4) 3.4程序结果 (13) 4 心得体会 (16) 参考文献 (17)

流行病学 描述性研究

第三章描述性研究(descriptive study) 描述性研究通过描述疾病或健康状 况的三间分布情况,找出某些因素与 疾病或健康状况间的关系,提供病因 线索。 它既是流行病学研究工作的起点,也 是其他流行病学研究方法的基础。 特点: 1.它主要描述分布的三大特征,即:地区特征、时间特征和人群特征。 2.描述性研究一般不需要事先设计的对照组,所收集的资料也相对地较为粗糙和广泛。 3.它不能分析暴露与效应之间的因果联系。 应用: 1.描述疾病或健康状况的三间分布情况,进行社区诊断。 2.描述某些因素或特征与疾病或健康状况的联系,提出病因假设或 提供病因线索。 3.评价防治措施的效果。 4.确定高危人群,筛查出患有研究疾病的人群,从而达到早发现, 早诊断,早治疗的目的。 5.为进一步流行病学研究提供基础。 现况研究: 一、现况调查概述 二、现况调查的方法及种类 三、现况调查的实施步骤 四、偏倚及其控制 从时间上来讲,研究工作是在特定时间内进行的,即在某一时点或短暂时间内完成的,故称它为横断面研究(Cross-sectional study)。 由于所收集的有关因素与疾病或健康之间的资料,既不是过去的情况,又不是追踪所获得的结果,而是调查时的实际存在,因所用的指标主要是患病率,故又称它为现患研究或患病率调查(Prevalence Study)。 一、现况调查概述 或现况研究、现患调查或横断面研究(cross-sectional study) (一)概念 按照事先设计的要求在某一人群中应用普查或抽样调查的方法收集特定时间内疾病的描述性资料,以描述疾病的分布及观察某些因素与疾病之间的关联,称现况调查。 (二)现况研究的目的 1、描述疾病或健康状况的三间分布情况。如:AIDS在中国的现况、高血压、糖尿病、肿瘤 2、提供疾病的致病因素的线索。如:冠心病的发病因素、饮酒与肝硬化 3、评价防制措施的效果。如:评价疫苗接种效果 4、筛查出患有研究疾病的人群,从而达到早发现、早诊断和早治疗的目的。如:高血压的普查糖尿病普查乳腺癌普查 5、疾病监测 (三)现况调查的特点 优点: 1、最常用的流行病学调查方法,一般不设对照。 2、适用于暴露因素不易发生变化的研究。性别、种族、血型等局限性: 1、不太适用于病程较短的急性病研究。 2、无法区分暴露和疾病之间的时间先后。 3、一般不能获得发病率资料,只有定期重复可获得。

潮流计算-英文文献

外文资料 Summary of power flow calculation Power system is calculated on the trend of steady-state operation of the power system as a basis, it's running under the given conditions and determine the entire system wiring in various parts of the power system running: the voltage of the bus, all components of a mid-stream power, The power loss, and so on. Power system planning in the design and operation of the existing power system in the form of research, we need to calculate the trend of using quantitative analysis of comparative power programme or operation mode is reasonable. Reliability and economy. In addition, the power flow calculation is calculated static and dynamic stability of the foundation of stability. So the trend is calculated on the power system of a very important and very basis of calculation. Power flow calculation also divided into offline and online calculation of two terms, the former mainly used for system planning and design and organization of the operation mode, while the latter is running for the system of regular monitoring and real-time control. The use of electronic digital computer to calculate the trend of the power system from the mid-1950s has already begun. Power flow problems in mathematical calculation is a group of diverse non-linear equations to solve the problem, its solution can not be separated from iteration. Therefore, the flow calculation method, it requires first and foremost a reliable convergence, and give the correct answers. As the power system structure and parameters of some of the features, and with the continuous expansion of the power system, the trend of increasing order of the equation, so the formula is not any mathematical method can guarantee is given the correct answer. This calculation of the power system to become a staff continue to seek new and more reliable way of the important factors. Use of digital computers in the power flow problems at the beginning, the general adoption of a node admittance matrix-based successive into the law. The principle of this method is relatively simple to compare the volume of digital computer memory, to the 1950s computer manufacturing level and then the power system theoretical level. However, it is convergence of the poor, when the system large-scale change, the sharp rise in the number of iteration in the calculation of convergence are often not the case iteration. This forced the staff to the power system to calculate impedance matrix-based successive into the law. Impedance method to improve the flow of the convergence of computing, the solution of the admittance system can not solve some of the trend, in the 1960s, access to a wide range of applications, has the power system design. Operational and research has made great contribution. At present, there are still

相关主题
文本预览
相关文档 最新文档