当前位置:文档之家› 时间序列分解法

时间序列分解法

时间序列分解法
时间序列分解法

什么是时间序列分解法

时间序列分解法是数年来一直非常有用的方法,这种方法包括谱分析、时间序列分析和傅立叶级数分析等。

时间序列分解模型

时间序列y可以表示为以上四个因素的函数,即:

Y

= f(T t,S t,C t,I t)

t

时间序列分解的方法有很多,较常用的模型有加法模型和乘法模型。

加法模型为:Y t = T t + S t + C t + I t

乘法模型为:

时间序列的分解方法

(1)运用移动平均法剔除长期趋势和周期变化,得到序列TC。然后再用按月(季)平均法求出季节指数S。

(2)做散点图,选择适合的曲线模型拟合序列的长期趋势,得到长期趋势T。

(3)计算周期因素C。用序列TC除以T即可得到周期变动因素C。

(4)将时间序列的T、S、C分解出来后,剩余的即为不规则变动,即:

时间序列的模式

时间序列一般包括四类因素,长期趋势因素、季节变动因素、循环变动因素和不规则变动因素。四种因素的组合形式一般有以下几类, 其中记Xt为时间序列的全变动;Tt为长期趋势;St为季节变动;Ct为循环变动;It为不规则变动,它总是存在着的。

1)乘法模式,其中,

a) X t与T t有相同的量纲,S t为季节指数,C t为循环指数,两者皆为比例数;

b)

c) I t是独立随机变量序列,服从正态分布。

2)加法模式X t = T t + S t + C t + I t

这种形式要求满足条件:

a) X t,T t,S t,C t,I t均有相同的量纲;

b) ,k为季节性周期长度;

c) I t是独立随机变量序列,服从正态分布。

3) 混合模式

a) X t与T t,C t,I t有相同的量纲,St是季节指数,为比例数;

b)

c) I t是独立随机变量序列,服从正态分布。

时间序列分解法试图从时间序列中区分出这四种潜在的因素,特别是长期趋势因素(T)、季节变动因素(S)和循环变动因素(C)。显然,并非每一个预测对象中都存在着T、S、C这三种趋势,可能是其中的一种或两种。一个具体的时间序列究竟由哪几类变动组合,采取哪种组合形式,应根据所掌握的资料、时间序列及研究目的来确定。

时间序列分解法各因素的确定

分解法的基础是容易理解而且直观的。不过最重要的是它为预测和检验提供了独特和非常有用的资料。我们用一个例题来说明各个因素分解的步骤。

设有某产品十二年(91年-02年)的季度销售额数据。见表4.3中的第二列,共有48个数据。如果将这些数据画在图上(图.1),可以看出有明显的长期趋势和季节变动。利用分解法,假设这48个数据可表示为

。这里X t是这些原始数据,通过分析原始数据X来确定T、C、S(剩下的为I)。

1.移动平均数

把最初的四个数据(表示91年4个季度的值)相加求平均值得到(X1+ X2+ X

+ X4) / 4 = 2741.334。这个数是没有季节性的,而且随机性因素也很小甚至3

没有。因为随机性围绕中间值波动,将四个数相加,正负波动在一定程度上相互抵消了,所以可认为其中已无随机性。同样将第二个至第五个数据相加平均,也不包含季节性,而且其随机性因素也很小。如此我们可得到45个数据。它们不包含季节性,而且随机性因素很小甚至没有。也就是说它们只包括长期趋势和循环变动两部分(T×C)。这45个数据组成的序列我们称之为移动平均数序列,用MA来表示,MA=T×C。

2.季节性

由于(1)

因此将观察值除以移动平均数得到的比率值就只包含季节性和随机性,从而这些比率包括了确定季节性因素所需要的信息。如果某个比率的值>100,意味着实际值X比移动平均数(T×C)要大。由于X中包含季节性和随机性,因而当比率值大于100时,就意味着这个季度的季节性和随机性高于平均数。反之,如果比率小于100,则表示季节性和随机性低于平均数。

表.2 某产品48个季度的销售数据及数据分解

季度观察值Xt 移动平均值T×C S×I比率%长期趋势T 循环变动C%

1 3017.60 ————2774.81 ——

2 3043.54 ————2813.77 ——

3 2094.35 2741.33

4 76.339 2852.73 96.10

4 2809.84 2805.632 100.150 2891.69 97.02

5 3274.80 2835.569 115.490 2930.65 96.76

6 3163.28 2840.558 111.361 2969.61 95.65

7 2114.31 2894.240 73.052 3008.57 96.20

8 3024.57 2907.411 104.030 3047.53 95.40

9 3327.48 2989.961 111.288 3086.49 96.87

10 3493.48 3071.367 113.744 3125.45 98.27

11 3439.93 3187.921 76.537 3164.41 100.74

12 3490.79 3277.322 106.514 3203.37 102.31

13 3685.08 3319.258 111.021 3242.33 102.37

14 3661.23 3303.883 110.816 3281.29 100.69

15 2378.43 3296.073 72.159 3320.25 99.27

16 3459.55 3337.209 103.666 3359.21 99.34

17 3849.63 3347.198 115.010 3398.17 98.50

18 3701.18 3413.185 108.438 3437.13 99.30

19 2642.38 3444.678 76.706 3476.09 99.10

20 3585.52 3501.936 102.387 3515.05 99.63

21 4078.66 3553.405 114.782 3554.01 99.98

22 3907.06 3597.425 108.607 3592.97 100.12

23 2818.46 3723.421 75.695 3631.93 102.52

24 4089.50 3788.657 107.941 3670.89 103.21

25 4339.61 3849.043 112.745 3709.85 103.75

26 4148.60 3874.540 107.101 3748.81 103.35

27 2976.45 3872.325 75.315 3787.77 102.23

28 4084.64 3848.029 106.149 3826.73 100.56

29 4242.42 3810.274 111.342 3865.69 98.57

30 3997.58 3801.414 105.160 3904.65 97.36

31 2881.01 3789.311 76.030 3943.61 96.09

32 4036.23 3818.788 105.694 3982.57 95.89

33 4360.33 3909.526 111.531 4021.53 97.21

34 4360.53 3982.320 109.497 4060.49 98.07

35 3172.18 4029.203 78.730 4099.45 98.29

36 4223.76 4111.740 102.724 4138.41 99.36

37 4690.48 4195.228 111.805 4177.37 100.43

38 4694.48 4237.770 110.777 4216.33 100.51

39 3342.35 4326.237 77.258 4255.29 101.67

40 4577.63 4394.982 104.156 4294.25 102.35

41 4965.46 4477.872 110.889 4333.21 103.34

42 5026.05 4509.818 111.447 4372.17 103.15

43 3470.14 4496.895 77.167 4411.13 101.94

44 4525.94 4570.210 99.031 4450.09 102.70

由式(1)可知,如果能将S×I中的随机性部分去掉,则就得到了季节性指数。要做到这一点,只需注意到随机性指的是偶然性、没有一定模式、围绕中间值0上下波动。因此通过平均就能去掉随机性的影响。将表4.3中“S×I比率”这一栏列成表4.6的形式,将各年同一季度的数据放在同一列之中,求相同各季度的平均值,得第一至第四季度的平均数分别为112.72,109.88,76.28,103.86。由于从1991年至2002年各年中相同季度的数值加以平均消除了大部分随机性,因此这四个平均数仅仅代表了季节性。用代数式表示即为

(2)

其中中上面的横线表示季节平均。

表3 产品销售额的季节性指数

1994 111.02 110.82 72.16 103.67

1995 115.01 108.44 76.71 102.39

1996 114.78 108.61 75.70 107.94

1997 112.75 107.10 75.32 106.15

1998 111.34 105.16 76.03 105.69

1999 111.53 109.50 78.73 102.72

2000 111.81 110.78 77.26 104.16

2001 110.89 111.45 77.17 99.03

2002 111.84 111.78 80.26 —

平均数112.72 109.88 76.28 103.86

修正平均数 111.95 109.13 75.76 103.16

表3中的四个平均值相加的和为402.74,它不等于400。为了使各季节指数的平均数等于100,必须进行简单的调整。如果400被合计数402.74来除,结果是0.9932。以0.9932乘以各季节的平均数得到111.95,109.13,75.76,103.16等(见表中最后一行)。现在这四个季节指数的和为400,它们的含义就更加清楚了,例如第二季度的109.13就表示第二季度比全年平均数高出9.13%,第三季度的75.76表示第三季度比全年低24.24%。

3.长期趋势和循环变动

前面介绍的公式MA=T×C表示了一组循环变动—长期趋势数值。在多数情况下这样已能满足要求,但有时仍需要把循环变动和长期趋势分离开来。为了做到这一点,我们只需确定一种能最好的描述数据长期趋势的类型。例如长期趋势可以是线性的、二次的、S曲线或其它。对于本例,如果将数据在图上画出来,可以看出线性的长期趋势是比较合适的:

T

= a + bt(.3)

t

t = 1,2,3…48。用最小二乘法可求得模型的最佳拟合参数为:

a = 2735.85,

b = 38.96

因此趋势直线方程为

T_t=2735.85+38.96t

如图4所示。用此方程即可求得每个季度的趋势值。如第20季度(2000年的第四季度)趋势值为

T_{20}=a+bt=3515.05

由于MA=T×C,因此

MA/T=(T\times C)/T=C (4)

应用上式即可求得循环变动值C。如第45季度的循环变动值C_{45}等于表3中的移动平均数除以T_{45},即

如同季节指数,循环指数也采取百分比率。其值大于100的表明该季度经济活动水平高于所有季度的平均值,而小于100的循环指数所表明的情况则刚好相反。

循环因子比较复杂,且其变动周期较长,因而在短期预测中可以忽略不计,或将其归入到趋势变化之中(称为趋势—循环因子)。人们更关心的是趋势和季节的识别。

至此我们完成了对原始数据Xt的分解工作,其步骤总结如下:

1)用MA=T×C分析长期趋势和循环变动;

2)用分析季节性和随机性;

3)用分析季节性;

4)用趋势外推法中介绍的方法来分析长期趋势;

5)用MA / T = C分析循环变动。

总之,分解法提供了分析时间序列各种因素的手段,它使用简单,只需用加法、乘法和除法等简单代数运算即可,而且分解法非常直观,能给企业提供一定时期内的大量信息。

根据时间序列分解法进行预测

用分解法确定了季节指数、趋势值和循环指数之后,就可以根据上面总结的步骤进行预测了。我们对2003年第一季度(第49季度)进行预测。数据的基本关系式为

X=T×C×S×I

由于随机性无法直接进行预测,进行预测的关系式为:

X=T×C×S

于是,计算出第49季度的T49,C49,S49值即可求得第49季度的预测值。

表3中已得到第一季度的季节指数为111.95,由趋势方程求得

最后循环指数通常要根据判断估算出来,或者用某种方法预测得到。这里我们假定通过判断为:C49 = 98,于是

同样可以对第50、51季度进行预测。

时间序列分解法的进一步说明

1. 居中移动平均数

为了求得移动平均数MA,上面我们是将相邻的4个原始数据相加取平均得到一个数,这样在表4.5的第三列中就少了三个数据。于是产生了这样一个问题:最初的四个数据被平均时,它们的平均数应该置于何处?严格讲应该放在第二季度和第三季度的中间((1+4)/2=2.5,第2.5个季度)。其余数据取平均时也有类似的问题。但实际数据是表示各个季度而不是半个季度的,这里我们只好将平均数放在靠后半个季度的地方。假如对平均数再取平均的话就不会产生这样的问题了,因为如第一季度至第四季度的平均数2741.34是指第2.5季度,而第二季度至第五季度的平均数是指第 3.5季度,则它们的平均数就是指第3个季度((2.5+3.5)/2=3)。称如此的平均数为居中移动平均数,于是居中移动平均数比原始数据少四个(首尾各两个)。

现在,实际值除以居中移动平均值所得的比率(还是S×I)也可以用来计算季度指数,具体的与上面所述完全一样。这样求得的四个季度的季节指数分别为112.20,109.44,75.37,103.17,其和为400.18,非常接近于400,这是因为移动平均数居中的缘故。

2.分解法的改进

在上面所叙述的分解法基础上,我们也可作一些改进,如:

1)修正原始数据中工作日或营业日的差额。由于各个月度(或季度)的工作日是不尽相同的,这就会影响到销售额或别的所要预测的变量。因此首先必须对数据进行校正。如对月度数据的校正可通过原始数据乘以30对工作日的比率来进行,即将各月度的原始数据折算到工作日均为30天的统一情况。

2)利用统计方法来淘汰极值(即修改或舍去超出标准差的三倍范围的数值),在分解法实施之前先对数据进行预处理。

3)按上一节求得的季节性指数还可进一步改进,并进行动态的调整,因为实际上季节指数并不一定是一成不变的,它本身亦是一个变化的时间序列。

还应注意到用分解法进行预测时,循环因素的确定是最为困难的。如有什么秘诀的话,那就是应具备足够数量的历史数据,以使管理人员了解循环模式是从哪里开始重复的,必要时可用图表方法来帮助确定。由于循环模式可能会发生变化,按照管理人员的判断对循环模式作一些调整无疑是必要的。

在前面的两个子节中,我们是以周期为4的季度数据的一个例题来说明分解法的分解步骤和预测程序。对周期为12月度数据、周期为7的日常数据等其它情况,运用分解法的程序完全类似,在此不再举例讨论。

分解法能帮助解释历史数据为什么变化,能使管理人员分别预计各局部模式的变化。这些局部模式不仅能用以预测,而且也可用于管理之中,再加上它容易被管理人员所理解,因此分解法在直观上吸引了许多管理人员的注意,从而被大量的用于实际问题的预测。经过成千上万个时间序列的反复检验,分解法被证明其效率和准确性都是较高的。当然这种证明是经验的而非理论的,这也是它的主要缺点。它不能用统计的方法来检验,也不能建立置信区间。实际上,分解法仅适用于那些季节性较强的中期预测、短期预测,当预测目标受外界干扰较大时,其预测能力会明显减弱。

时间序列分解法案例分析

案例一:运用时间序列分解法进行销售预测

时间序列是由一个包括了4个部分的模型组合而成,即T、S、C、R。假定影响时间序列的这四个因素彼此相互作用、非独立,那么我们采用相乘的模型[4,P460],即Y,=T×C×S×R。该方法包括以下四个步骤:1.用4季度移动平均法确定季节性指数[4,P463]。其基本原理是用移动平均法来度量趋势和周期性组合(TC)。这种做法可以消除季节性和随机变动的影响,即S和R。做法如下:(1)计算时间序列中的4季度移动平均值(TC_1),例:(500+350+250+400)/

4=375。

(2)对4季度移动平均值再求其移动平均值的中点值(TC_2)[2],例:

(375+362.5/2=368.75)。

计算真实销售额(3)计算真实销售额(Y_1)与移动平均值(TC_2)的比率,这个比率实际上表示的季节性和随机变动综合作用的部分[2],即SR=Y/TC。

(4)把计算处的比率值按季度排列,例如

第一季度的SR值分别是:1.263、1.367、1.467、1.222、1.348;

第二季度的SR值分别是:1.037、0.762、0.812、0.853、0.879;

第三季度的SR值分别是:0.678、0.640、0.522、0.588、0.700;

第四季度的SR值分别是:1.003、1.067、1.206、1.275、1.116。

然后后按季度分别计算平均比率以便剔除随机变动(R)的影响,而该平均比率称为季节性因子(S_1)。例:对于第一季度的计算:

(1.263+1.367+1.467+1.222+1.348)/5=1.333 4。依次类推计算第二、三、四季度的s1分别得:1.33 4、0.908 6、0.625 6、1.153 4。(5)对季节性因子(S1)进行调整,调整后的季节性因子(用S2表示)。

例:第一季度的S2计算:1.333 40-0.005 25=1.328 15,其中0.00525=(1.333 4+0.908 6+0.625 6+1.153 4-4)/5。同样,第二、三、四季度的S2分别是:0.903 35、0.620 35、1.148 15。上述(1)、(2)、(3)、(4)、(5)的计算结果如下表。

2.从原始时间序列中剔除季节性变化影响,即进行非季节性处理[2]。从附图中观测销售额与时期是否有线性变化趋势。通过观测发现:1994~1995年销售

额有下降的趋势,1996-1999年销售额有上升的趋势。但是,前两年下降的趋势不明显,后四年一直是上升趋势。因此,可以近似看作销售额(Y)与时间(t)有线性关系,并依据非季节性数据作线性回归方程:Y2 = a + b t其中

将表3中的数据代入上述公式得:Y=149.673+20.882t (3)

3.将t=25、26、27、28代人第二步求得的回归方程(3),并乘上相应的季节性因子S2,则得出2000年每一季度的销售额预测值。即:Y25 = 892.149、Y26 = 625.665、Y_27=442.612、Y28 = 843.1664,在附图上作出上述回归方程(3)的图形。

采用时间序列分解法时,必须观察时间t与非季节性数据Y_2的趋势关系。若t与Y2的趋势变化是近似于线性的,则可用线性回归方程预测;若Y2对t来说是呈几何级数增长,则宜用指数曲线回归方程;若是其他变化,必须采用相应的其他回归方程。

采用线性回归方程来预测,但是由于前两年的数值是下降的,后四年的数值是上升的,因此,使得该回归方程的拟合度不是很好。但是,这种影响程度会随着t的增加而减弱,最终不会影响预测的精确度,因为总趋势是上升的。,采用时间序列分解法预测时,由于前两年的数值有下降的趋势,而拟合的是上升趋势的线性回归方程,因此,用该方法预测短期(1-2年)的销售额不准确,通过附图可以看出。

时间序列分析方法及应用7

青海民族大学 毕业论文 论文题目:时间序列分析方法及应用—以青海省GDP 增长为例研究 学生姓名:学号: 指导教师:职称: 院系:数学与统计学院 专业班级:统计学 二○一五年月日

时间序列分析方法及应用——以青海省GDP增长为例研究 摘要: 人们的一切活动,其根本目的无不在于认识和改造世界,让自己的生活过得更理想。时间序列是指同一空间、不同时间点上某一现象的相同统计指标的不同数值,按时间先后顺序形成的一组动态序列。时间序列分析则是指通过时间序列的历史数据,揭示现象随时间变化的规律,并基于这种规律,对未来此现象做较为有效的延伸及预测。时间序列分析不仅可以从数量上揭示某一现象的发展变化规律或从动态的角度刻画某一现象与其他现象之间的内在数量关系及其变化规律性,达到认识客观世界的目的。而且运用时间序列模型还可以预测和控制现象的未来行为,由于时间序列数据之间的相关关系(即历史数据对未来的发展有一定的影响),修正或重新设计系统以达到利用和改造客观的目的。从统计学的内容来看,统计所研究和处理的是一批有“实际背景”的数据,尽管数据的背景和类型各不相同,但从数据的形成来看,无非是横截面数据和纵截面数据两类。本论文主要研究纵截面数据,它反映的是现象以及现象之间的关系发展变化规律性。在取得一组观测数据之后,首先要判断它的平稳性,通过平稳性检验,可以把时间序列分为平稳序列和非平稳序列两大类。主要采用的统计方法是时间序列分析,主要运用的数学软件为Eviews软件。大学四年在青海省上学,基于此,对青海省的GDP十分关注。本论文关于对1978年到2014年以来的中国的青海省GDP(总共37个数据)进行时间序列分析,并且对未来的三年中国的青海省GDP进行较为有效的预测。希望对青海省的发展有所贡献。 关键词: 青海省GDP 时间序列白噪声预测

时间序列分析——最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事! Long long ago,有多long估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。

好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。 2、统计时序分析 (1)频域分析方法 原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动 发展过程: 1)早期的频域分析方法借助富里埃分析从频率的角度揭示时间序列的规律 2)后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函数 3)20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶段 特点:非常有用的动态数据分析方法,但是由于分析方法复杂,结果抽象,有一定的使用局限性 (2)时域分析方法

【经济预测与决策】时间序列分析预测法

经济预测与决策第四章时间序列分析预测法时间序列分析预测法时间序列分析预测法是将预测目标的历史数据按照时间的顺序排列成为时间序列,然后分析它随时间的变化趋势, 外推预测目标的未来值。本章学习目的与要求通过本章的学习,了解时间序列的概念;掌握移动平均法和指数平滑法。本章学习重点和难点重点是移动平均法;难点是指数平滑法。本章内容提示第一节时间序列第二节移动平均法第三节指数平滑法第一节时间序列一、时间序列二、时间序列的影响因素三、时间序列因素的组合形式四、时间序列预测的步骤一、时间序列时间序列是指某种经济统计指标的数值,按时间先后顺序排列起来的数列。时间序列是时间t 的函数,若用Y 表示,则有:Y=Y(t )。时间序列时间序列按其指标不同,可分为绝对数时间序列、相对数时间序列和平均数时间序列三种。 绝对数时间序列是基本序列。可分为时期序列和时点序列两种。时期序列是指由反映某种社会经济现象在一段时期内发展过程的总量指标所构成的序列。如各个年度的国民生产总值。时点序列是指由反映某种社会经济现象在一定时点上的发展状况的指标所构成的序列。如各个年末的人口总数。 二、时间序列的影响因素一个时间序列是多种因素综合作用的结果。这些因素可以分为四种:1. 长期趋势变动2. 季节变动3. 循环变动4. 不规则变动1. 长期趋势变动长期趋势变动又称倾向变动,它是指伴随着经济的发展,在相当长的持续时间内,单方向的上升、下降或水平变动的因素。它反映了经济现象的主要 变动趋势。长期趋势变动是时间t 的函数,它反映了不可逆转的倾向的变动。长期趋势变动通常用T表示,T=T( t )。2.循环变动循环变动是围绕于

时间序列分析法原理及步骤

时间序列分析法原理及步骤 ----目标变量随决策变量随时间序列变化系统 一、认识时间序列变动特征 认识时间序列所具有的变动特征, 以便在系统预测时选择采用不同的方法 1》随机性:均匀分布、无规则分布,可能符合某统计分布(用因变量的散点图和直方图及其包含的正态分布检验随机性, 大多服从正态分布 2》平稳性:样本序列的自相关函数在某一固定水平线附近摆动, 即方差和数学期望稳定为常数 识别序列特征可利用函数 ACF :其中是的 k 阶自 协方差,且 平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋于 0, 前者测度当前序列与先前序列之间简单和常规的相关程度, 后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。实际上, 预测模型大都难以满足这些条件, 现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。 二、选择模型形式和参数检验 1》自回归 AR(p模型

模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量互相独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性的比你更造成的困难用 PACF 函数判别 (从 p 阶开始的所有偏自相关系数均为 0 2》移动平均 MA(q模型 识别条件

平稳时间序列的偏相关系数和自相关系数均不截尾,但较快收敛到 0, 则该时间序列可能是 ARMA(p,q模型。实际问题中,多数要用此模型。因此建模解模的主要工作时求解 p,q 和φ、θ的值,检验和的值。 模型阶数 实际应用中 p,q 一般不超过 2. 3》自回归综合移动平均 ARIMA(p,d,q模型 模型含义 模型形式类似 ARMA(p,q模型, 但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直接利用 ARMA(p,q模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中 d (差分次数一般不超过 2. 模型识别 平稳时间序列的偏相关系数和自相关系数均不截尾,且缓慢衰减收敛,则该时间序列可能是 ARIMA(p,d,q模型。若时间序列存在周期性波动, 则可按时间周期进

季节性时间序列分析方法

季节性时间序列分析方 法 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

第七章季节性时间序列分析方法 由于季节性时间序列在经济生活中大量存在,故将季节时间序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建立、季节调整方法X-11程序。 本章的学习重点是季节模型的一般形式和建模。 §1 简单随机时序模型 在许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。比如:建筑施工在冬季的月份当中将减少,旅游人数将在夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。对于这各时间数列我们可以说,变量同它上一年同一月(季度,周等)的值的关系可能比它同前一月的值的相关更密切。 一、季节性时间序列 1.含义:在一个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。具有周期特性的序列就称为季节性时间序列,这里S为周期长度。 注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往可以从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7) 2.处理办法: (1)建立组合模型; (1)将原序列分解成S个子序列(Buys-Ballot 1847)

对于这样每一个子序列都可以给它拟合ARIMA 模型,同时认为各个序列之间是相互独立的。但是这种做法不可取,原因有二:(1)S 个子序列事实上并不相互独立,硬性划分这样的子序列不能反映序列{}t x 的总体特征;(2)子序列的划分要求原序列的样本足够大。 启发意义:如果把每一时刻的观察值与上年同期相应的观察值相减,是否能将原序列的周期性变化消除( 或实现平稳化),在经济上,就是考查与前期相比的净增值,用数学语言来描述就是定义季节差分算子。 定义:季节差分可以表示为S t t t S t S t X X X B X W --=-=?=)1(。 二、 随机季节模型 1.含义:随机季节模型,是对季节性随机序列中不同周期的同一周期点之间的相关关系的一种拟合。 AR (1):t t S t S t t e W B e W W =-?+=-)1(11??,可以还原为:t t S S e X B =?-)1(1?。 MA (1):t S t S t t t e B W e e W )1(11θθ-=?-=-,可以还原为:t S t S e B X )1(1θ-=?。 2.形式:广而言之,季节型模型的ARMA 表达形式为 t S t S e B V W B U )()(= (1) 这里,?? ? ??----=----=?=qS q S S S pS P S S S t d S t B V B V B V B V B U B U B U B U X W 2212211)(1)()(平稳。 注:(1)残差t e 的内容;(2)残差t e 的性质。 §2 乘积季节模型 一、 乘积季节模型的一般形式 由于t e 不独立,不妨设),,(~m d n ARIMA e t ,则有

(整理)Excel时间序列预测操作.

时间序列分析预测EXCEL操作 一、长期趋势(T)的测定预测方法 线性趋势→:: 用回归法 非线性趋势中的“指数曲线”:用指数函数LOGEST、增长函数GROWTH(针对指数曲线) 多阶曲线(多项式):用回归法 (一)回归模型法-------长期趋势(线性或非线性)模型法: 具体操作过程:在EXCEL中点击“工具”→“数据分析”→“回归”→分别在“Y值输入区域”和“X值输入区域”输人数据和列序号的单元格区域一选择需要的输出项目,如“线性拟合图”。回归分析工具的输出解释: 计算结果共分为三个模块: 1)回归统计表: Multiple R(复相关系数R):R2的平方根,又称为相关系数,它用来衡量变量xy之间相关程度的大小。R Square(复测定系数R2 ):用来说明用自变量解释因变量变差的程度,以测量同因变量y的拟合效果。Adjusted R Square (调整复测定系数R2):仅用于多元回归才有意义,它用于衡量加入独立变量后模型的拟合程度。当有新的独立变量加入后,即使这一变量同因变量之间不相关,未经修正的R2也要增大,修正的R2仅用于比较含有同一个因变量的各种模型。 标准误差:又称为标准回归误差或叫估计标准误差,它用来衡量拟合程度的大小,也用于计算与回归有

关的其他统计量,此值越小,说明拟合程度越好。 2)方差分析表:方差分析表的主要作用是通过F检验来判断回归模型的回归效果。 3)回归参数:回归参数表是表中最后一个部分: ?Intercept:截距a ?第二、三行:a (截距) 和b (斜率)的各项指标。 ?第二列:回归系数a (截距)和b (斜率)的值。 ?第三列:回归系数的标准误差 ?第四列:根据原假设Ho:a=b=0计算的样本统计量t的值。 第五列:各个回归系数的p值(双侧) 第六列:a和b 95%的置信区间的上下限。 (二)使用指数函数LOGEST和增长函数GROWTH进行非线性预测 在Excel中,有一个专用于指数曲线回归分析的LOGEST函数,其线性化的全部计算过程都是自动完成的。如果因变量随自变量的增加而相应增加,且增加的幅度逐渐加大;或者因变量随自变量的增加而相应减少,且减少的幅度逐渐缩小,就可以断定其为指数曲线类型。 具体操作过程: 1.使用LOGEST函数计算回归统计量 ①打开“第3章时间数列分析与预测.xls”工作簿,选择“增长曲线”工作表如下图所示。 ②选择E2:F6区域,单击工具栏中的“粘贴函数”快捷键,弹出“粘贴函数”对话框,在“函数分类”中选择 “统计”,在“函数名”中选择“LOGEST”函数,则打开LOGEST对话框,如下图11.20所示。

什么是时间序列预测法

什么是时间序列预测法? 一种历史资料延伸预测,也称历史引伸预测法。是以所能反映的社会经济现象的发展过程和规律性,进行引伸外推,预测其发展趋势的方法。 时间序列,也叫时间数列、历史复数或。它是将某种的数值,按时间先后顺序排到所形成的数列。时间序列预测法就是通过编制和分析时间序列,根据时间序列所反映出来的发展过程、方向和趋势,进行类推或延伸,借以预测下一段时间或以后若干年内可能达到的水平。其内容包括:收集与整理某种社会现象的历史资料;对这些资料进行检查鉴别,排成数列;分析时间数列,从中寻找该社会现象随时间变化而变化的规律,得出一定的模式;以此模式去预测该社会现象将来的情况。 时间序列预测法的步骤 第一步收集历史资料,加以整理,编成时间序列,并根据时间序列绘成。时间序列分析通常是把各种可能发生作用的因素进行分类,传统的分类方法是按各种因素的特点或影响效果分为四大类:(1)长期趋势;(2)季节变动;(3);(4)不规则变动。 第二步分析时间序列。时间序列中的每一时期的数值都是由许许多多不同的因素同时发生作用后的综合结果。 第三步求时间序列的长期趋势(T)季节变动(s)和不规则变动(I)的值,并选定近似的数学模式来代表它们。对于数学模式中的诸未知参数,使用合适的技术方法求出其值。 第四步利用时间序列资料求出长期趋势、季节变动和不规则变动的数学模型后,就可以利用它来预测未来的值T和季节变动值s,在可能的情况下预测不规则变动值I。然后用以下模式计算出未来的时间序列的预测值Y: 加法模式T+S+I=Y 乘法模式T×S×I=Y 如果不规则变动的预测值难以求得,就只求和季节变动的预测值,以两者相乘之积或相加之和为时间序列的预测值。如果经济现象本身没有季节变动或不需预测分季分月的资料,则长期趋势的预测值就是时间序列的预测值,即T=Y。但要注意这个预测值只反映现象未来的发展趋势,即使很准确的在按时间顺序的观察方面所起的作用,本质上也只是一个的作用,实际值将围绕着它上下波动。 []

(时间序列分析)

时间序列分析 17.某城市过去63年中每年降雪量数据(单位:mm)如表3—20所示(行数据)。表3—20 126.4 82.4 78.1 51.1 90.9 76.2 104.5 87.4 110.5 25 69.3 53.5 39.8 63.6 46.7 72.9 79.6 83.6 80.7 60.3 79 74.4 49.6 54.7 71.8 49.1 103.9 51.6 82.4 83.6 77.8 79.3 89.6 85.5 58 120.7 110.5 65.4 39.9 40.1 88.7 71.4 83 55.9 89.9 84.8 105.2 113.7 124.7 114.5 115.6 102.4 101.4 89.8 71.5 70.9 98.3 55.5 66.1 78.4 120.5 97 110 (1)判断该序列的平稳性与纯随机性。 (2)如果序列平稳且非白噪声,选择适当模型拟合该序列的发展。 (3)利用拟合模型,预测该城市未来5年的降雪量。 答:

(1)由a-time时序图(左上角),该图平稳 由ACF自相关系数图(右上角),该图非纯随机性 (2)因为该序列是平稳且非白噪声序列,由图可知ACF图拖尾, PACF图一阶截尾,故该序列可拟合为AR(1)模型

图1 (3)由图1和xt-time时序图(右下角)可知,该城市未来5年的降雪量预测为:89.01662, 82.43668, 80.37336, 79.72634, 79.52345 该题的程序: 18.某地区连续74年的谷物产量(单位:千吨)如表3—21所示(行数据)。表3—21 0.97 0.45 1.61 1.26 1.37 1.43 1.32 1.23 0.84 0.89 1.18 1.33 1.21 0.98 0.91 0.61 1.23 0.97 1.10 0.74 0.80 0.81 0.80 0.60 0.59 0.63 0.87 0.36 0.81 0.91 0.77 0.96 0.93 0.95 0.65 0.98 0.70 0.86 1.32 0.88 0.68 0.78 1.25

时间序列分析方法第章预测

第四章 预 测 在本章当中我们讨论预测的一般概念和方法,然后分析利用),(q p ARMA 模型进行预测的问题。 §4.1 预期原理 利用各种条件对某个变量下一个时点或者时间阶段内取值的判断是预测的重要情形。为此,需要了解如何确定预测值和度量预测的精度。 4.1.1 基于条件预期的预测 假设我们可以观察到一组随机变量t X 的样本值,然后利用这些数据预测随机变量1+t Y 的值。特别地,一个最为简单的情形就是利用t Y 的前m 个样本值预测1+t Y ,此时t X 可以描述为: 假设*|1t t Y +表示根据t X 对于1+t Y 做出的预测。那么如何度量预测效果呢?通常情况下,我们利用损失函数来度量预测效果的优劣。假设预测值与真实值之间的偏离作为损失,则简单的二次损失函数可以表示为(该度量也称为预测的均方误差): 定理4.1 使得预测均方误差达到最小的预测是给定t X 时,对1 +t Y 的条件数学期望,即: 证明:假设基于t X 对1+t Y 的任意预测值为: 则此预测的均方误差为: 对上式均方误差进行分解,可以得到: 其中交叉项的数学期望为(利用数学期望的叠代法则): 因此均方误差为: 为了使得均方误差达到最小,则有: 此时最优预测的均方误差为: 211*|1)]|([)(t t t t t X Y E Y E Y MSE +++-= End 我们以后经常使用条件数学期望作为随机变量的预测值。 4.1.2 基于线性投影的预测 由于上述条件数学期望比较难以确定,因此将预测函数的范围限制在线性函数当中,我们考虑下述线性预测: 如此预测的选取是所有预测变量的线性组合,预测的优劣则体现在系数向量的选择上。 定义4.1 如果我们可以求出一个系数向量值α,使得预测误差)(1t t X Y α'-+与t X 不相关: 则称预测t X α'为1+t Y 基于t X 的线性投影。 定理4.2 在所有线性预测当中,线性投影预测具有最小的均方误差。

时间序列分析论文

关于居民消费价格指数的时间序列分析 摘要 本文以我国1997年4月至2014年4月间每月的烟酒及用品类居民消费价格指数为原始数据,利用EVIEWS软件判断该序列为平稳序列且为非白噪声序列,通过对数据一系列的处理,建立AR(1)模型拟合时间序列,由于时间序列之间的相关关系和历史数据对未来的发展有一定的影响,对我国的烟酒及用品类居民消费价格指数进行了短期预测,阐述该价格指数所表现的变化规律。 关键字:烟酒及用品类居民消费价格指数,时间序列,AR模型,预测 引言 一、理论准备 时间序列分析是按照时间顺序的一组数字序列。时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来事物的发展。 时间序列分析是定量预测方法之一。 基本原理: 1.承认事物发展的延续性。应用过去数据,就能推测事物的发展趋势。 2.考虑到事物发展的随机性。任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。 该方法简单易行,便于掌握,但准确性差,一般只适用于短期预测。 时间序列分析是根据系统观测得到的时间序列数据,通过曲线拟合和参数估计来建立数学模型的理论和方法。 二、基本思想 1. 拿到一个观测值序列之后,首先判断它的平稳性,通过平稳性检验,判断序列是平稳序列还是非平稳序列。 2.若为非平稳序列,则利用差分变换成平稳序列。 3.对平稳序列,计算相关系数和偏相关系数,确定模型。 4.估计模型参数,并检验其显著性及模型本身的合理性。

5.检验模型拟合的准确性。 6.根据过去行为对将来的发展做出预测。 三、背景知识 CPI(居民消费价格指数),是反映与居民生活有关的商品及劳务价格统计出来的物价变动指标,通常作为观察通货膨胀水平的重要指标。居民消费价格指数,是对一个固定的消费品篮子价格的衡量,主要反映消费者支付商品和劳务的价格变化情况,也是一种通货膨胀水平的工具。一般来说,当CPI>3%的增幅时我们称为通货膨胀。 国外许多发达国家非常重视消费价格统计,美国、加拿大等国家都计算和公布每月经过季节调整的消费价格指数,以满足不同信息使用者的要求。经济学家用消费价格指数进行经济分析和利用时间序列构建经济模型。 总所周知,居民消费价格指数是反映一个国家或地区宏观经济运行状况好坏的必不可少的统计指标之一,是世界各国判断通货膨胀(紧缩)的主要标尺,是反映市场经济景气状态必不可少的经济晴雨表。因此,我国也采用国际惯例,用消费价格指数作为判断通货膨胀的主要标尺。 由于CPI是反映社会经济现象的综合指标,对其定量分析必须建立在定性分析的基础上,因此CPI的预测趋势还要与国家宏观经济政策及我国市场的供求关系相结合。如果消费价格指数升幅过大,表明通胀已经成为经济不稳定因素,央行会有紧缩货币政策和财政政策的风险,从而造成经济前景不明朗。因此,该指数过高的升幅往往不被市场欢迎。 基于以上种种,CPI指数的预测对我国各方面显得尤为重要。 本文针对烟酒及用品类居民消费价格指数,分析其时间序列,并进行了相关预测。 模型的建立 一、数据的选择: 选取2007年4月—2014年4月的各个月份的烟酒及用品类居民消费价格指数,如表1所示: 表1 烟酒及用品类居民消费价格指数 时间指数时间指数时间指数时间指数2007.4 99.4 2009.2 103.2 2010.12 101.5 2012.1 103.4 2007.5 99.3 2009.3 103.3 2011.1 101.6 2012.11 103.4 2007.6 99.3 2009.4 103.4 2011.2 101.7 2012.12 103.3 2007.7 99.3 2009.5 103.6 2011.3 101.7 2013.1 103.1

时间序列分解Decompose

时间序列分解算法和d ecompose函数实现 李思亮 55531469@https://www.doczj.com/doc/8c11447308.html, 目录 时间序列分解算法和decompose函数实现 (1) 1 数据读入并生成时间序列 (2) 2 数据可视化 (4) 3 时间序列分解 (7)

在时间序列分析的过程中,往往需要对时间序列作出初步分析,本文主要采用R语言作为分析平台,从数据的读入,可视化图,分解(decompose)为趋势项,季节项,随机波动等角度对数据开展分析的几个案例。最后对分解算法作出初步描述并探讨其预测预报中的潜在应用。本文的数据和部分内容主要采用https://www.doczj.com/doc/8c11447308.html,/en/latest/中的内容,感兴趣的读者可以参考。 1 数据读入并生成时间序列 对于数据分析来讲,数据读入是一个比较关键的步骤。常用的数据读入函数有scan,read.table 等。下面列举了几种常见的数据。 首先是https://www.doczj.com/doc/8c11447308.html,/tsdldata/misc/kings.dat,中包含了英国国王的寿命从William开始,数据来源(Hipel and Mcleod, 1994)。 > kings <- scan("https://www.doczj.com/doc/8c11447308.html,/tsdldata/misc/kings.dat",skip=3) Read 42 items > kings [1] 60 43 67 50 56 42 50 65 68 43 65 34 47 34 49 41 13 35 53 56 16 43 69 59 48 59 86 55 68 51 33 49 67 77 81 67 71 81 68 70 77 56 上述例子中,读入了连续42个公国国王的寿命并将其赋给变量‘kings’ 如果我们希望对读入数据开展分析,下一步就是将其转化为时间序列对象(时间序列类),R提供了很多函数用于分析时间序列类数据。可以使用ts函数将变量转化为时间序列类。 > kingsts <- ts(kings) > kingsts Time Series: Start = 1 End = 42 Frequency = 1 [1] 60 43 67 50 56 42 50 65 68 43 65 34 47 34 49 41 13 35 53 56 16 43 69 59 48 59 86 55 68 51 33 49 67 77 81 67 71 81 68 70 77 56 对于上述数据操作的好处是将数据转化为特定的“时间序列类”便于我们使用R中的函数分析数据。 有时候我们会按照一定的时间周期来收集数据,这个周期可能是季度,月,日,小时,分。在大数据时代,有些情况下的数据是按照秒来采集收集。这种情况下,我们需要对数据的周期或频率进行设置。这里采用ts函数中的frequency参数可以实现这种功能。比方说,若按1年为一个周期,我们的月度时间

时间序列分解法

什么是时间序列分解法 时间序列分解法是数年来一直非常有用的方法,这种方法包括谱分析、时间序列分析和傅立叶级数分析等。 时间序列分解模型 时间序列y可以表示为以上四个因素的函数,即: Y t = f(T t,S t,C t,I t) 时间序列分解的方法有很多,较常用的模型有加法模型和乘法模型。 加法模型为:Y t = T t + S t + C t + I t 乘法模型为: 时间序列的分解方法 (1)运用移动平均法剔除长期趋势和周期变化,得到序列TC。然后再用按月(季)平均法求出季节指数S。 (2)做散点图,选择适合的曲线模型拟合序列的长期趋势,得到长期趋势T。 (3)计算周期因素C。用序列TC除以T即可得到周期变动因素C。 (4)将时间序列的T、S、C分解出来后,剩余的即为不规则变动,即:

时间序列的模式 时间序列一般包括四类因素,长期趋势因素、季节变动因素、循环变动因素和不规则变动因素。四种因素的组合形式一般有以下几类, 其中记Xt为时间序列的全变动;Tt为长期趋势;St为季节变动;Ct为循环变动;It为不规则变动,它总是存在着的。 1)乘法模式,其中, a) X t与T t有相同的量纲,S t为季节指数,C t为循环指数,两者皆为比例数; b) c) I t是独立随机变量序列,服从正态分布。 2)加法模式X t = T t + S t + C t + I t 这种形式要求满足条件: a) X t,T t,S t,C t,I t均有相同的量纲; b) ,k为季节性周期长度; c) I t是独立随机变量序列,服从正态分布。 3) 混合模式

a) X t与T t,C t,I t有相同的量纲,St是季节指数,为比例数; b) c) I t是独立随机变量序列,服从正态分布。 时间序列分解法试图从时间序列中区分出这四种潜在的因素,特别是长期趋势因素(T)、季节变动因素(S)和循环变动因素(C)。显然,并非每一个预测对象中都存在着T、S、C这三种趋势,可能是其中的一种或两种。一个具体的时间序列究竟由哪几类变动组合,采取哪种组合形式,应根据所掌握的资料、时间序列及研究目的来确定。 时间序列分解法各因素的确定 分解法的基础是容易理解而且直观的。不过最重要的是它为预测和检验提供了独特和非常有用的资料。我们用一个例题来说明各个因素分解的步骤。 设有某产品十二年(91年-02年)的季度销售额数据。见表4.3中的第二列,共有48个数据。如果将这些数据画在图上(图.1),可以看出有明显的长期趋势和季节变动。利用分解法,假设这48个数据可表示为 。这里X t是这些原始数据,通过分析原始数据X来确定T、C、S(剩下的为I)。

时间序列分解结果

在随机时间序列分析中,为简便起见,我们假定时间序列主要由趋势项(T)、季节项 (S)和随机项(R)构成。 # 读入数据,画曲线图 > sales <- read.csv(file = "sales.csv",header = TRUE) > head(sales) > plot(sales$t,sales$Y,type = "l") 观察这幅图形,可以看出有明显的长期趋势和季节变动。 利用分解法,假设这48个数据可表示为:,Yt代表实际销售额

度。 长期趋势的分解 用时间回归法,在同一图中画出趋势项目、季节项和随机项的数据图,如下: decompose()函数主要用来做季节指数分解,figure项即指季节指数。同时也返回原始数据,以及MA算法的结果;trend趋势项使用光滑移动平均法求得,它包含了长期趋势T 和周期变动因素C,之前用回归法求得长期趋势T,利用此函数的返回值Trend即可求得周期变动因素C;Random即为不规则变动。 此函数的基本结构: Additive: xt = Trend + Seasonal + Random Multiplicative: xt = Trend * Seasonal * Random > sales1 <- ts(sales[,2],start = 1,frequency = 4) # 季节变动趋势分解 > m <- decompose(sales1,type = "multiplicative") > plot(m) > m$x Qtr1 Qtr2 Qtr3 Qtr4 2003 3017.60 3043.54 2094.35 2809.84 2004 3274.80 3163.28 2114.31 3024.57 2005 3327.48 3493.48 2439.93 3490.79 2006 3685.08 3661.23 2378.43 3459.55 2007 3849.63 3701.18 2642.38 3585.52 2008 4078.66 3907.06 2828.46 4089.50 2009 4339.61 4148.60 2916.45 4084.64 2010 4242.42 3997.58 2881.01 4036.23 2011 4360.33 4360.53 3172.18 4223.76 2012 4690.48 4694.48 3342.35 4577.63 2013 4965.46 5026.05 3470.14 4525.94 2014 5258.71 5189.58 3596.76 3881.60

(完整版)应用时间序列分析习题答案解析

第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列 LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 解:1()0.7()()t t t E x E x E ε-=?+ 0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01( t t t B B B x εε)7.07.01()7.01(221Λ+++=-=- 229608.149 .011 )(εεσσ=-= t x Var 49.00212==ρφρ 022=φ 3.2 解:对于AR (2)模型: ?? ?=+=+==+=+=-3.05 .02110211212112011φρφρφρφρρφφρφρφρ 解得:???==15/115 /72 1φφ 3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E 原模型可变为:t t t t x x x ε+-=--2115.08.0 2212122 ) 1)(1)(1(1)(σφφφφφφ-+--+-= t x Var 2) 15.08.01)(15.08.01)(15.01() 15.01(σ+++--+= =1.98232σ ?????=+==+==-=2209.04066.06957.0)1/(122130 2112211ρφρφρρφρφρφφρ ?? ???=-====015.06957.033222111φφφρφ

第六章时间序列分析

第六章时间序列分析 重点: 1、增长量分析、发展水平及增长量 2、增长率分析、发展速度及增长速度 3、时间数列影响因素、长期趋势分析方法 难点: 1、增长量与增长速度 2、长期趋势与季节变动分析 第一节时间序列的分析指标 知识点一:时间序列的含义 时间序列是指经济现象按时间顺序排列形成的序列。这种数据称为时间序列数据。 时间序列分析就是根据这样的数列分析经济现象的发展规律,进而预测其未来水平。 时间数列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列。表现了现象在时间上的动态变化,故又称为动态数列。 一个完整的时间数列包含两个基本要素: 一是被研究现象或指标所属的时间; 另一个是该现象或指标在此时间坐标下的指标值。 同一时间数列中,通常要求各指标值的时间单位和时间间隔相等,如无法保证相等,在计算某些指标时就涉及到“权”的概念。 研究时间数列的意义:了解与预测。 [例题·单选题]下列数列中哪一个属于时间数列(). a.学生按学习成绩分组形成的数列 b.一个月内每天某一固定时点记录的气温按度数高低排列形成的序列 c.工业企业按产值高低形成的数列 d.降水量按时间先后顺序排列形成的数列 答案:d 解析:时间序列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列,表现了现象在时间上的动态变化。 知识点二:增长量分析(水平分析)

一.发展水平 发展水平是指客观现象在一定时期内(或时点上)发展所达到的规模、水平,一般用y t (t=1,2,3,…,n) 。 在绝对数时间数列中,发展水平就是绝对数; 在相对数时间数列中,发展水平就是相对数或平均数。 几个概念:期初水平y 0,期末水平y t ,期间水平(y 1 ,y 2 ,….y n-1 ); 报告期水平(研究时期水平),基期水平(作为对比基础的水平)。 二.增长量 增长量是报告期发展水平与基期发展水平之差,增长量的指标数值可正可负,它反映的是报告期相对基期增加或减少的绝对数量,用公式表示为: 增长量=报告期水平-基期水平 根据基期的不同确定方法,增长量可分为逐期增长量和累计增长量。 1.逐期增长量:是报告期水平与前一期水平之差,用公式表示为: △ = y n - y n-1 (i=1,2,…,n) 2.累计增长量:是报告期水平与某一固定时期水平(通常是时间序列最初水平)之差,用公式表示为: △ = y n - y (i=1,2,…,n)(i=1,2,…,n) 二者关系:逐期增长量之和=累计增长量 3.平均增长量 平均增长量是时间序列中的逐期增长量的序时平均数,它表明现象在一定时段内平均每期增加(减少)的数量。 一般用累计增长量除以增长的时期数目计算。 (y n - y )/n [例题·单选题]某社会经济现象在一定时期内平均每期增长的绝对数量是()。 a.逐期增长量 b.累计增长量 c.平均增长量 d.增长速度 答案:c 解析:平均每期增长的绝对数量是平均增长量。 知识点三:增长率分析(速度分析) 一.发展速度

时间序列分析方法第资料章范文预测

第四章 预 测 在本章当中我们讨论预测的一般概念和方法,然后分析利用),(q p ARMA 模型进行预测的问题。 § 预期原理 利用各种条件对某个变量下一个时点或者时间阶段内取值的判断是预测的重要情形。为此,需要了解如何确定预测值和度量预测的精度。 4.1.1 基于条件预期的预测 假设我们可以观察到一组随机变量t X 的样本值,然后利用这些数据预测随机变量1+t Y 的值。特别地,一个最为简单的情形就是利用t Y 的前m 个样本值预测1+t Y ,此时t X 可以描述为: 假设*|1t t Y +表示根据t X 对于1+t Y 做出的预测。那么如何度量预测效果呢?通常情况下,我们利用损失函数来度量预测效果的优劣。假设预测值与真实值之间的偏离作为损失,则简单的二次损失函数可以表示为(该度量也称为预测的均方误差): 定理 使得预测均方误差达到最小的预测是给定t X 时,对1+t Y 的条件数学期望,即: 证明:假设基于t X 对1+t Y 的任意预测值为: 则此预测的均方误差为: 对上式均方误差进行分解,可以得到: 其中交叉项的数学期望为(利用数学期望的叠代法则): 因此均方误差为: 为了使得均方误差达到最小,则有: 此时最优预测的均方误差为: 211*|1)]|([)(t t t t t X Y E Y E Y MSE +++-= End 我们以后经常使用条件数学期望作为随机变量的预测值。 4.1.2 基于线性投影的预测 由于上述条件数学期望比较难以确定,因此将预测函数的范围限制在线性函数当中,我们考虑下述线性预测: 如此预测的选取是所有预测变量的线性组合,预测的优劣则体现在系数向量的选择上。 定义 如果我们可以求出一个系数向量值α,使得预测误差)(1t t X Y α'-+与t X 不相关: 则称预测t X α'为1+t Y 基于t X 的线性投影。 定理 在所有线性预测当中,线性投影预测具有最小的均方误差。 证明:假设t X g '是任意一个线性预测,则对应的均方误差可以分解为: 由于t X α'是线性投影,则有:

时间序列分析word版

第2章 时间序列的预处理 拿到一个观察值序列之后,首先要对它的平稳性和纯随机性进行检验,这两个重要的检验称为序列的预处理。根据检验的结果可以将序列分为不同的类型,对不同类型的序列我们会采用不同的分析方法。 2.1 平稳性检验 2.1.1 特征统计量 平稳性是某些时间序列具有的一种统计特征。要描述清楚这个特征,我们必须借助如下统计工具。 一、概率分布 数理统计的基础知识告诉我们分布函数或密度函数能够完整地描述一个随 机变量的统计特征。同样,一个随机 变量族的统计特性也完全由它们的联 合分布函数或联合密度函数决定。 对于时间序列{t X ,t ∈T },这样来定义它的概率分布: 任取正整数m ,任取m t t t ,, ,?21∈T ,则m 维随机向量(m t t t X X X ,,,?21)’的联合概率分布记为),,,(m t t t x x x F m ??21,,,21,由这些有限维分布函数构成的全体。 {),,,(m t t t x x x F m ??21,,,21,?m ∈正整数,?m t t t ,,,?21∈T } 就称为序列{t X }的概率分布族。 概率分布族是极其重要的统计特征描述工具,因为序列的所有统计性质理论上都可以通过 概率分布推测出来,但是概率分布族的重要 性也就停留在这样的理论意义上。在实际应 用中,要得到序列的联合概率分布几乎是不 可能的,而且联合概率分布通常涉及非常复 杂的数学运算,这些原因使我们很少直接使 用联合概率分布进行时间序列分析。 二、特征统计量 一个更简单、更实用的描述时间序列统计特征的方法是研究该序列的低阶矩,特别是均值、方差、自协方差和自相关系数,它们也被称为特征统计量。 尽管这些特征统计量不能描述随机序列全部的统计性质,但由于它们概率意义明显,易于计算,而且往往能代表随机 序列的主要概率特征,所以我们对时间序列进行分析,主要就是通过分析这些统计量的统计特性,推断出随机序列的性质。 1.均值 对时间序列{t X ,t ∈T }而言,任意时刻的序列值t X 都是一个随机变量,都有它自己的概率分布,不妨记为)(x F t 。只要满足条件 ∞

时间序列分析法原理及步骤

时间序列分析法原理及步骤----目标变量随决策变量随时间序列变化系统 一、认识时间序列变动特征 认识时间序列所具有的变动特征,以便在系统预测时选择采用不同的方法 1》随机性:均匀分布、无规则分布,可能符合某统计分布(用因变量的散点图和直方图及其包含的正态分布检验随机性,大多服从正态分布 2》平稳性:样本序列的自相关函数在某一固定水平线附近摆动,即方差和数学期望稳定为常数 识别序列特征可利用函数ACF :其中是的k阶自 协方差,且 平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋于0,前者测度 当前序列与先前序列之间简单和常规的相关程度,后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。实际上,预测模型大都难以满足这些条件,现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。 二、选择模型形式和参数检验 1》自回归AR(p模型

⑴模.式(■「越小越好*但不能为0: t为0表示只受以前Y的历史的形响不受具他内索感响) y产di卅I十中汕-寸+ 4syr+ £c 式中假设’兀的变化?上鉴匚时间序列的历史数据有关,与此它因素无 关* J不同时刻互不和关,F「与趴历史序列不相关。式中符号:P模型的阶次"滞后的时问周期,迪过实验和参数确定;久当前预测值 ?与自身过去观测值畑?“ y「是同一序列不同时刻的随机变呈,相互间冇 线性关系,也反映时间滞后关系: 弗小g、..... 、同一平稳序列fit去D个时期的观 测值; % ……* 0,自回归系數,通过计算得出的权数?表达头依赖十过去的程 度,」1?这种依赖关系恒定小变; 「随机十扰浜益项,是0沟值、常方茎凡独立的白噪声序利* Jjfi 过佈计 指定的模型扶得F 模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量互相独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由 于自变量选择、多重共线性的比你更造成的困难用PACF函数 判别(从p阶开始的所有偏自相关系数均为0 2》移动平均MA(q模型 ⑴模或形式< j越小越好*但不能为0: v为。表小鼻受以前Y的历史的愚响不受其他 因素諺响) y产0|竹1十*浮心+.+ R|jr+ £t 式中假设^ 口的变化主要与时间斥列的刃史数拡启关,与人它冈素无关; E ;不同时刻互不和关,J打趴历史序列不和关。 式中符号=P模型的阶次”滞后的时间周期,通过实验和参数确定;乩肖前 预测值,与自身过去观测值y小…円趴屣同一序列不同时刻的随机变屋, 相互间有线性关系,也反映时问滞后关系: y小m ……> 冋一平稳序列过去D个时期的观 测任 小<11 ...... * 自1口1比1 玄劇r ?hWJ?driVilv *fr 生和ir 的

相关主题
文本预览
相关文档 最新文档