当前位置:文档之家› 三轴气浮台挠性航天器动力学模拟方法研究

三轴气浮台挠性航天器动力学模拟方法研究

三轴气浮台挠性航天器动力学模拟方法研究
三轴气浮台挠性航天器动力学模拟方法研究

动力学主要仿真软件

车辆动力学主要仿真软件 I960年,美国通用汽车公司研制了动力学软件DYNA主要解决多自由度 无约束的机械系统的动力学问题,进行车辆的“质量一弹簧一阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的谨生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAM 软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR刚性积分算法,采用稀疏矩阵技术提高计算效率° 1977年,美国Iowa大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLF早在20世纪70年代,Willi Kort tm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA1984),以及最终享誉业界的SIMPAC( 1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MED YN软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACI软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPAC嗽件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACI算法技术的优势,成功地将控制系统和多体计算技术结合起来,发

姿态动力学大作业

反作用飞轮控制 一、(1)建立航天器姿态动力学方程和飞轮控制规律 如图1-1中, 图1-1 反作用飞轮系统 设三飞轮的质心重合与星体质心O 。三飞轮的轴向转动惯量分别为z y x J J J ,,。其横向转动惯量设已包含在星体惯量章量c I 内。星体角速度ω,飞轮相对于星体的角 速度记为: [ ] T z y x ΩΩΩ=Ω 星体与飞轮的总动量矩h 为: () ωωωωωωh h I I I I h b c +=Ω+?=Ω+?+?= (1-1) 式中, Ω ?=?=+=???? ? ?????=????? ?????=ωωωωωI h I h I I I J J J I I I I I b c z y x z y x 00 000 0000 易知,I 即星体与飞轮对点O 的总惯量章量,b h 即飞轮无转动时总动量矩,ωh 即飞轮转动时的相对动量矩。由动量矩定理得 e b b L h h h h h =?++?+=? ? ? ωωωω

? ? ??? ? Ω?Ω?Ω?-=-=+=?+?+? ? ? ? ? z z y y x x c e c b b J J J h L L L h h h ωωωω (1-2) 式中,e L 为外力矩,c L 为飞轮转轴上电机的控制力矩。式(1-2)就是装有反作用飞轮的刚性航天器动力学方程的矢量形式。 如定义星体轨道坐标系如图1-2所示, 图1-2 轨道坐标系 r r r z y ox 的角速度 r ω为 j n r -=ω 即轨道角速度。当为圆轨道时,则有 3 2R n μ = 式中μ为地球引力常数,R 为地球半径。如记ψθ?,,分别为星体滚转角、俯仰角与偏航角、且设ψθ?,,和? ? ? ψθ?,,均为小量。 当航天器相对于轨道坐标系按321旋转时角度旋转矩阵为: ???? ? ????? -++--=?θ? ψ?θψ? ψ?θψ?θ?ψ?θψ? ψ?θψθθ ψθψcos cos sin cos cos sin sin sin sin cos sin cos sin cos cos cos sin sin sin cos sin sin sin cos sin cos sin cos cos B 按321旋转时产生的角速度为:

《机械系统动力学仿真分析软件》

| 论坛社区 《机械系统动力学仿真分析软件》(MSC.ADAMS.2005.R2)R2 资源分类: 软件/行业软件 发布者: Coolload 发布时间: 2005-12-18 20:22 最新更新时间: 2005-12-19 07:04 浏览次数: 14548 实用链接: 收藏此页 eMule资源 下面是用户共享的文件列表,安装eMule后,您可以点击这些文件名进行下载 [机械系统动力学仿真分析软件].[$u]MSC.ADAMS.2005.R2.rar201.2MB [机械系统动力学仿真分析软 295.4MB 件].MSC_ADAMS_V2005_ISO-LND-CD1.iso [机械系统动力学仿真分析软185.0MB

件].MSC_ADAMS_V2005_ISO-LND-CD2.bin [机械系统动力学仿真分析软 6.5KB 件].Msc.Adams.v2005.Iso-Lnd-Cd1-Crack.rar 全选480.4MB eMule主页下载eMule使用指南如何发布 中文名称:机械系统动力学仿真分析 软件 英文名称:MSC.ADAMS.2005.R2 版本:R2 发行时间:2005年12月15日 制作发行:美国MSC公司 地区:美国 语言:英语 简介: [通过安全测试] 杀毒软件:Symantec AntiVirus 版本: 9.0.0.338 病毒库:2005-12-16 共享时间:10:00 AM - 24:00 PM(除 非线路故障或者机器故障) 共享服务器:Razorback 2.0 [通过安装测试]Windows2000 SP4 软件版权归原作者及原软件公司所 有,如果你喜欢,请购买正版软件

航天器总体设计答案总结(新)

航天器总体设计 (无平时成绩,考试试卷满分制,内容为21题中抽选13题) 1、航天器研制及应用阶段的划分。 主要划分为工程论证、工程研制、发射、在轨测试与应用四个阶段。 1)工程论证阶段:开展任务分析、方案可行性论证工作。 2)工程研制阶段:包括方案设计阶段、初样设计与研制阶段、正样设计与研制阶段。 3)发射阶段:发射场测试及发射。 4)在轨测试与应用阶段:在轨测试阶段、在轨应用阶段。 2、航天工程系统的组成及各自的任务。 组成:航天工程系统是由航天器、航天运输系统、航天发射场、航天测控网、应用系统组成的完成特定航天任务的工程系统。 任务: 1)航天器:指在地球大气层以外的宇宙空间执行探索、开发和利用太空以及地球以外天体的特定任务飞行器,又称空间飞行器。 2)航天运输系统:指在地球和太空之间或在太空中运送航天器、人员或物资的飞行器系统,包括运载器、运输器、轨道机动飞行器和轨道转移飞行器等。 3)航天发射场:系指发射航天器的基地,包括测试区、发射区、发射指挥控制中心、综合测量设施、勤务保障设施等。 4)航天测控网:系指对航天运输系统、航天器进行跟踪、测量、监视、指挥和控制的综合系统,包括发射指挥控制中心、测控中心、航天指挥控制中心、测控站和多种传输线路及设备。 5)应用系统:系指航天器的用户系统,一般是地面应用系统,如各类应用卫星的地面应用系统、载人航天器的地面应用系统、空间探测器的地面应用系统。 3、航天器总体设计概念及主要阶段划分。 概念:航天器总体设计是指为完成航天任务规定的目标所开展的以航天器为对象的一系列设计活动。 主要阶段划分:主要分为任务分析、总体方案可行性论证、总体方案设计、总体详细设计四个阶段。总体详细设计又分为总体初样设计和总体正样设计。 4、航天器总体设计的基本原则。 满足用户需求的原则、系统整体性原则、系统层次性原则、研制的阶段性原则、创新性和继承性原则、效益性原则。 5、航天器技术从成熟程度上可分为哪四类技术,各自的含义。 1)成熟技术:已经过在轨飞行考验,沿用原有的分系统方案、部件、电路和结构。 2)成熟技术基础上的延伸技术:在成熟技术基础上需要进行少量修改设计的分系统方案、部件、电路和结构。 3)不成熟技术(关键技术):必须经过研究、生产和试验(攻关)后才能在卫星上应用的技术。 4)新技术(关键技术):尚未在卫星上使用过的技术。 6、航天器总体方案设计阶段的主要工作。 1)用户使用要求及技术指标要求的确定。 2)总体方案的确定。 3)总体技术指标的分析、分配及预算。 4)分系统方案及技术指标的确定。

航天器制导及控制课后题答案(西电)

1.3 航天器的基本系统组成及各部分作用? 航天器基本系统一般分为有效载荷和保障系统两大类。有效载荷:用于直接完成特定的航天飞行任务的部件、仪器或分系统。保障系统:用于保障航天器从火箭起飞到工作寿命终止, 星上所有分系统的正常工作。 1.4 航天器轨道和姿态控制的概念、内容和相互关系各是什么? 概念:轨道控制:对航天器的质心施以外力, 以有目的地改变其运动轨迹的技术; 姿态控制:对航天器绕质心施加力矩, 以保持或按需要改变其在空间的定向的技术。内容:轨道控制包括轨道确定和轨道控制两方面的内容。轨道确定的任务是研究如何确定航天器的位置和速度, 有时也称为空间导航, 简称导航; 轨道控制是根据航天器现有位置、速度、飞行的最终目标, 对质心施以控制力, 以改变其运动轨迹的技术, 有时也称为制导。姿态控制包括姿态确定和姿态控制两方面内容。姿态确定是研究航天器相对于某个基准的确定姿态方法。姿态控制是航天器在规定或预先确定的方向( 可称为参考方向)上定向的过程, 它包括姿态稳定和姿态机动。姿态稳定是指使姿态保持在指定方向, 而姿态机动是指航天器从一个姿态过渡到另一个姿态的再定向过程。关系:轨道控制与姿态控制密切相关。为实现轨道控制, 航天器姿态必须符合要求。也就是说, 当需要对航天器进行轨道控制时, 同时也要求进行姿态控制。在某些具体情况或某些飞行过程中, 可以把姿态控制和轨道控制分开来考虑。某些应用任务对航天器的轨道没有严格要求, 而对航天器的姿态却有要求。 1.5 阐述姿态稳定的各种方式, 比较其异同。 姿态稳定是保持已有姿态的控制, 航天器姿态稳定方式按航天器姿态运动的形式可大致分为两类。自旋稳定:卫星等航天器绕其一轴(自旋轴) 旋转, 依靠旋转动量矩保持自旋轴在惯性空间的指向。自旋稳定常辅以主动姿态控制, 来修正自旋轴指向误差。三轴稳定: 依靠主动姿态控制或利用环境力矩, 保持航天器本体三条正交轴线在某一参考空间的方向。 1.6主动控制与被动控制的主要区别是什么? 画出星—地大回路控制的结构图。 主动控制与被动控制的主要区别是航天器的控制力和力矩的来源不同。被动控制:其控制力或力矩由空间环境和航天器动力学特性提供, 不需要消耗星上能源。例如利用气动力或力矩、太阳辐射压力、重力梯度力矩,磁力矩等实现轨道或姿态的被动控制, 而不消耗工质或电能。主动控制:包括测量航天器的姿态和轨道, 处理测量数据, 按照一定的控制规律产生控制指令, 并执行指令产生对航天器的控制力或力矩。需要消耗电能或工质等星上能源, 由星载或地面设备组成闭环系统来实现。

航天器制导与控制课后题答案(西电)

航天器制导与控制课后题答案(西电) 1.3 航天器的基本系统组成及各部分作用? 航天器基本系统一般分为有效载荷和保障系统两大类。有效载荷:用于直接完成特定的航天飞行任务的部件、仪器或分系统。保障系统:用于保障航天器从火箭起飞到工作寿命终止, 星上所有分系统的正 常工作。 1.4 航天器轨道和姿态控制的概念、内容和相互关系各是什么? 概念:轨道控制:对航天器的质心施以外力, 以有目的地改变其运动轨迹的技术; 姿态控制:对航天器绕质心施加力矩, 以保持或按需要改变其在空间的定向的技术。内容:轨道控制包括轨道确定和轨道控制两方面的内容。轨道确定的任务是研究如何确定航天器的位置和速度, 有时也称为空间导航, 简称导航; 轨道控制是根据航天器现有位置、速度、飞行的最终目标, 对质心施以控制力, 以改变其运动轨迹的技术, 有时也称为制导。姿态控制包括姿态确定和姿态控制两方面内容。姿态确定是研究航天器相对于某个基准的确定姿态方法。姿态控制是航天器在规定或预先确定的方向( 可称为参考方向)上定向的过程, 它包括姿态稳定和姿态机动。姿态稳定是指使姿态保持在指定方向, 而姿态机动是指航天器从一个姿态过渡到另一个姿态的 再定向过程。关系:轨道控制与姿态控制密切相关。为实现轨道控制, 航天器姿态必须符合要求。也就是说, 当需要对航天器进行轨道控制时, 同时也要求进行姿态控制。在某些具体情况或某些飞行过程中,

可以把姿态控制和轨道控制分开来考虑。某些应用任务对航天器的轨道没有严格要求, 而对航天器的姿态却有要求。 1.5 阐述姿态稳定的各种方式, 比较其异同。 姿态稳定是保持已有姿态的控制, 航天器姿态稳定方式按航天 器姿态运动的形式可大致分为两类。自旋稳定:卫星等航天器绕其一轴(自旋轴) 旋转, 依靠旋转动量矩保持自旋轴在惯性空间的指向。自旋稳定常辅以主动姿态控制, 来修正自旋轴指向误差。三轴稳定: 依靠主动姿态控制或利用环境力矩, 保持航天器本体三条正交轴线在 某一参考空间的方向。 1.6主动控制与被动控制的主要区别是什么? 画出星—地大回路控制的结构图。 主动控制与被动控制的主要区别是航天器的控制力和力矩的来 源不同。被动控制: 其控制力或力矩由空间环境和航天器动力学特性提供, 不需要消耗星上能源。例如利用气动力或力矩、太阳辐射压力、重力梯度力矩,磁力矩等实现轨道或姿态的被动控制, 而不消耗工质或电能。主动控制: 包括测量航天器的姿态和轨道, 处理测量数据, 按照一定的控制规律产生控制指令, 并执行指令产生对航天器的控 制力或力矩。需要消耗电能或工质等星上能源, 由星载或地面设备组成闭环系统来实现。 2.1 利用牛顿万有引力定律推导、分析航天器受N 体引力时的运动方程, 并阐述简化为二体相对运动的合理性。 (1)解:牛顿万有引力定律:??r Fg??GMm

车辆系统动力学仿真大作业(带程序)

Assignment Vehicle system dynamics simulation 学院:机电学院 专业:机械工程及自动化 姓名: 指导教师:

The model we are going to analys: The FBD of the suspension system is shown as follow:

According to the New's second Law, we can get the equation: 2 )()(221211mg z z c z z k z m --+-=???? 221212)()(z k mg z z c z z k z m w +-----=? ??? 0)()()()(222111222111=-++--+-++--+? ? ? ? ? ? ? ?w w w w z L z k z L z k z L z c z L z c z m χχχχ 0)()()()(2222111122221111=-++----++---? ? ? ? ? ? ? ?w w w w z L z L k z L z L k z L z L c z L z L c J χχχχχ d w w w w Q z L z k z L z c z m ,111111111)()(-=------? ? ? ? ?χχ d w w w w Q z L z k z L z c z m ,222222222)()(-=-+--+-? ????χχ When there is no excitation we can get the equation: 2)()(221211mg z z c z z k z m --+-=???? 2 21212)()(z k mg z z c z z k z m w +-----=? ??? Then we substitude the data into the equation, we write a procedure to simulate the system: Date: ???? ?? ??? ??==?==?===MN/m 0.10k m 25.1s/m kN 0.20MN/m 0.1m kg 3020kg 2100kg 3250w 2l c k I m m by w b

挠性航天器基于https://www.doczj.com/doc/8c3141114.html,b&matlab的姿态控制仿真

挠性航天器基于https://www.doczj.com/doc/8c3141114.html,b&matlab的姿态控制仿真 董龙雷韩义 (西安交通大学航天航空学院,西安,710049) Simulation on Attitude control of Flexible Spacecraft based on https://www.doczj.com/doc/8c3141114.html,b&matlab DONG Long-lei, HAN Yi (School of Aeronautics,Xi’an Jiaotong University,Xi’an 710049, China) 摘要:采用仿真软件https://www.doczj.com/doc/8c3141114.html,b建立中继卫星的CAE模型,选取大挠度太阳能帆板和天线臂为柔性体,建立无重力状态下刚柔耦合的多体模型,并实现了与matlab联合控制,形成了一个虚拟控制仿真平台。控制任务是使卫星平台按照预定的运动规律实现大角度姿态机动,保持星体的稳定并且有效地抑制弹性附件的振动。仿真结果证明该方法的可行性和有效性。 关键词:https://www.doczj.com/doc/8c3141114.html,b matlab 挠性航天器姿态控制 Abstract: Simulation software https://www.doczj.com/doc/8c3141114.html,b is used to model the Track and Data Relay Satellite. Rigid-flexible coupled multi-body analysis model of satellite in weightless environment is obtained, with centre body of satellite and transmission antenna selected as rigid bodies, flexible solar board and antenna arm selected as flexible structures. The model can be controlled with software Matlab, so a virtual control simulation Platform is established. Task of control is to turn the attitude of satellite in a large angle, meanwhile, keep the satellite stable, and restrain the vibration of solar board effectively. Simulation result proved this method is feasible and effective. Key words:https://www.doczj.com/doc/8c3141114.html,b matlab Flexible Spacecraft Attitude Control 引言 航天器通常带有大型挠性结构,如大尺度天线,太阳能帆板及空间桁架等。在轨运行航天器常常会进行轨道转移,大角度姿态机动以及其挠性附件的大角度机动等,这类刚体运动可能激起其挠性附件的大幅度弹性变形运动,且这两种运动相互耦合,使这种航天器的动力学行为非常复杂[1-2]。对挠性航天器姿态控制的研究通常是针对于挠性附件固接于星体上的情形,主要研究在挠性附件产生弹性振动时星体姿态的稳定控制及弹性附件的振动抑制问题。 本文采用LMS仿真软件https://www.doczj.com/doc/8c3141114.html,b建立挠性航天器多体动力学模型,并以中继卫星为例,建立无重力状态下刚柔耦合多体动力学模型,设计了输入成形前馈控制+PD反馈控制器,形成了一个虚拟仿真控制平台。并据此实现了平台与Matlab的联合仿真实时控制研究。

姿态动力学作业

基于脉宽调制器的喷气姿态控制系统

一.题目 1) 建立三轴稳定对地定向航天器的姿态动力学和姿态运动学模型 2) 设计基于PD+脉宽调制器形式的喷气姿态控制系统 3) 完成数学仿真 具体要求: (1)建立对地定向刚体航天器的三轴稳定姿态动力学和姿态运动学模型。 2222 2 2 512kg m ,308kg m ,620kg m 16kg m ,12kg m ,14kg m x y z xy xz yz I I I I I I =?=?=?=?=?=? 设航天器在圆轨道上运行,轨道角速度00.0011rad/s ω= 要求姿态动力学动力学采用欧拉方程,姿态运动学模型采用zyx 顺序欧拉角的姿态运动学方程; (2)假设姿态推力器的数学模型为理想的继电器特性; 姿态推力器的标称推力为4N(设计情况B),在各轴上的力臂分别为1m 、1.25m 和1.5m 。 (3)设计PD+脉宽调制器形式的数字式喷气控制器,要求姿态角控制精度优于 0.5deg 。 设计情况B :控制周期为250ms ,控制系统的调整时间低于10s ,阻尼比为07。 (4)在设计控制器参数时,要考虑采样-保持环节对控制性能的影响。(建议 将采样-保持环节等效为s 域的传递函数,按连续控制系统的方法进行设计)。 (5)对上述设计结果进行数学仿真。比较在有/无最小脉宽限制两种情况下控 制精度和燃料消耗的情况。设推力器的最小脉冲宽度为30ms 。 (6)设卫星在三轴方向受到常值的气动干扰力矩,分别为 0.01Nm,0.005Nm,0.02Nm dx dy dz T T T === 重新设计控制器,以满足控制精度的要求。并给出数学仿真结果

航天器轨道力学实验一

实验一卫星轨道参数仿真 一、实验目的 1、了解STK的基本功能; 2、掌握六个轨道参数的几何意义; 3、掌握极地轨道、太阳同步轨道、地球同步轨道等典型轨道的特点。 二、实验环境 卫星仿真工具包STK 三、实验原理 (1)卫星轨道参数 六个轨道参数中,两个轨道参数确定轨道大小和形状,两个轨道参数确定轨道平面在空间中的位置,一个轨道参数确定轨道在轨道平面内的指向,一个参数确定卫星在轨道上的位置。 ? 轨道大小和形状参数: 这两个参数是相互关联的,第一个参数定义之后第二个参数也被确定。 第一个参数第二个参数 semimajor axis 半长轴Eccentricity 偏心率 apogee radius 远地点半径perigee radius 近地点半径 apogee altitude 远地点高度perigee altitude 近地点高度 Period 轨道周期Eccentricity 偏心率 mean motion平动Eccentricity 偏心率

图1 决定轨道大小和形状的参数 ?轨道位置参数: 轨道倾角(Inclination)轨道平面与赤道平面夹角 升交点赤经(RAAN)赤道平面春分点向右与升交点夹角 近地点幅角(argument of perigee)升交点与近地点夹角 ?卫星位置参数: 表1 卫星位置参数 (2)星下点轨迹 在不考虑地球自转时,航天器的星下点轨迹直接用赤经α、赤纬δ表示(如图2)。直接由轨道根数求得航天器的赤经赤纬。

图2 航天器星下点的球面解法 在球面直角三角形SND 中: ?? ???+==??+Ω=+==)tan(cos tan cos tan )sin(sin sin sin sin f i u i f i u i ωαα αωδ (1) 由于地球自转和摄动影响,相邻轨道周期的星下点轨迹不可能重合。设地球自转角速度为E ω,t 0时刻格林尼治恒星时为0G S ,则任一时刻格林尼治恒星时G S 可表示成: )(00t t S S E G G -+=ω (2) 在考虑地球自转时,星下点地心纬度? 与航天器赤纬δ仍然相等,星下点经度(λ)与航天器赤经α的关系为: ???=---=-=δ ?ωααλ)(00t t S S E G G (3) 将(1)代入上式,得到计算空间目标星下点地心经纬度()?λ,的公式,即空间目标的星下点轨迹方程为: ? ???=---?+Ω=)sin arcsin(sin )()tan arctan(cos 00u i t t S u i E G ?ωλ (4) 其中? 为星下点的地理纬度,λ 为星下点的地理经度,u 是纬度幅角,ωE 为地球自转角速度。由(4)中的第二式可知,i =90?时,? 取极大值?max 。i =-90?时,? 取极小值

弹簧阻尼系统动力学模型adams仿真设计

震源车系统动力学模型分析报告 一、项目要求 1)独立完成1个应用Adams 软件进行机械系统静力、运动、动力学分析问题,并完成一份分析报告。分析报告中要对所计算的问题和建模过程做简要分析,以图表形式分析计算结果。 2)上交分析报告和Adams 的命令文件,命令文件要求清楚、简洁。 1K 1 C 2K 2C 3 C 3 K 3 M 1 M 2M 二、建立模型 1)启动admas ,新建模型,设置工作环境。 对于这个模型,网格间距需要设置成更高的精度以满足要求。在ADAMS/View 菜单栏中,选择设置(Setting )下拉菜单中的工作网格(Working Grid )命令。系统弹出设置工作网格对话框,将网格的尺寸(Size)中的X 和Y 分别设置成750mm 和500mm ,间距(Spacing )中的X 和Y 都设置成50mm 。然后点击“OK ”确定。如图2-1所表示。 图 2-1 设置工作网格对话框

2)在ADAMS/View零件库中选择矩形图标,参数选择为“on Ground”,长度(Length)选择40cm高度Height为1.0cm,宽度Depth为30.0cm,建立系统的平台,如图2-2所示。以同样的方法,选择参数“New Part”建立part-2、part-3、part-4,得到图形如2-3所示, 图 2-2 图 2-3创建模型平台 3)施加弹簧拉力阻尼器,选择图标,根据需要输入弹簧的刚度系数K和粘滞阻尼系数C,选择弹簧作用的两个构件即可,施加后的结果如图2-4 图 2-4 创建弹簧阻尼器 4)添加约束,选择棱柱副图标,根据需要选择要添加约束的构件,添加约束后的模型如2-5所示。

系统动力学模型

第10章系统动力学模型 系统动力学模型(System Dynamic)是社会、经济、规划、军事等许多领域进行战略研究的重要工具,如同物理实验室、化学实验室一样,也被称之为战略研究实验室,自从问世以来,可以说是硕果累累。 1 系统动力学概述 2 系统动力学的基础知识 3 系统动力学模型 第1节系统动力学概述 1.1 概念 系统动力学是一门分析研究复杂反馈系统动态行为的系统科学方法,它是系统科学的一个分支,也是一门沟通自然科学和社会科学领域的横向学科,实质上就是分析研究复杂反馈大系统的计算仿真方法。 系统动力学模型是指以系统动力学的理论与方法为指导,建立用以研究复杂地理系统动态行为的计算机仿真模型体系,其主要含义如下: 1 系统动力学模型的理论基础是系统动力学的理论和方法; 2 系统动力学模型的研究对象是复杂反馈大系统; 3 系统动力学模型的研究内容是社会经济系统发展的战略与决策问题,故称之为计算机仿真法的“战略与策略实验室”; 4 系统动力学模型的研究方法是计算机仿真实验法,但要有计算

机仿真语言DYNAMIC的支持,如:PD PLUS,VENSIM等的支持; 5 系统动力学模型的关键任务是建立系统动力学模型体系; 6 系统动力学模型的最终目的是社会经济系统中的战略与策略决策问题计算机仿真实验结果,即坐标图象和二维报表; 系统动力学模型建立的一般步骤是:明确问题,绘制因果关系图,绘制系统动力学模型流图,建立系统动力学模型,仿真实验,检验或修改模型或参数,战略分析与决策。 地理系统也是一个复杂的动态系统,因此,许多地理学者认为应用系统动力学进行地理研究将有极大潜力,并积极开展了区域发展,城市发展,环境规划等方面的推广应用工作,因此,各类地理系统动力学模型即应运而生。 1.2 发展概况 系统动力学是在20世纪50年代末由美国麻省理工学院史隆管理学院教授福雷斯特(JAY.W.FORRESTER)提出来的。目前,风靡全世界,成为社会科学重要实验手段,它已广泛应用于社会经济管理科技和生态灯各个领域。福雷斯特教授及其助手运用系统动力学方法对全球问题,城市发展,企业管理等领域进行了卓有成效的研究,接连发表了《工业动力学》,《城市动力学》,《世界动力学》,《增长的极限》等著作,引起了世界各国政府和科学家的普遍关注。 在我国关于系统动力学方面的研究始于1980年,后来,陆续做了大量的工作,主要表现如下: 1)人才培养

航天器的姿态与轨道最优控制

航天器的姿态与轨道最优控制 董丽娜唐晓华吴朝俊司渭滨(第八小组) (西安交通大学电气工程学院,陕西省,西安市 710049) 【摘要】从航天器的轨道运动学方程出发, 运用线性离散系统最优控制理论, 提出了一种用于航天器轨道维持与轨道机动的最优控制方法, 建立了相关的最优控制模型并给出了求解该模型的算法。仿真计算结果表明, 本文提出的最优控制方法是正确和可行的。 【关键词】航天器轨道保持轨道机动最佳控制 Optimal Control of Spacecraft State and Orbit Dong LiNa,Tang XiaoHua,Wu ChaoJun,Si WeiBin (EE School of Xi’an Jiaotong university,Xi’an, Shannxi province, 710049)【Abstract】This paper provides a new optimal control method for orbital maintenance and maneuver ,which begins with the kinetics equation of spacecraft and is based on the linear discrete optimal control theory , establishes the relative optimal control model and gives its solution. The simulation results show that the given optimal control method in this paper is correct and feasible. 【Key word】Spacecraft ,Orbital keeping ,Orbital maneuver ,Optimal control 1 引言 一般地,常见的航天器有:运载火箭、人造卫星、载人飞船、宇宙飞船、空间站等。宇宙飞船也称太空飞船,它和航天飞机都是往返于地球和在轨道上运行的航天器(如空间站) 。

航天器控制大作业

航天器控制课程大作业 1.基本内容 ?建立带有反作用飞轮的三轴稳定对地定向航天器的姿态动力学和姿态运动学模型; ?基于欧拉角或四元数姿态描述方法,设计PD型或PID型姿态控制律(任选一种); ?利用MATLAB/Simulink软件建立航天器闭环姿态控制系统,设计姿态控制器进行闭合回路数学仿真,实现给定控制指标和 性能指标。 ?调研基于星敏感器+陀螺的姿态确定算法并撰写报告,要求不少于1500字。内容包括: ?星敏感器、陀螺数学模型 ?Landsat-D卫星姿态确定调研 包括:姿态敏感器组成、姿态敏感器性能、姿态确定算法及其精度 ?单星敏感器+陀螺的kalman滤波器姿态估计 ?双星敏感器姿态确定算法(双矢量定姿) ?列出主要参考文献 2.具体要求和相关参数 1)建立航天器姿态动力学方程以及基于欧拉角描述(3-1-2转序)的姿态运动学方程。基于如下假设,对航天器姿态动力学和姿态运动学模型进行简化: ?航天器的轨道为近圆轨道,对应轨道角速度为常数; ?航天器的本体坐标系与其主惯量坐标系重合,惯量积为零;

? 航天器姿态稳定控制时,姿态角和姿态角速度均为小量。 进一步建立适用于航天器姿态稳定或小姿态角度工况下的线性化航天器姿态动力学和运动学模型。 2) 航天器转动惯量矩阵 2200024142460018kg m 14182500????=??????? I 轨道角速度00.0012rad/s ω=。设航天器本体系三轴方向所受干扰力矩如下: 040003cos 1() 1.510 1.5sin 3cos N m 3sin 1d t t t t t ωωωω-+????=?+?????+??T 仿真中,假设初始三轴姿态角为002~5和初始三轴姿态角速度000.01/s ~0.05/s 。 3) 采用三正装反作用飞轮作为执行机构,飞轮最大控制力矩为0.4Nm ,最大角动量20Nms 。飞轮采用力矩模式,模型采用一阶惯性环节(时间常数为0.005s ),考虑库仑摩擦力矩4410Nm -?,要求飞轮的数学模型带有饱和特性。 4) 控制指标和性能指标: ? 稳定度(姿态角速度):优于0.005deg/s ; ? 指向精度(姿态角):优于0.1deg ; ? 姿态稳定收敛时间小于100s 。

航天器姿态动力学与控制总结2014

《航天器姿态动力学与控制》课程内容总结 (一) 绪论部分 1.名词解释:姿态运动学;姿态动力学;姿态控制;姿态稳定控制、姿态机动控制、姿态捕获、再定向等概念 (二) 姿态动力学部分 1.指出描述航天器的姿态参数有哪几种,各自的优缺点是什么? 2.掌握对地定向卫星惯性坐标系、轨道坐标系、本体坐标系之间的关系和各坐标系间坐标变换矩阵的求取; 3.给出在无穷小角位移的情况下,以不同姿态参数表示的方向余弦矩阵表达式; ω绕地球飞行,给出在无穷小角位移(星体坐标4.设对地定向卫星以轨道角速度 系相对轨道坐标系)情况下,星体其相对惯性空间的姿态角速度矢量(在体系下的分量列阵)的表达式,用zxy或zyx顺序的姿态角及其速率表示。 5.解释什么是视角动量?视角动量与关于参考点的角动量之间有何区别?6.什么是主转动惯量?惯性主轴坐标系的定义? 7.推导刚体的姿态动力学方程(即欧拉方程),给出刚体姿态动力学方程的矩阵分量式(设体坐标系与惯性主轴坐标系重合)。 8.解释什么是轴对称自旋航天器的本体章动和空间章动?章动角的含义是什么?什么是本体极迹和空间极迹? 9.单自旋刚体运动稳定性的条件。 10.什么是准刚体模型?什么是最大轴原理? 11.给出细长体双自旋航天器的稳定性条件(按准刚体模型) 12.重力梯度稳定卫星的稳定准则及天平动。 13.重力梯度稳定及其原理,这种姿态稳定方式的特点。 14.写出带有多个惯性轮的刚体航天器的姿态动力学方程(矢量式和矩阵式),并解释其中各变量的含义; (三)姿态控制部分 1.指出姿态确定有哪几种方法?什么是参考矢量?姿态参考矢量有哪些?分别是怎样得到的?红外地平仪测量结果有何特点?

基于SIMULINK悬架系统动力学仿真分析

研究生课程论文答题本科目:汽车动力学 授课教师:乔维高 年级专业: 学生姓名: 学生学号: 是否进修生?是□否■

基于SIMULINK 悬架系统动力学仿真分析 (武汉理工大学汽车工程学院) 摘 要:汽车行驶平顺性的优劣直接影响到乘员的乘坐舒适性,并影响车辆动力性和经济性的发挥,是车辆在市场竞争中争夺优势的一项重要性能指标。因而如何最大限度地降低汽车在行驶过程中所产生的振动,成为汽车行业的研究重点。本文以某轿车为例,对其进行力学分析,建立四自由度半振动微分方程,以不同等级路面和不同车速下的随机路面激励谱作为输入,利用Matlab/Simulink 仿真软件建立了动态模型,进行计算机仿真,并分析了动力学参数的改变对汽车行驶平顺性影响。 关键词:悬架系统;平顺性;仿真 Suspension System dynamic simulation analysis Based on SIMULINK Abstract: Car Ride will directly affect occupant comfort and affect vehicle dynamics and economy of the play, is a vehicle to compete for advantage in the market competition is an important performance indicators. So how to minimize vibration during driving cars produced, became the focus of the automotive industry research. Taking a car, for example, its mechanics analysis, four and a half degrees of freedom vibration differential equations, random road pavement and different levels of excitation spectra under different speed as the input, using Matlab/Simulink simulation software to establish a dynamic model for computer simulation and analysis of the changing dynamics of the parameters affecting the car ride comfort. Key words: Suspension System ;riding comfort; dynamic simulation 1 汽车动力学振动模型的建立 四自由度半车模型既能表征车身的质心加速度和速度的变化,又能表征车身绕其质心轴的俯仰角加速度和角速度的变化,结构也不太复杂,因此其仿真结果具有一定的代表性。四自由度半车模型的建立,必须作如下假设:整个系统为线性系统;前轴与前轮质量之和为前簧下质量;后轴与后轮质量之和为后簧下质量;非悬挂分布质量由集中质量块m 1 f 、m 1r 代替,车轮的力学特性简化为一个无质量的弹簧,不计阻尼;汽车对称于其纵轴线,且左、右车辙的不平度函数相等。车身振动的四自由度模型如图1所示。车身质量根据动力学等效的原则分为前轴上后轴上及质心上的三个集中质量m 2 f 、 m 2r 、m 2c ,三个质量由无质量的刚性杆连接。 图1 四自由度汽车模型 1.1 四自由度半车模型自由振动方程 (1)采用 z 2 f 、z 2r 坐标系的自由振动方程 以车身为研究对象,对前、后端取力矩平衡,得: 222221221/L (z z )(z )0f f c c f f f f f f m z m z b K C z ++-+-= (1) 222221221/L (z z )(z z )0r r c c r r r r r r m z m z a K C ++-+-= (2) 式中:z 2f 、z 2r 、z c 、z 1 f 、z 1r 分别表示前、后轴上集中质量、车身质心、前、后轴非悬挂分布质量的垂直振动位移;K 2 f 、 K 2r 分别为前、后轴悬架刚度;C 2 f 、C 2r 是前、后悬架减振器阻尼系数;L 、a 、b 为轴距及质心至前、后轴的距离。 以前、后非悬挂质量为研究对象得:

课程名称航天器轨道动力学与控制

课程名称:航天器轨道动力学与控制 一、课程编码:0100035 课内学时:32学分:2 二、适用学科专业:航空宇航科学与技术、航天器自主技术 三、先修课程:工科数学分析、线性代数; 四、教学目标 通过本课程的学习了解航天器轨道动力学与控制基础知识、基本原理与设计方法,掌握航天器轨道的基本运动特性和航天器轨道设计与优化相关工具,能够根据任务要求进行初步的航天器轨道设计,提升数学建模,分析和解决航天器轨道控制与优化问题的能力。 五、教学方式:课堂教学 六、主要内容及学时分配 1.航天器轨道动力学与控制基本理论2学时 1.1轨道动力学中的时间系统与坐标系统 1.2航天器轨道动力学模型 1.3航天器轨道动力学中的基本概念 2.航天器轨道动力学中的二体问题与多体问题2学时 2.1二体问题的解析解和轨道根数 2.2二体问题的轨道状态与轨道根数 2.3多体问题与圆型限制性三体问题 3.航天器轨道摄动理论与方法6学时 3.1航天器轨道摄动方程 3.2中心引力场非球形摄动 3.3日地月引力摄动 3.4太阳光压摄动 3.5大气阻力摄动 4.航天器轨道动力学与轨道设计6学时 4.1航天器同步轨道设计与控制 4.2航天器回归轨道设计与控制 4.3航天器冻结轨道设计与控制 4.4航天器编队飞行轨道设计与保持 4.5航天器星座轨道设计与保持 5.航天器轨道机动与轨道转移4学时 5.1航天器的霍曼转移轨道 5.2航天器调相轨道机动

5.3航天器共拱线非霍曼转移轨道 5.4航天器最优脉冲转移轨道 6.航天器借力飞行轨道的设计与优化4学时 6.1借力飞行的基本概念与原理 6.2借力飞行的轨道特性分析 6.3多天体借力飞行序列设计 6.4航天器多天体借力飞行轨道设计 7.航天器基于动平衡点的轨道设计与优化6学时 7.1三体系统轨道动力学模型 7.2三体系统轨道动平衡点及其稳定性 7.3三体系统轨道动平衡点附近周期轨道 7.4三体系统中的转移轨道设计 七、考核与成绩评定 考核方式:闭卷考试 平时成绩40%包括3-4次课后作业,课堂随机提问与考勤 期末考试:60% 八、参考书及学生必读参考资料 教材:杨嘉墀,航天器轨道动力学与控制(上)[M],北京,宇航出版社,1995. 参考书: 1.崔平远,深空探测轨道设计与优化[M],北京,科学出版社,2013. 2.杨嘉墀,航天器轨道动力学与控制(下)[M],北京,宇航出版社,2001. 3.Howard D.curtis,轨道力学[M],北京,科学出版社,2009. 4.章仁为,卫星轨道姿态动力学与控制[M],北京,北京航天航空大学出版社,2006. 九、大纲撰写人:乔栋

飞行器设计与工程专业本科生培养方案-航天学院-哈尔滨工业大学

飞行器设计与工程专业本科生培养方案 一、培养目标 本专业培养具有良好的数学、力学基础和飞行器总体设计、气动设计、结构与强度分析、试验技术等专业知识,能够从事航空航天工程等领域的设计、科研与技术管理等,也可在其它领域从事产品机电一体化设计和控制等方面应用研究、技术开发工作的飞行器设计学科高级工程技术复合型、创新型人才。 二、培养要求 本专业的学生应掌握飞行器总体设计、飞行器结构设计、空气动力学、控制系统原理、飞行器制造工艺及设计、实验等方面的基本理论和专业知识,具有飞行器总体设计、气动设计、结构与分析设计、大型先进通用计算软件的应用能力及相关的处理与分析实际问题的能力。 毕业生应获得以下几方面的知识和能力: 1.掌握数学和自然科学基础,掌握飞行器设计的基本理论、基本知识; 2.掌握飞行器设计的分析方法和实验方法; 3.具有飞行器设计的工程能力; 4.熟悉航空航天飞行器设计的有关规范和设计手册等; 5.了解飞行器设计的理论前沿、应用前景和发展动态; 6.掌握文献检索、资料查询的基本方法,具有一定的科学研究和实际工作能力; 7.具有本专业必需的计算、实验、测试、文献检索和基本工艺操作等基本技能和较强的计算机应用能力,对飞行器设计问题具备系统表达、建模、分析求解、论证及设计的能力; 8.掌握一门外语,能熟练阅读本专业外文资料,具有一定的听说能力和跨文化的交流与合作能力; 9.具有较好的人文艺术和社会科学素养,较强的社会责任感和良好的工程职业道德,较好的语言文字表达能力和人际交流能力; 10.了解与本专业相关的法律、法规,熟悉航空航天领域的方针和政策。 三、主干学科 航空宇航科学与技术、力学。 四、专业主干课程 主要包括理论基础课:理论力学、材料力学、自动控制原理、飞行器结构动力学、计算机辅助设计、可靠性工程、空气动力学;空间飞行器设计方向专业主干课程:航天器轨道动力学、航天器姿态动力学与控制、航天器总体设计;导弹及运载火箭设计方向主干课程:导弹飞行力学、远程火箭弹道学及制导方法、导弹及运载火箭总体设计。

相关主题
文本预览
相关文档 最新文档