当前位置:文档之家› 高性能计算及其具体应用

高性能计算及其具体应用

高性能计算及其具体应用
高性能计算及其具体应用

浅析高性能计算应用的需求与发展

浅析高性能计算应用的需求与发展 【摘要】本文阐述了高性能计算的概念,中国高性能计算的现状和发展趋势,随后,本文进一步分析了国内高性能计算应用的需求,针对目前高性能计算的应用,本文最后分析了高性能计算应用需求的展望。 【关键词】高性能计算;应用;需求;发展 一、前言 高性能计算的应用为国内的科技发展做出了诸多的贡献,因此,国内也在致力于拓展高性能计算的应用范围,从而希望进一步的促进高性能计算的发展,为我国的科学技术的不断发展提供技术支持。 二、高性能计算概述 高性能计算(HPC) 指通常使用很多处理器(作为单个机器的一部分)或者某一集群中组织的几台计算机(作为单个计算资源操作)的计算系统和环境。有许多类型的HPC 系统,其范围从标准计算机的大型集群,到高度专用的硬件。大多数基于集群的HPC系统使用高性能网络互连,比如那些来自InfiniBand 或Myrinet 的网络互连。基本的网络拓扑和组织可以使用一个简单的总线拓扑,在性能很高的环境中,网状网络系统在主机之间提供较短的潜伏期,所以可改善总体网络性能和传输速率。 三、中国高性能计算的现状与发展 20 世纪90 年代以来,随着”神威”、”银河”、”曙光”、”深腾”等一批知名产品的出现,我国成为继美国、日本之后的第三个具备高性能计算机系统研制能力的国家,被誉为世界未来高性能计算市场的”第三股力量”。我国在高性能计算机研制方面取得了较好的成绩,掌握了研制高性能计算机的一些关键技术,参与研制的单位也由科研院发展到企业界,有力地推动了高性能计算的发展。目前,我国的高性能计算环境已得到重大改善,总计算能力与发达国家的差距逐步缩小。我国的高性能计算技术拓宽了我国科学技术研究的深度和广度,提高了我国工业的生产效率,同时也节约了很多生产成本。我国的高性能计算技术目前主要在石油行业、天气预报、核能模拟、生物工程等领域得到了广泛的应用。 但是中国高性能计算的应用还不够广、不够深入,应用水平和应用效率都比较低下。我国对高性能计算应用的投入还远远不够,应用研发力量薄弱且分散,缺乏跨学科的综合型人才,从事高端应用软件研发的单位很少,企业界基本未介入,没有良好的相互交流的组织渠道等。高性能应用软件的开发和高效并行算法研究尚不能与高端计算机发展同步,在一定程度上存在为计算机”配”软件的思想。我国高性能计算应用的研究与发明明显滞后于高性能计算机的发展。国外品牌还占领着很多关乎国计民生的关键领域和行业,国产高性能服务器的市场份额仍然偏低。

制造行业中的高性能计算主要应用及其特点(精)

制造行业中的高性能计算主要应用及其特点 制造行业的高性能计算用户主要分成两类:1) 实际制造企业,如汽车设计制造厂商、航空工业企业、电力企业及消费产品生产商等。这一类用户通过高性能计算技术来提高产品的性能,减低成本,同时缩短产品的设计、生产周期,以使企业在市场上更具竞争力;2)研发单位,如政府、国防和大学中涉及制造行业的部门或专业。这一类用户的目标是利用高性能计算技术改善设计方法,提高设计水平从而为实际生产服务。 下图给出了制造行业中采用计算机进行产品开发的流程,包括建模、前处理(模型修改和网格生成)、计算分析、交叉学科综合及后处理几个部分。其中高性能计算主要应用于计算分析部分,统称为计算机辅助制造工程(MCAE )。 MCAE 可以分为隐式有限元分析(IFEA )、显式有限元分析(EFEA )和计算流体动力学(CFD )三个子学科,如下图所示。几乎所有的制造企业的高性能计算都依赖于独立软件开发商(ISV )提供的商业软件,只有计算流体动力学中结构网格计算类型的软件是以用户自己开发为主。因此制造行业中的高性能计算具有与教育科研领域不同的特点,用户在购买硬件平台的同时通常会购买相应的科学计算软件产品,而且在某种程度上往往是应用软件的特性决定了硬件平台的选择。 建模

下表中给出了MCAE常用的应用软件,并列出这些软件的特点、可扩展性及其对系统要求。从表中可以看到,隐式有限元分析(IFEA)软件的可扩展性不好,通常不会高于10个处理器。这是由隐式算法本身决定的,因为采用隐式算法的程序并行通常是细粒度的并行,并行开销要远大于可以采用粗粒度并行的显式算法。针对其可扩展性有限的特点,为这类用户推荐系统时可以考虑p650,p655,及p670这样中档服务器。另外显式有限元分析(EFEA)软件和结构网格计算流体动力学(CFD Structured)软件对CPU的性能要求很高,对I/O的要求较低,同时对带宽和延迟的要求也不高,可以看出这种类型的应用可以较好地运行在MPP结构类型的系统上,尤其是用类似p655或p690这样多CPU服务器作为节点的Cluster1600系统。

高性能计算在生命科学中的应用

高性能计算在生命科学中的应用

目录 1.1 高性能计算的发展现状 (3) 1.1.1 高性能计算概述 (3) 1.1.2 高性能计算的应用需求 (3) 1.1.3 国外高性能计算发展现状 (4) 1.1.4 国内高性能计算发展现状 (5) 1.1.5 高性能计算机关键技术发展现状 (7) 1.2 高性能计算在生命科学中的应用 (13) 1.2.1 基因测序数据处理 (13) 1.2.2 蛋白质结构研究 (34) 1.2.3 计算机辅助药物设计 (50)

1.1高性能计算的发展现状 1.1.1高性能计算概述 高性能计算(High Performance Computing,简称HPC)是计算机科学的一个分支,研究并行算法和开发相关软件,致力于开发高性能计算机(High Performance Computer),满足科学计算、工程计算、海量数据处理等需要。 自从1946年设计用于导弹弹道计算的世界上第一台现代计算机诞生开始,计算技术应用领域不断扩大,各应用领域对计算机的处理能力需求越来越高,这也促使了高性能计算机和高性能计算技术不断向前发展。随着信息化社会的飞速发展,人类对信息处理能力的要求越来越高,不仅石油勘探、气象预报、航天国防、科学研究等需求高性能计算机,而金融、政府信息化、教育、企业、网络游戏等更广泛的领域对高性能计算的需求也迅猛增长。1.1.2高性能计算的应用需求 应用需求是高性能计算技术发展的根本动力。传统的高性能计算应用领域包括:量子化学、分子模拟、气象预报、天气研究、油气勘探、流体力学、结构力学、核反应等。随着经济发展和社会进步,科学研究、经济建设、国防安全等领域对高性能计算设施及环境提出了越来越高的需求,不仅高性能计算的应用需求急剧增大,而且应用范围从传统领域不断扩大到资源环境、航空航天、新材料、新能源、医疗卫生、金融、互联网、文化产业等经济和社会发展的众多领域。 当前,世界和中国面临诸多重大挑战性问题。比如,全球气候出现快速增温的事实使“应对气候变化”成为各国政治、经济和社会发展的重大课题,为了进一步消减“温室效应”和减少碳排放,实现可持续发展的低碳经济,新材料的发现、设计与应用迫在眉睫;随着化石能源的日益枯竭和环境的日趋恶化,新能源的开发势在必行;随着科技的发展,人类迈向太空的脚步逐渐加快,空间资源的争夺和战略性部署竟然愈发激烈,航空航天领域作为此项重大科研技术活动的基础支撑,投入将持续扩大;为了攻克重大疾病、进一步提高人口健康质量,生命科学与新药制造已成为技术发展和经济投入的重要增长点;随着互联网技术不断发展,借助海量数据与高性能计算的力量使得人工智能研究不断取得新的突破,各大互联网企业对高性能计算的投入将持续增加;在国际竞争的大环境下,基础科研实力是高新技术发展的重要源泉,是未来科学和技术发展的内在动力,也是实现国家经济、社会和环境可持续性发展的重要途径,基础科学研究的投入也将持续增长。

计算机技术的发展趋势及实际应用

计算机技术的发展趋势 及实际应用 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

计算机技术的发展趋势及实际应用 导言:二十世纪80年代后,计算机技术的发展日新月异,传统计算机技术将持续发展,新的计算机技术、新领域的计算机技术应用,使计算机技术成为当今与人类息息相关的一门重要科学技术。本文对计算机技术发展和应用的相关方面进行了介绍,包括计算机技术的发展和现状、新型计算机系统和计算机技术、计算机智能化发展等,以及计算机技术的实际应用,如在科学技术前沿阵地的电厂中的应用以及电厂的计算机自动化控制发展趋势。 2016年3月,互联网上,各大门户网站的首页,都大篇幅报道“阿尔法人机大战”,最终人工智能以4:1战胜围棋大师李世石,这是google以研发的人工智能挑战人类智能的方式,宣告其计算机技术人工智能化的重大突破和应用。这篇报道,说明计算机技术的发展,已经走进人工智能发展的时代。 从世界上第一台电子计算机ENIAC问世至今已经将近70年,它的问世对人们的生活有着革命性的影响。20世纪后期,计算机技术开始逐步应用到社会的各个角落,计算机的性能也获得了提升。不管是家庭、还是企业、机关,计算机都广泛地发挥着作用,成为人们工作生活中不可获取的一部分。现今的计算机在运算性能、应用领域和生产成本等各方面取得了空前的发展,其未来的发展趋势在很大程度上决定了很多行业的发展速度,也将会是影响整个社会进步的一个重要因素。 计算机的发展趋势将趋向超高速、超小型、平行处理和智能化,量子、光子、分子和纳米计算机将具有感知、思考、判断、学习及一定的自然语言能力,使计算机进入人工智能时代。 1.未来计算机技术的发展趋势 1.1多极化趋势 如今,个人计算机已席卷全球,但由于计算机应用的不断深入,对巨型机、大型机的需求也稳步增长,巨型、大型、小型、微型机各有自己的应用领域,形成了一种多极化的形势。如巨型计算机主要应用于天文、气象、地质、核反应、航天飞机和卫星轨道计算等尖端科学技术领域和国防事业领域,它标志一个国家计算机技术的发展水平。目前运算速度为每秒几百亿次到上万亿次的巨型计算机已经投入运行,并正在研制更高速的巨型计算机。 1.2 网络化趋势 网络化是计算机发展的又一个重要趋势。从单机走向联网是计算机应用发展的必然结果。所谓计算机网络化,是指用现代通信技术和计算机技术把分布在不同地点的计算机互联起来,组成一个规模大、功能强、可以互相通信的网络结构。网络化的目的是使网络中的软件、硬件和数据等资源能被网络上的用户共享。目前,大到世界范围的通信网,小到实验室内部的局域网已经很普及,因特网(Internet)已经连接包括我国在内的150多个国家和地区。由于计算机网络实现了多种资源的共享和处理,提高了资源的使用效率,因而深受广大用户的欢迎,得到了越来越广泛的应用。

计算机技术的发展趋势及实际应用

计算机技术的发展趋势及实际应用 导言:二十世纪80年代后,计算机技术的发展日新月异,传统计算机技术将持续发展,新的计算机技术、新领域的计算机技术应用,使计算机技术成为当今与人类息息相关的一门重要科学技术。本文对计算机技术发展和应用的相关方面进行了介绍,包括计算机技术的发展和现状、新型计算机系统和计算机技术、计算机智能化发展等,以及计算机技术的实际应用,如在科学技术前沿阵地的电厂中的应用以及电厂的计算机自动化控制发展趋势。 2016年3月,互联网上,各大门户网站的首页,都大篇幅报道“阿尔法人机大战”,最终人工智能以4:1战胜围棋大师李世石,这是google以研发的人工智能挑战人类智能的方式,宣告其计算机技术人工智能化的重大突破和应用。这篇报道,说明计算机技术的发展,已经走进人工智能发展的时代。 从世界上第一台电子计算机ENIAC问世至今已经将近70年,它的问世对人们的生活有着革命性的影响。20世纪后期,计算机技术开始逐步应用到社会的各个角落,计算机的性能也获得了提升。不管是家庭、还是企业、机关,计算机都广泛地发挥着作用,成为人们工作生活中不可获取的一部分。现今的计算机在运算性能、应用领域和生产成本等各方面取得了空前的发展,其未来的发展趋势在很大程度上决定了很多行业的发展速度,也将会是影响整个社会进步的一个重要因素。 计算机的发展趋势将趋向超高速、超小型、平行处理和智能化,量子、光子、分子和纳米计算机将具有感知、思考、判断、学习及一定的自然语言能力,使计算机进入人工智能时代。 1.未来计算机技术的发展趋势 1.1多极化趋势 如今,个人计算机已席卷全球,但由于计算机应用的不断深入,对巨型机、大型机的需求也稳步增长,巨型、大型、小型、微型机各有自己的应用领域,形成了一种多极化的形势。如巨型计算机主要应用于天文、气象、地质、核反应、航天飞机和卫星轨道计算等尖端科学技术领域和国防事业领域,它标志一个国家计算机技术的发展水平。目前运算速度为每秒几百亿次到上万亿次的巨型计算机已经投入运行,并正在研制更高速的巨型计算机。 1.2 网络化趋势 网络化是计算机发展的又一个重要趋势。从单机走向联网是计算机应用发展的必然结果。所谓计算机网络化,是指用现代通信技术和计算机技术把分布在不同地点的计算机互联起来,组成一个规模大、功能强、可以互相通信的网络结构。网络化的目的是使网络中的软件、硬件和数据等资源能被网络上的用户共享。目前,大到世界范围的通信网,小到实验室内部的局域网已经很普及,因特网(Internet)已经连接包括我国在内的150多个国家和地区。由于计算机网络实现了多种资源的共享和处理,提高了资源的使用效率,因而深受广大用户的欢迎,得到了越来越广泛的应用。 随着信息技术快速发展,计算机也越来越普及,各种家用电器也开始走向智能化,未来

高性能计算技术与应用

高性能计算技术及其应用 作者:迟学斌赵毅 (中国科学院计算机网络信息中心北京 100080) 摘要简要介绍了当前高性能计算机、并行算法、并行编程环境和高性能 计算应用的国际研究现状和发展趋势,阐述了近几年中科院高性能计算环境建设和高性能计算应用的发展情况,最后对我院发展高性能计算技术及应用 给出了几点思考。 关键词高性能计算技术,并行算法,并行编程环境 高性能计算是计算机科学的一个分支,研究并行算法和开发相关软件,致力于开发高性能计算机。随着信息化社会的飞速发展,高性能计算已成为继理论科学和实验科学之后科学研究的第三大支柱。在一些新兴的学科,如新材料技术和生物技术领域,高性能计算机已成为科学研究的必备工具。同时,高性能计算也越来越多地渗透到石油工业等一些传统产业,以提高生产效率、降低生产成本。金融、政府信息化、教育、企业、网络游戏等更广泛的领域对高性能计算的需求也迅猛增长。 1 国际研究现状和发展趋势 1.1 高性能计算机 电子计算机在诞生之初主要就是为科学计算服务的。到20世纪60年代,随着技术的成熟,计算机开始走向商业领域,且应用范围越来越广。为有别于“通用计算机”,专门针对科学计算进行优化设计的计算机开始被称为 “高性能计算机”(HPC)。 1.1.1 高性能计算机发展历史 20世纪70年代出现的向量计算机可看作是第一代HPC,通过在计算机中加入向量流水部件,大大提高了科学计算中向量运算的速度。其中较著名的有CDC系列、CRAY系列、NEC的SX系列和中国的银河一号及中科院计算所的757计算机。80年代初期,随着VLSI技术和微处理器技术的发展,向量机一统天下的格局逐渐被打破,“性/价比”而非单一性能成为衡量HPC系统的重要指标。90年代初期,大规模并行处理(MPP)系统已开始成为HPC发展的主流,MPP系统由多个微处理器通过高速互联网络构成,每个处理器之间通过消息传递的方式进行通讯和协调。代表性系统有TMC的CM-5、Intel Paragon、中科院计算所的曙光1000等。较MPP早几年问世的对称多处理(SMP)系统由数目相对较少的微处理器共享物理内存和I/O总线形成,早期的SMP和MPP 相比扩展能力有限,不具有很强的计算能力,但单机系统兼容性好,所以90

海洋领域高性能计算的应用分析

海洋领域高性能计算的应用分析

目录 1.1 高性能计算的发展现状 (3) 1.1.1 高性能计算概述 (3) 1.1.2 高性能计算的应用需求 (3) 1.1.3 国外高性能计算发展现状 (4) 1.1.4 国内高性能计算发展现状 (5) 1.1.5 高性能计算机关键技术发展现状 (7) 1.2 海洋领域中高性能计算的应用 (13) 1.2.1 应用行业介绍 (13) 1.2.2 常用软件 (13) 1.2.3 海洋数值预报领域应用软件特点 (14)

1.1高性能计算的发展现状 1.1.1高性能计算概述 高性能计算(High Performance Computing,简称HPC)是计算机科学的一个分支,研究并行算法和开发相关软件,致力于开发高性能计算机(High Performance Computer),满足科学计算、工程计算、海量数据处理等需要。 自从1946年设计用于导弹弹道计算的世界上第一台现代计算机诞生开始,计算技术应用领域不断扩大,各应用领域对计算机的处理能力需求越来越高,这也促使了高性能计算机和高性能计算技术不断向前发展。随着信息化社会的飞速发展,人类对信息处理能力的要求越来越高,不仅石油勘探、气象预报、航天国防、科学研究等需求高性能计算机,而金融、政府信息化、教育、企业、网络游戏等更广泛的领域对高性能计算的需求也迅猛增长。1.1.2高性能计算的应用需求 应用需求是高性能计算技术发展的根本动力。传统的高性能计算应用领域包括:量子化学、分子模拟、气象预报、天气研究、油气勘探、流体力学、结构力学、核反应等。随着经济发展和社会进步,科学研究、经济建设、国防安全等领域对高性能计算设施及环境提出了越来越高的需求,不仅高性能计算的应用需求急剧增大,而且应用范围从传统领域不断扩大到资源环境、航空航天、新材料、新能源、医疗卫生、金融、互联网、文化产业等经济和社会发展的众多领域。 当前,世界和中国面临诸多重大挑战性问题。比如,全球气候出现快速增温的事实使“应对气候变化”成为各国政治、经济和社会发展的重大课题,为了进一步消减“温室效应”和减少碳排放,实现可持续发展的低碳经济,新材料的发现、设计与应用迫在眉睫;随着化石能源的日益枯竭和环境的日趋恶化,新能源的开发势在必行;随着科技的发展,人类迈向太空的脚步逐渐加快,空间资源的争夺和战略性部署竟然愈发激烈,航空航天领域作为此项重大科研技术活动的基础支撑,投入将持续扩大;为了攻克重大疾病、进一步提高人口健康质量,生命科学与新药制造已成为技术发展和经济投入的重要增长点;随着互联网技术不断发展,借助海量数据与高性能计算的力量使得人工智能研究不断取得新的突破,各大互联网企业对高性能计算的投入将持续增加;在国际竞争的大环境下,基础科研实力是高新技术发展

高性能计算应用21

21 高性能计算应用 大规模柴油机动力学抗冲击并行仿真计算 ●丁峻宏 王 惠 刘 波 上海超级计算中心 上海 201203 jhding@ssc.net.cn ●宋雅丽 任建军 沪东重机有限公司 上海 200129 摘要: 针对柴油机动力冲击仿真问题,采用显式动力算法,对柴油机复杂结构进行了详细建模和 精细仿真,并对处于不同工作状态下的柴油机开展了机构运动和动力冲击问题的单独和综合模 拟。为满足计算调试和多组工况带来的大规模计算需求,问题求解借助了高性能计算资源;通 过不同计算平台上多核并行计算和性能数据比较,分析了独特并行加速现象,并探求了合理的 并行加速策略。计算表明,动态仿真方法有利于柴油机运动和动力问题的一体化研究,而借助 高性能计算资源方能为问题求解和深入研究提供必要保障,文中结论可对柴油机类似复杂冲击 问题研究提供一定参考。 关键词:柴油机,显式算法,机构运动,动力冲击,并行计算 柴油机是目前船舶上使用最广的动力装置,在船只受到不可预测的外部冲击载荷作用下,作为主动力源的柴油机抗冲击性能将直接影响到船舶的续航,因此对其开展研究具有重要意义。 包括柴油机在内的船舶设备结构力学性能相对复杂,研究难度大,此外由于一些应用比较特殊,因而关于其冲击响应特性研究的国外文献资料并不太多。虽然国内这方面工作起步较晚,但近年来相关研究逐渐涌现,随着计算数学和计算力学的发展,基于仿真计算并结合少量实验的方法对船用设备开展抗冲击研究正不断走向深入。 船舶设备冲击响应计算分析方法包括模态叠加法、直接积分法、冲击因子法、有限元法以及多体动力学方法等[1]。随着计算机软硬件技术的飞速发展以及对船舶设备研究的深入,结合有限元法和多体动力学法特点的刚柔混合模拟实际运用越来越多并逐渐成为主流。比如从有限元模型子结构缩减出发,转入多体动力学软件中分析求得力学边界条件,最后恢复有限元精细模型计算动应力[2,3]。再比如借助有限元软件进行模态分析得到柔性体中性输出文件,转入多体动力学软件计算系统动力学特性[4-6]。计算过程涉及跨软件操作和中间数据传递,需要由专业研究人员才能完成。 对于柴油机等复杂机械设备来说,无论是有限元法还是多体动力学法,最关键的是对各零部件之间的联接处理,比如运动联接、螺栓联接,焊铆联接等。多体动力学法多用于模拟分析复杂机械系统运动规律和部件受力环境,但是刚体定义过多必然失真,而定义过多柔体将增加模型和处理过程的复杂性。有限元法则可以更好地模拟船用设备柔体冲击力学特性,网格细化和细节模拟也将有助于深化研究,但大量零部件机构运动模拟以及计算网格规模扩大对普通计算机的能力提出了挑战。 更重要的是,对于处于运行状态下的柴油机承受冲击问题来说,仿真模型应该要同时考虑系统机构运动和动力冲击两方面特性的影响。在针对大型复杂柴油机结构开展研究分析时,如若在同一模型中能同时直接模拟这两个问题[7,8],减少中间数据传递,则有利于提高工业企业仿真计算的一体化、便捷性甚至准确性。 本文针对某型号16缸柴油机,利用有限元前处理软件Hypermesh以及ABAQUS,对其所包含大量零部件进行了合理建模和一体化组装,建立了大规模柴油机动力学冲击仿真模型,计算则基于超级计算 注: 原文发表于《振动与冲击》2014年第33卷第2期第163-167页, 此处略有改动.

高性能计算的应用

高性能计算的应用 随着高性能计算技术的发展,高性能计算开始广泛应用于各个领域。在核电,气象,工业工程,水下工程,建筑,生物医学,社会科学等方面均有重要的应用。 1、核电工程领域 在核电工程领域中,核电压力容器分析,开孔安全壳环向应力分析,核电厂房抗震分析,核反应堆压力容器与管道温度分析,核电流固耦合分析,核安全防护分析等方面均需要大规模的计算[1]。通过高性能计算,对工业仿真流程进行分析,直接减少了计算时间,降低了成本,提高了企业的竞争力。 2、气象 在气象领域中,数值天气预报模式的科学研究和业务运行需要高性能计算。目前,数值预报模式的水平分辨率已达到了15~20公里,而未来的3-5年内几乎世界各国的全球数值预报模式的水平分辨率都将要提高10~20公里[2],为适应其快速发展,气象部门需要引进和更新高性能计算机系统用以支持气象应用。 3、工业工程 对于工业和工程领域来说,使用高性能计算对于计算数学特别是用力学计算仿真手段来模拟实际产品制造、产品运行环境和工程建设环境具有不可代替的作用[3]。高性能计算降低了物理原型和实验的数量,提高了设计质量和效率,提升了企业解决复杂技术难题的手段和能力。 在石油勘测方面,由于地震波法勘测收集的数据通常都以TB计,在海洋勘测过程中的数据容量更是达到了PB级别量[4],面对这些海量的数据,只有借助性能出色的高性能计算机系统,才能缩短时间,以实现最佳的勘测效益。 在高光谱遥感数据处理方面,高光谱遥感数据的海量特性严重制约了应用的拓展和实际工程应用效率的提高,大量数据操作和处理的复杂性决定了高光谱遥感图像处理具有很强的计算性[5],普通计算机远远无法满足遥感数据处理的增长需求,因此高性能计算是解决海量数据处理效率低的有效方法。 在飞机设计方面,首先,飞机设计需要做大量的气动力预测工作,采用高性能计算比采用传统的风洞试验成本要低得多,而且在提升飞机性能时,常规基于雷诺平均方程的CFD技术并不能有效处理,因为它需要的计算网格约10亿量级,需求的计算能力比常规计算高出2个量级以上。其次,精确噪声预测,螺旋桨滑流研究,需要的计算能力比常规计算高出2个量级以上。而现代军用飞机对雷达散射截面计算的要求十分严格,只有基于高性能计算的电磁数值仿真技术有望解决RCS预测难题[6]。 在岩石力学课程教学方面,由于岩石力学需要将工程实例,实验模型和理论模型相结合,才能增强教学效果。尤其在涉及破裂问题上,从变形,损伤演化到最终失稳的过程对数值模拟而言需要网格重划分、单元消去与再生、节点释放和数据存储管理,串行CPU和内存无力做到精细表征[7]。因此,需要通过高性能计算,充分利用数值模拟辅助岩石力学教学 在电力系统工程方面,现代的电力系统分析需要越来越多的计算,包括仿真,优化,控制和分析。人们需要寻求新的方式追求计算更快的方法来进行效率性更高的计算及解决问题,以确保电力网格系统的安全性和可靠性[8]。一个很明显

网格计算高性能计算的应用需求使计算能力不可能在单一计算机上

网格计算 高性能计算的应用需求使计算能力不可能在单一计算机上获得,因此,必须通过构建“网络虚拟超级计算机”或“元计算机”来获得超强的计算能力。20世纪90年代初,根据Internet 上主机大量增加但利用率并不高的状况,美国国家科学基金会(NFS)将其四个超级计算中心构筑成一个元计算机,逐渐发展到利用它研究解决具有重大挑战性的并行问题。它提供统一的管理、单一的分配机制和协调应用程序,使任务可以透明地按需要分配到系统内的各种结构的计算机中,包括向量机、标量机、SIMD和MIMD型的各类计算机。NFS元计算环境主要包括高速的互联通信链路、全局的文件系统、普通用户接口和信息、视频电话系统、支持分布并行的软件系统等。 元计算被定义为“通过网络连接强力计算资源,形成对用户透明的超级计算环境”,目前用得较多的术语“网格计算(grid computing)”更系统化地发展了最初元计算的概念,它通过网络连接地理上分布的各类计算机(包括机群)、数据库、各类设备和存储设备等,形成对用户相对透明的虚拟的高性能计算环境,应用包括了分布式计算、高吞吐量计算、协同工程和数据查询等诸多功能。网格计算被定义为一个广域范围的“无缝的集成和协同计算环境”。网格计算模式已经发展为连接和统一各类不同远程资源的一种基础结构。 网络计算技术 1.基本结构 为实现网格计算的目标,必须重点解决三个问题: ⑴异构性 由于网格由分布在广域网上不同管理域的各种计算资源组成,怎样实现异构机器间的合作和转换是首要问题。 ⑵可扩展性 要在网格资源规模不断扩大、应用不断增长的情况下,不降低性能。⑶动态自适应性 在网格计算中,某一资源出现故障或失败的可能性较高,资源管理必须能动态监视和管理网格资源,从可利用的资源中选取最佳资源服务。 网格计算环境的构建层次从下至上依次为: (1) 网格结点 由分布在Internet上的各类资源组成,包括各类主机、工作站甚至PC机,它们是异构的,可运行在Unix、NT等各种操作系统下,也可以是上述机型的机群系统、大型存储设备、数据库或其他设备。 (2) 中间件

高性能计算的主要行业和应用

IBMBLADE H构建高性能计算应用解决方案: 高性能计算需求 人类的文明进步已经让人类对计算的需求越来越深入,很多科学领域的研究已经越来越微观化,比如生物学、流体力学、空气动力学,并且在数据展现时也越来越强调可视化处理,比如断层分析、气象绘图、石油勘探中的地震数据解释、商业数据模型分析等,而且人们对于计算的速度也要求越来越高——能实时的模拟现实中的演变是人们不变的最高追求,这就需要有一个强有力的计算工具介入,以加速运算能力的提高。 高性能计算定义 高性能计算概述。高性能计算(HPC) 指通常使用很多处理器(作为单个机器的一部分)或者某一集群中组织的几台计算机(作为单个计算资源操作)的计算系统和环境。有许多类型的HPC 系统,其范围从标准计算机的大型集群,到高度专用的硬件。本文是基IBM BladeCenter GPU的HPC系统解决方案。 IBM BladeCenter GPU 扩展刀片 IBM BladeCenter GPU 扩展刀片。(BGE) 可帮助您满足并行计算需求,同时还能够保持 BladeCenter 基础架构的可靠性、灵活性和成本优势。BGE 根据NVIDIA 图形处理单元 (GPU) 构建,可将目标应用程序的性能最多提高 150 倍。由于 BGE 连接到 BladeCenter 机箱中的 BladeCenter 计算刀片,它可利用BladeCenter 系统的基本 I/O 和电力资源。您可以在一个 BladeCenter HS22 刀片中叠放多达 4 个 BGE,为双精度应用程序提供超过 2000 GF 的处理能力。 由于具备高可靠性、高性能、绿色节能和灵活易用等优势,刀片服务器成为云计算和高性能计算的理想平台。IBM一直关注刀片技术的研发和基于IBM BladeCenter平台解决方案的开发,并致力于与业内领先厂商共建成熟良性的刀片生态社区。凭借丰富的刀片产品线和虚拟化等先进技术方案,IBM成为支持中国企业实现云计算和高性能计算的最佳伙伴 应用场景示例: 1、大电网并行与分布式计算和数据处理基础平台系统是高性能计算在电网技术 应用的一个方向。大电网并行与分布式计算和数据处理基础平台系统是电力系统分析与规划,大电网运行与控制的基础数据和计算支撑系统。该应用方向上,研究与开发先进的大规模并行与分布式计算平台为电力分析、在线应用和大电网运行安全与监控等提供计算支撑作用。 2、大学中的科学计算

切实实现高性能并行计算应用分析

切实实现高性能并行计算应用分析 高性能并行计算的应用软件位于高性能计算生态系统的最上层,针对不同的行业有专业的产品,针对各个领域的科学与工程计算应用,直接为用户创造价值。这些软件原来大多运行在大型主机上,是面向多个处理器、多进程、多任务的单节点软件,进程之间的通信通过大型主机操作系统的消息机制进行,消息机制的启动通过函数进行调用。 本系统中,应用软件面向教学和科研应用领域的多个方面基于多节点IA架构系统,进程或任务之间的通信,基于多节点集群的中间件提供的并行通信库MPI,物理层是基于标准互联以太网系统。并行库的启动,通过特定的程序语句进行调用。 高性能应用软件总体概括分类: √多媒体运算 主要使用整型和双精度运算。包括图形图像处理和三维图像生成的高性能计算系统,强调计算节点的多媒体计算功能。计算科学院的大气科学和流体力学应用中需要的许多模拟仿真计算都属于这类计算。 √科学计算 主要使用浮点运算功能,这也是目前高性能计算系统的最主要应用领域。比如:高分子运动分析、石油勘测分析等。计算科学院的大气科学、固体力学、分子力学、流体力学、有限元分析等的主体计算都属于这类计算,这类计算需要系统具有强大的浮点运算能力。本项目的计算属于此类应用。 √数据库应用 主要使用逻辑计算和I/O操作。包括数据库集群系统和网格数据库系统的应用。强调计算节点有很强的I/O处理能力,同时,整个高性能计算系统具有足够的外接存储空间。本系统结合此类应用,奠定未来网格计算的基础。 INTEL和宝德技术人员针对华南理工的项目特点和目标,投入极高的专注和热情,在华南理工项目前期进行了详细的测试分析,提出系统优化和移植的策略,帮助客户将微分方程数值计算并行模拟器勘测系统移植到IA平台上。 Intel还提供了系列的优化工具、编译工具、集群工具等众多高性能计算组件和虚拟技术,为IA架构、标准互联的高性能计算系统应用提供高效率的保证,成为本次HPC项目成功实施的关键。 解决方案

高性能计算综述

高性能计算综述 ** ** 摘要:高性能计算简称HPC(High Performance Computing),是计算机科学的一个分支,特指当今具有超强计算能力的一类计算机。它致力于开发高性能计算机,主要采用模拟方法,解算当今超大、超高、超复杂的计算任务,研究并行算法及开发相关软件。高性能计算已被公认为继理论科学和实验科学之后,人类认识世界改造世界的第三大科学研究方法。本文就这一领域技术的地位作用、优势、现状与发展、分类、技术难点和研究方向、应用、发展展望等问题作一概要介绍。 关键词:超级计算;高性能计算;高效能计算;大规模并行处理 1 引言 高性能计算( High Performance Computing,HPC)是计算机科学的1个分支,主要指从体系结构、并行算法和软件开发等多个方面研究开发高性能计算机的技术。高性能计算本身并没有确切定义,它是指通过一定途径,获得比当前主流计算机更高性能的计算能力的技术。 高性能计算已被公认为继理论科学和实验科学之后,人类认识世界、改造世界的第三大科学研究方法,是科技创新的重要手段。在当前社会情况下,高性能计算已经成为一个国家综合实力的体现,对国家战略的发展有着重要影响。目前,高性能计算技术已经广泛应用于航空航天、汽车制造、核试验模拟、军事情报搜集处理、天气预报等多方面。通过高性能计算,人们可以完成很多目前计算机无法完成的实验,既可以免除真实实验的巨大费用,又不会对环境造成任何的影响。 通常来讲,高性能计算有2种表现方式:①提升单机的计算能力;②通过网络连接多台计算机,进而提升计算能力。第一种方式多是指提升CPU的处理能力,而随着CPU主频的提高受制于制作工艺,CPU的发展方向已经由单核向多核发展。事实证明,很多情况下CPU 过多的核心反而会降低CPU的处理能力。近几年出现的GPGPU技术已经成为提升单机处理能力的主要技术。第2种方式是通过整合多台网络计算机而提升计算能力,因此性价比较高,已经逐渐成为主流方式。 2 高性能计算的地位作用 美国在计算机与信息技术领域,一直处世界霸主地位。高性能计算机与高性能计算技术被认为是美国国家的制高点技术,历届政府都高度重视,重点发展。克林顿总统时代,大力推进HPCC(High Performance Computing & Communications)计划,大力研制一代代新机

高性能计算应用需求与发展分析.docx

高性能计算应用需求与发展分析“高性能计算应用”是当下我国重要发展应用模式之一,具有较大的意义影响。然而现阶段有关我国高性能计算应用的需求与发展研究不多,基于该问题现状,要求行之有效的方法对其进行分析研究,如高性能计算应用在经济发展中的需求、高性能计算应用在生产建设中的需求、实现“大数据”经济分析、实现生产效率质量提升等,本次研究对高性能计算应用的需求与发展进行分析,有十分重要的理论意义。 1高性能计算应用概述 随着我国综合国力不断提升,科学信息技术也不断突破,其中最为代表性的为“高性能计算应用”。高性能计算应用不是单一片面简单应用,而是更为科学、合理的系统布局。通过对国内外相关文献及资料整理研究发现,高性能计算应用具有较为具体的泛指内涵,主要包括高性能计算应用、高性能计算机技术,二者从功能发挥、互相促进等方面密切相关。首先,高性能计算机及相关技术的创新研发,为其高性能计算应用奠定坚实基础与前提。一旦缺乏其高性能计算机及相关技术,高性能计算应用就无法有力落地及发展。其次,高性能计算应用的物质设备来源于“高性能计算机及相关技术”。主要包括:计算设备、存储设备、网络设备等,这些都对高性能计算应用起到极为重要的保障作用。同时,从变相促动发展的角度来讲,高性能计算应用

也为其计算机及相关技术发展创新提供“动力”推动。主要是因为高性能计算应用的涉及领域、使用范围都较广、较多,例如:物质材料领域、生物信息领域、军工核武领域、气象天气预报、医疗及工业领域都有其高性能计算应用的体现。最后,基于当下我国经济快速发展及科学技术水平不断提升,加大对高性能计算机及实际应用的技术突破,从多方面、多角度对其技术层面进行研发,为更好的推动社会发展及科技升级打下重要基础。 2高性能计算应用及相关技术的研发形成 随着我国市场经济建设迅猛发展,科学技术水平也不断与之提升。其中,最为代表性的为计算机科学及相关技术发展。高性能计算机的研发与形成是通过无数实验与探索而实现,高性能计算机的前身为“向量计算机”。其技术突破主要从“处理器”更新创新起步,在高性能计算机研发阶段主要包括:对称多处理机、大规模并行处理机、机群系统、星群系统等处理器更新换代。同时,随着人类科技水平不断提升,一种更为高计算能力及精密度超高性能计算机逐渐呈现人们视野。现阶段,在高性能计算机及相关计算应用较为领先的国家为美国、欧洲和日本。而我国在高性能计算机与相关技术应用研发中逐渐由传统的模仿式向自主型转变,我国已经可以自主研发出于美国、日本相同功能的高性能计算机。而在其应用中我国也由以往的片面应用领域向

相关主题
文本预览
相关文档 最新文档