当前位置:文档之家› 居里温度的测定

居里温度的测定

居里温度的测定
居里温度的测定

居里温度的测定

钙钛矿锰氧化物居里温度的测定

摘要:本文简要介绍和讨论了磁性材料居里温度的测量方法,对钙钛矿锰氧化物的居里温度做了实验测量,并对实验结果进行了讨论。

关键词:居里温度;钙钛矿锰氧化物;磁化强度;临界指数

一、 引言

与材料科学中,居里温度(或称为居里点)是指铁磁性材料或亚铁磁性材料在升温过程中转变为顺磁性的临界温度。在居里温度以上,磁性物质会失去其强磁性。在居里温度以下,交换作用使得相邻原子磁矩呈平行取向(铁磁性材料),或者反平行取向(亚铁磁性材料)。当温度升高时,原子的无序热运动将会逐步破坏材料内部磁矩的有序排列,当温度高于居里温度后,热运动能和交换作用能相等,此时材料处于完全无序状态,变为顺磁性。在居里点处磁性的破坏是一种二级相变,同时磁化率理论上为无限大,因此居里点也是临界点。

不同材料的居里温度是不同的。材料居里温度的高低反映了材料内部磁性原子之间的直接交换作用、超交换作用、双交换作用。因此,深入研究和测定材料的居里温度有着重要意义。

二、 居里温度的测量方法

1) 通过测定材料的饱和磁化强度的温度依赖性得到

曲线,从而得到

降为零时所对应的居里

温度。这种方法适用于那些可以用来在变温条件下直接测量样品饱和磁化强度的装置,例如磁天

平、震动样品磁强计以及SQUID 等。

2) 通过测定样品材料在弱磁场下的初始磁导率的温度依赖性,利用霍普金森效应,确定居里温度。

霍普金森效应指的是一些软磁材料的初始磁导率在居里温度附近,由于磁晶各向异性常数1K 随

温度升高而趋于零的速度远快于饱和磁化强度随温度的变化,而初始磁导率2

1s i M K μ∝,因此在居

里温度附近,i μ会显示一最大值,随后快速趋于零的现象。

3) 通过测量其他磁学量(如磁致伸缩系数等)的温度依赖性求得居里温度。

4) 通过测定一些非磁学量如比热、电阻温度系数、热电势等随温度的变化,随后根据这些非磁学量

在居里温度附近的反常转折点来确定居里温度。

三、 钙钛矿锰氧化物

钙钛矿锰氧化物指的是成分为(R是二价稀土金属离子,为一价碱土金属离子)的一大类具有型钙钛矿结构的锰氧化物。理想的型(为稀土或碱土金属离子,为离子)钙钛矿具有空间群为的立方结构,如以稀土离子作为立方晶格的顶点,则离子和离子分别处在体心和面心的位置,同时,离子又位于六个氧离子组成的八面体的重心,如图1(a)所示。图1(b)则是以离子为立方晶格顶点的结构图。一般,把稀土离子和碱土金属离子占据的晶位称为位,而离子占据的晶位称为位。

图1 钙钛矿结构

这些钙钛矿锰氧化物的母本氧化物是La,Mn离子为正二价,这是一种显示反铁磁性的绝缘体,呈理想的钙钛矿结构。早在20世纪50—60年代,人们已经发现,如果用二价碱土金属离子(Sr、Ca、Pb等)部分取代三价稀土离子,Mn离子将处于/混合价状态,于是,通过和离子之间的双交换作用,在一定温度(Tp)以下、将同时出现绝缘体—金属转变和顺磁性—铁磁性转变。随着含Sr量的增加,锰氧化物的R—T曲线形状发生明显变化。

四、实验原理

图2示出了样品和测试线圈支架示意图。测试线圈由匝数和形状相同的探测线圈组A合补偿线圈组B组成。在两根细石英管上用高强度漆包线分别绕制初级(磁化)线圈和次级(感应)线圈。样品和热电偶置于其中一个石英管A中,另一个线圈组是作为补偿线圈引入的,以消除变温过程中因线圈阻抗发生的变化而造成的测试误差。两个线圈组的初级线圈串联相接,而次级线圈反串联相接。由于两个线圈组的次级是反串联相接的,因此其感生电动势是相互抵消的。在温度低于时,位于探测线圈A中的样品呈铁磁性,而补偿线圈B中无样品,反串联的次级线圈感应

输出信号强度正比于铁磁样品的磁化强度;当温度升到以上时,探测线圈A中的样品呈顺磁性,和补偿线圈中空气的磁性相差无几,反串联的次级线圈感应输出信号强度几乎变为零。因此,在样品温度从77K逐渐升高时,在附近随着磁性的突然变化锁定放大器的输出信号强度应有一个

比较陡峭的下降过程,因此可测定。

图2

理论计算:

对于线圈A :()

0A A B H M =μ+u r u u u r u u r

对于线圈B :0B B B H =μu u r u u u r

则锁定放大器的输入电压是线圈A 、B 的电势差A B A B d d dM

U dt dt dt

ΦΦ=ε-ε=-

+∝-

注意上式计算中之所以能将A,B 线圈两项中的0A H μu u u r 和0B H μu u u r

消掉,是因为A,B 线圈是以相同方式饶制的,当绕制方式不同时,此文后面有讨论。

最终我们通过放大器得到的读书实际上是电势差的平均值,即

0Integral 0Integral

Integral

Integral

1T T T T T T M

U Udt T T ++=

∝-

?

,其中Integral T 为积分时间,0T 为积分初始时刻。

五、 实验步骤

由于本实验做用样品的居里温度大概处于室温范围,因此具体的实验步骤为: 1) 将装有样品的测试线圈支架放入恒温槽中,恒温槽通过温控电路控制温度。 2) 设置锁定放大器的参数:积分时间10ms ,放大倍数P=10,A=6,模式为“模值”。 3) 开启搅拌器,从10℃左右开始升温,保持样品与恒温槽中水温差为5℃左右。

4) 以样品温度0.5℃为间隔,通过连入样品的数字温度测量仪和锁定放大器读出并记录相应于磁化

强度的输出信号电压和温度计的读数。

5) 当积分电压读数变化相对十分平缓时,停止读数。

六、 实验结果与数据处理

因为相关参数我们并不清楚,因此本实验不将电压转化为磁化强度,而直接以输出信号电压为纵坐标、温度为横坐标作图。因为磁化强度和输出信号电压成正比,因此这样并不影响居里温度的测定。按照惯例,锰氧化物的居里温度被定义为M-T(U-T)曲线上斜率绝对值最大点所对应的温度。以下表格为实验数据:

T(°C)U(V)T(°C)U(V)T(°C)U(V)

11.50 1.1820.50 1.0729.500.49

12.00 1.1621.00 1.0330.000.44

12.50 1.1621.50 1.0230.500.40

13.00 1.1622.00 1.0431.000.36

13.50 1.1622.500.9931.500.32

14.00 1.1523.000.9932.000.28

14.50 1.1923.500.9732.500.25

15.00 1.1724.000.9333.000.21

15.50 1.1524.500.9033.500.20

16.00 1.1425.000.8834.000.18

16.50 1.1325.500.8634.500.17

17.00 1.1526.000.8035.000.14

17.50 1.1426.500.7735.500.13

18.00 1.1227.000.7336.000.12

18.50 1.1127.500.6836.500.10

19.00 1.1128.000.6337.000.09

19.50 1.0828.500.6037.500.08

20.00 1.0629.000.5338.000.07

用Origin画图如下:

有图可以看出其斜率绝对值最大处大概在295K至307.5K之间,因此对这一段进行曲线拟合(之所以不直接进行曲线拟合是因为在温度较低处因为电压变化很小仪器读数不够稳定导致所测量的电压值不够准确,并不是单调递减,有忽上忽下的情况,因此对这段直接进行曲线拟合会

导致实验结果不够精确)。拟合图像如下:

再对其求导做出如下图形:

查找Origin 中数据点中的最小值并由图可看出,温度T=301.68K 即温度为28.68°C 时,斜率最小,因此测出的材料居里温度为301.68C T K =。

进一步讨论:

热力学告诉我们在连续相变临界点的领域,与化学势二阶导数相应的热容量、等温压缩系数、磁化率等出现跃变或无穷尖峰。人们用幂函数表述这些热力学量在临界点领域的特性,其幂次(负幂次)称为临界指数。本实验中所测的居里温度即为一临界点,热力学告诉我们在0

t →-

(C

C

T T

t

T

-

=,

C

T为居里温度)时,自发磁化强度随t-的变化遵从以下规律:

()

M tβ

∝-,0

t→-

我们实验中已经测得了居里温度301.68

C

T K

=,因此可以通过实验数据计算出

C

T T

<时的t,做出t与U的关系图,并对其进行形式为b

y ax

=的函数拟合,得到的b值即为临界指数β,如下图:

有图可看到临界指数0.19214

β=

七、实验思考

如果探测线圈A和补偿线圈B在绕制时不完全相同,会对测到的M-T(U-T)曲线以及

C

T产生什么影响?

答:由前文的理论计算可知,当绕制不同时

0A

H

μ

u u u r

0B

H

μ

u u u r

无法相消,因此计算得到的电势差会为以下形式:

()

A B

A B

A B

d H H

d d dM

U

dt dt dt dt

-

ΦΦ

=ε-ε=-+∝--

得到的电势差平均值为

()0Integral

0Integral

0Integral0

Integral Integral

1

T T

T T

T T A B

T T

T

M H H

U Udt

T T

+

+

+

+-

=∝-

?

即在原有测量结果的电压值上叠加了一个常数()0Integral

T T

A B T

H H+

-,即原有实验U-T图形沿纵坐标

平移了一段距离()0Integral

T T A B T H H +-,显然,理论上这对于求导获得的居里温度不会产生任何影响,但

实际需分情况讨论,当()0Integral

0Integral 0

T T T T A B T T

H H M

++-?时,居里点附近的磁场跃变相对于线圈本身的激

励磁场为小量,这在实际实验测量中会使得测量到的电压变化(居里点附近)不显著,从而降低了实验精度。而当()0Integral

0Integral 0

T T T T A B T T H H M

++-=或两者相差不大时,这种影响便可忽略不计。

八、 参考文献

[1] G. H. Jonker and J. H Van Stanten, physica.16, 337(1950)

[2] J. H Van Stanten and G .H. Jonker, physica(Amsterdam)16,559(1950) [3] C. Zenner, Phys.Rev.82, 403(1951)

[4] P. W. Andersen, Hasegawa, Phys.Rev.100, 675(1955)

[5] S. Jin, H. Tiefel, M. Mecormack, R. A. Fastbacht, J. M. Philips and L. H. Chen, science 264(1994) 413; J. Appl. Phys. 76, 6929(1994); M. Mecormack, S. Jin, H. Tiefel, et. al. Appl. Phys. Lett. 64, 3045(1995).

温度传感器基础知识

https://www.doczj.com/doc/8d12972091.html,/download/4104_0/101400.html 温度传感器基础知识 温度是表征物体冷热程度的物理量,是工农业生产过程中一个很重要而普遍的测量参数。温度的测量及控制对保证产品质量、提高生产效率、节约能源、生产安全、促进国民经济的发展起到非常重要的作用。由于温度测量的普遍性,温度传感器的数量在各种传感器中居首位,约占50%。 温度传感器是通过物体随温度变化而改变某种特性来间接测量的。不少材料、元件的特性都随温度的变化而变化,所以能作温度传感器的材料相当多。温度传感器随温度而引起物理参数变化的有:膨胀、电阻、电容、而电动势、磁性能、频率、光学特性及热噪声等等。随着生产的发展,新型温度传感器还会不断涌现。 由于工农业生产中温度测量的范围极宽,从零下几百度到零上几千度,而各种材料做成的温度传感器只能在一定的温度范围内使用。常用的测温传感器的种类与测温范围如下表所示。

工作原理晶体二极管或三极管的PN 结的结电压是随温度而变化的。例如硅管的PN 结的结电压在温度每升高1℃时,下降-2mV ,利用这种特性,一般可以直接采用二极管(如玻璃封装的开关二极管1N4148)或采用硅三极管(可将集电极和基极短接)接成二极管来做PN 结温度传感器。这种传感器有较好的线性,尺寸小,其热时间常数为0.2—2秒,灵敏度高。测温范围为-50—150℃。典型的温度曲线如图1所示。同型号的二极管或三极管特性不完全相同,因此它们的互换性较差。 应用电路(一) 图(2)是采用PN 结温度传感器的数字式温度计,测温范围-50—150℃,分辨率为0.1℃,在0—100℃范围内精度可达±1℃。 1N4148 https://www.doczj.com/doc/8d12972091.html,/datasheet/1N4148/28138465/Beyschlag

居里温度的测定_实验报告

钙钛矿锰氧化物居里温度的测定 物理学院 111120160 徐聪 摘要:本文阐述了居里温度的物理意义及测量方法,测定了钙钛矿锰氧化物样品 在不同实验条件下的居里温度,最后对本实验进行了讨论。 关键词:居里温度,钙钛矿锰氧化物,磁化强度,交换作用 1. 引言 磁性材料的自发磁化来自磁性电子间的交换作用。在磁性材料内部,交换作用总是力图使原子磁矩呈有序排列:平行取向或反平行取向。但是随着温度升高,原子热运动能量增大,逐步破坏磁性材料内部的原子磁矩的有序排列,当升高到一定温度时,热运动能和交换作用能量相等,原子磁矩的有序排列不复存在,强磁性消失,材料呈现顺磁性,此即居里温度。 不同材料的居里温度是不同的。材料居里温度的高低反映了材料内部磁性原子之间的直接交换作用、超交换作用、双交换作用。因此,深入研究和测定材料的居里温度有着重要意义。 2.居里温度的测量方法 测量材料的居里温度可以采用许多方法。常用的测量方法有: (1)通过测量材料的饱和磁化强度的温度依赖性得到曲线,从而得到降为零时对应的居里温度。这种方法适用于那些可以用来在变温条件下直接测量样品饱和磁化强度的装置,例如磁天平、振动样品磁强计以及等。 (2)通过测定样品材料在弱磁场下的初始磁导率的温度依赖性,利用霍普金森效应,确定居里温度。 (3)通过测量其他磁学量(如磁致伸缩系数等)的温度依赖性求得居里温度。 (4)通过测定一些非磁学量如比热、电阻温度系数、热电势等随温度的变化,随后根据这些非磁学量在居里温度附近的反常转折点来确定居里温度。 3. 钙钛矿锰氧化物 钙钛矿锰氧化物指的是成分为(R是二价稀土金属离子,为一价碱土金属离子)的一大类具有型钙钛矿结构的锰氧化物。理想的型(为稀土或碱土金属离子,为离子)钙钛矿具有空间群为的立方结构,如以稀土离子作为立方晶格的顶点,则离子和离子分别处在体心和面心的位置,同时,离子又位于六个氧离子组成的八面体的重心,如图1(a)所示。图1(b)则是以离子为立

博益气动温度计基础知识

1. 温度计的制作原理、构造 1.1 制作原理 从制作原理上讲,温度计分三类: 1.1.1填充液体式—当温度变化时,液体会相应的膨胀或收缩。 1.1.2填充气体式—当温度变化时,气体会相应的膨胀或收缩。 1.1.3双金属式—双金属式温度计的感应元件是由两种热膨胀系数不同的金属组成的,呈螺旋状,它们会根据温度的变化产生形变,指示温度。 特征:与液体填充式温度计相比较,这种温度计几乎不存在环境温度误差;由于没有填充液体,它的使用是非常安全的(没有环境污染);这种温度计结构简单,价格合理。 1.2 温度计结构 1.3 温度计的术语 1.3.1表直径Φ60Φ75Φ100Φ150 1.3.2蛇管、连接口径、毛细管、感温部 2. 温度计分类 2.1 波登管 温度计类型普通温度计:TL□□、RL□□、RV□□、TV□□ 带接点温度计:TE□□、TF□□、TK□□、TD10、TD21、TD25(耐压防爆) 温度开关:TS40、TS50、TD50(耐压防 爆) TS40 IP等级低,室内 TS50 IP等级高,室外 TD50 耐压防爆开关 温度变送器:TH□□ TH61 TH71 TH81 型号类型温度范围应用行业 TB□□ 双金属温度计-50℃~500℃食品、化妆品、制药 TL□□ 温度计-200℃~600℃一般工业用 RL□□ 防雨型温度计-200℃~600℃室外、耐腐蚀、防护等级高RV□□ 耐振型温度计-200℃~600℃用于强烈振动的场合

TE□□ 带微动开关0℃~600℃一般工业用(内部充液) TK□□ 带触点开关-70℃~600℃易燃易爆场合 TF□□ 带微动开关-70℃~300℃一般工业用 TD10.21.25 防爆型温度计-70℃~600℃易燃易爆场合 TS□□ 温度开关-30℃~600℃一般工业用 TD50 防爆型温度计-30℃~600℃易燃易爆场合 3. 温度计的选型与报价 3.1 首先根据客户需求确定温度计的种类,再根据使用场所确定型号;种类:普通温度计、带接点温度计、温度开关、温度变送器; 使用场所有以下三种情况: 室外用,要求防护等级高、耐腐蚀的场合 对应型号:RB□□、RL□□ 具有强烈振动的场合(不锈钢、充液式) 对应型号:RB□□、RL□□ 易燃易爆的场合 对应型号:TD□□ 3.2 温度计的形状与安装方式的选择 3.2.1形状与安装的方法: 优点缺点 直接型由于指示器和感温部都是直接的,只要使用连接螺拴 就可以进行安装了。 由于指示器和感温部都是直接连接 的,温度计很容易受到测量液体的影 响。 L型立式安装的指示器可以自由角度地转动,所以读 数即方便又简单。 L型立式安装的指示器虽然可以自由 角地转动,但由于温度计安装时使用 了衬垫,固定螺栓就可能会松动。 优点缺点 远传型可以在测量点之外的不同地点读取温度。当指示器和感温部位置高度不同时,填充水银 的温度计就会产生误差。 3.2.2温度计表盘刻度·感温部材质的选择 ※选择温度计时,考虑正常情况下待测温度的范围应位于温度表盘刻度的30%~60%。 当温度超出了这个范围,可能会造成表计的破裂。 例如:温度计在运输过程中,经过赤道或寒带或者储存在寒带,都要特别注意! 应用:如果实际测量液体温度是40℃~60℃,那么表盘刻度应选择0~100℃。 ※确认接液部件材质是否适合待测液体或气体。 3.2.3感温部最小插入尺寸 不同型号,温度范围和感温部直径共同决定了它的最短插入深度。不能低于1/3(插入/长度)订货时,选定了规格,就需要选择一个合适的长度,它要大于最短插入深度,才能确保性能的发挥。

南京大学_居里温度的测量

铁磁性材料居里温度的测量 ——近代物理实验报告

2012年6月 【摘要】居里温度是指材料可以在铁磁体和顺磁体之间改变的温度,即铁电体从铁磁性转变成顺磁性的相变温度,不同材料的居里温度时不同的。本次实验通过测定磁化强度随温度变化,用函数拟合的方法找出电压变化最快的温度,作为测定样品的居里温度,最后对本实验进行了讨论。 【关键词】钙钛矿锰氧化物;居里温度;实部;拟合;斜率 一.实验目的 1.初步了解铁磁性物质由铁磁性转变为顺磁性的微观机理。 2.学习JZB-1型居里温度测试仪测定居里温度的原理和方法。 二.实验原理 1.居里温度 磁性材料的自发磁化来自磁性电子间的交换作用。在磁性材料内部,交换作用总是力图使原子磁矩呈有序排列:平行取向或反平行取向。但是随着温度升高,原子热运动能量增大,逐步破坏磁性材料内部的原子磁矩的有序排列,当材料达到一定温度时,热运动能和交换作用能量相等,原子磁矩的有序排列不复存在,强磁性消失,材料呈现顺磁性,这时的温度就是居里温度。因此,居里温度是指铁磁性或亚铁磁性材料由铁磁性或亚铁磁性状态转变为顺磁性状态的临界温度。但是,由 --数于铁磁性或亚铁磁性材料的磁化率大于0,且数值很大,而顺磁性物质的磁化率只有53 1010 量级,所以在转变点附近,材料磁性很弱,因此,在要求不太严格的情况下,常常把强磁性材料的磁化率强度随着温度的升高降为零的温度看成是居里温度。

居里温度是材料本身的特性,不同的材料有着不同的居里温度,对于钙钛矿锰氧化物的居里温度则较低,约小于370K 。材料的居里温度反映了材料内部磁性原子之间的直接交换作用、超交换作用或双交换作用的强弱。因此,深入研究和测定材料的居里温度有着重要的意义。 2.居里温度的测量方法 测量材料的居里温度可以采用许多方法。 (1)通过测量材料的饱和磁化强度的温度依赖性得到Ms T -曲线,从而得到T 降为零时对应的居里温度。这种方法适用于那些可以用来在变温条件下直接测量样品饱和磁化强度的装置。图1示出了纯Ni 的饱和磁化强度的温度依赖性。由图可以确定Ni 的居里温度。 图2.1 纯Ni 的饱和磁化强度的温度依赖性 (2)通过测定样品材料在弱磁场下的初始磁导率的温度依赖性,利用霍普金森效应,确定居里温度。 (3)通过测量其他磁学量(如磁致伸缩系数等)的温度依赖性求得居里温度。 (4)通过测定一些非磁学量如比热、电阻温度系数、热电势等随温度的变化,随后根据这些非磁学量在居里温度附近的反常转折点来确定居里温度。 3. 钙钛矿锰氧化物 钙钛矿锰氧化物指的是成分为3RL XAXMnO - (R 是二价稀土金属离子,A 为一价碱土金属离子)的一大类具有型钙钛矿结构的锰氧化物。理想的3ABO 型,钙钛矿具有空间群为3Pm m 的立方结构,如以稀土离子A 作为立方晶格的顶点,则Mn 离子和O 离子分别处在体心和面心的位置,同时,

热电偶测温基本原理

1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B 的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 A,B 两种导体,一端通过焊接形成结点,为工作端,位于待测介质。另一端接测温仪表,为参考端。为更好地理解下面的内容,我们将以上测温回路中形成的热电动势表示为EAB(T1,T0),理解为:A、B两种导体组成的热电偶,工作端温度为T1,参考端温度为T0,形成的热电动势为EAB(T1,T0)。 需要特别强调的是:热电偶测温,归根结底是测量热电偶两端的热电动势。测量仪表能够让我们看到温度数值,是因为它已经将热电动势转换成了温度。 图中,工作端温度T1, A、B与C、D连接处温度为T2,测量仪表端(参考端)温度为T0。 我们可以把总回路的总电动势E 分成两段热电动势的和,即A、B为一段,热电动势为EAB(T1,T2),C、D为另一段,热电动势为ECD(T2,T0), 即: E= EAB(T1,T2)+ ECD(T2,T0) (热电偶中间导体定律) (1)

在上图中,如果C、D的材质和A、B完全一样,即C即为A,D即为B,相当于热电偶A、B 在T2(中间温度)处产生了一个连接点,此时,回路总电势为: E= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (热电偶中间温度定律) (2) 从式(2)我们可以看出,只要是相同的热电偶,中间产生了连接点,则总电势与连接点的温度(中间温度)无关,而只与工作端和参考端的温度有关。这正是我们希望得到的。我们在热电偶布线中,不需要考虑中间有没有连接点,也不需要考虑连接点的温度,而是和一根热电偶连接到介质和测量仪表一样。 再来比较式(2)和式(1)。如果我们能找到某种材料C、D,它能满足: ECD(T2,T0)= EAB(T2,T0) (3) 则式(1)成为: E= EAB(T1,T2)+ ECD(T2,T0)= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (4) 满足式(3)的材料C、D我们称为热电偶A、B的补偿导线。 式(4)还告诉我们,使用了补偿导线,我们将T2延伸到了T0,但最后我们的测量结果与T2无关,这样我们也可以理解为,因为我们使用了导线C、D,是它补偿了T2处连接所产生的附加电势,而使得我们最终测量不需要再考虑T2,这也是C、D为什么叫补偿导线的原因, 2.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

变压器温度计相关知识

变压器温度计相关知识 由于变压器的使用寿命取决于它的绕组温度,绕组温度对绝缘材料起着决定性的作用。DL/T 572—1995《电力变压器运行规程》规定变压器的上层油温,一般不得超过95℃。上层油温如果超过95℃,变压器绕组的温度就要超过绕组绝缘物的耐热强度,从而加速绝缘物的老化。故变压器运行中,一般规定了85℃这个上层油温的界限。 为防止变压器油温过高,加速变压器的老化。故变压器一般安装温度计,油面温度计用来测量变压器油箱上层油温,监视变压器运行状态是否正常。 早期变压器一般只安装一只温度计,最近几年变压器油面温度计一般安装两只,主要对于容量较大的变压器,油箱内空间较大,变压器的发热和散热也是不均匀的,在变压器内不同的区域,温度相差可能较大,为了安全起见,需要较准确地测出变压器的油温,所以有时在变压器的长轴两端各设个信号温度计来检测其油温,以确保变压器更安全地运行。这样也可当其中一只温度计故障,由于一时无法安排停电处理,而无法监测变压器的油面温度。 这一年随着绕组温度计技术成熟,更在在1110kV安装绕组温度计,直接监测绕组温度计。 一、温度计的原理 变压器温度计是用来测量油箱里面上层油温的,起到监视电力变压器是否正常运行的作用。温度计按变压器容量大小可分为水银温度计、压力式(信号)温度计、电阻温度计三种测温方法。 通常800kVA以下的电力变压器箱盖上设有水银温度计座。当欲以水银温度计测量油面温度时,旋开水银温度计水银温度计是膨胀式温度计的一种,水银的冰点是:-38.87℃,沸点是:356.7℃,用来测量0--150℃或500℃以内范围的温度,它只能作为就地监督的仪表。用它来测量温度,不仅比较简单直观,而且还可以避免外部远传温度计的误差。使用水银温度计时应注意以下几点:座上的盖子(运输时防雨用的)在座内注满变压器油,将水银温度计插入进行测量。

居里温度测定

钙钛矿锰氧化物居里温度的测定 摘要:居里温度是指材料可以在铁磁体(亚铁磁体)和顺磁体之间改变的温度,即铁电体从铁磁性(亚铁磁性)转变成顺磁性的相变温度。不同材料的居里温度时不同的。本次实验是通过测定弱交变磁场下磁化强度随温度变化来测定样品的居里温度。本文阐述了居里温度的物理意义及测量方法,测定了钙钛矿锰氧化物样品在实验条件下的居里温度,最后对本实验进行了讨论 关键词:居里温度、钙钛矿锰氧化物、磁化强度 M-T曲线。 一、引言 磁性材料的自发磁化来自磁性电子间的交换作用。在磁性材料内部,交换作用总是力图使原子磁矩呈有序排列:平行取向或反平行取向。但是随着温度升高,原子热运动能量增大,逐步破坏磁性材料内部的原子磁矩的有序排列,当升高到一定温度时,热运动能和交换作用能量相等,原子磁矩的有序排列不复存在,强磁性消失,材料呈现顺磁性,此即居里温度。不同材料的居里温度是不同的。材料居里温度的高低反映了材料内部磁性原子之间的直接交换作用、超交换作用、双交换作用。因此,深入研究和测定材料的居里温度有着重要意义。 二、实验目的 1.了解磁性材料居里温度的物理意义。 2.测定钙钛氧锰氧化物样品的居里温度。 三、实验原理 1.居里点 物体在外磁场下产生不同的磁矩,M=(1+χm)。根据其性质不同可分为抗磁性 (χm<0),顺磁性(χm>0),铁磁性(χm~10?106,自发磁化)等。此外还有反铁磁性和亚铁磁性等其他性质复杂的磁性物质。其中铁磁性物质的磁特性会随温度的变化而改变。当温度上升到某一温度时,铁磁性材料会由铁磁状态转变为顺磁状态,这个温度称之为居里温度,以T c表示,并且之后χm?T关系服从居里外斯定律,即χm=C/(T?T c),其中C是居里常数。 2.居里温度的测量方法 通过测定材料的饱和磁化强度和温度依赖性得到Ms—T曲线,从而得打Ms降为零时所对应的居里温度。这种方法适用于那些可以用来在变温条件下直接测量样品饱和磁化强度的装置,例如磁天平、振动样品磁强计以及SQUID等。图1示出了纯Ni的饱和磁化强度的度依赖性。由图(1)可以确定Ni的居里温度。

热电偶测温原理及常见故障

热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 常用的热电偶材料有: 热电偶分度号热电极材料 正极负极 S 铂铑10 纯铂 R 铂铑13 纯铂 B 铂铑30 铂铑6 K 镍铬镍硅 T 纯铜铜镍 J 铁铜镍 N 镍铬硅镍硅 E 镍铬铜镍 2.热电偶的种类及结构形成

(1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。 热电偶冷端补偿原理 热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 热电偶的冷端补偿通常采用在冷端串联一个由热电阻构成的电桥。电桥的三个桥臂为标准电阻,另外有一个桥臂由(铜)热电阻构成。当冷端温度变化(比如升高),热电偶产生的热电势也将变化(减小),而此时串联电桥中的热电阻阻值也将变化并使电桥两端的电压也发生变化(升高)。如果参数选择得好且接线正确,电桥产生的电压正好与热电势随温度变化而变化的量相等,整个热电偶测量回路的总输出电压(电势)正好真实反映了所测量的温度值。这就是热电偶的冷端补偿原理。

铁磁材料居里温度测试实验

铁磁材料居里温度测试实验 【实验目的】 1.了解铁磁物质由铁磁性转变为顺磁性的微观机理。 2.利用交流电桥法测定铁磁材料样品的居里温度。 3.分析实验时加热速率和交流电桥输入信号频率对居里温度测试结果的影响。 【实验仪器】 FD-FMCT-A铁磁材料居里温度测试实验仪,示波器检 【实验原理】 一、概述:磁性材料在电力、通讯、电子仪器、汽车、计算机和信息存储等领域有着十分广泛的应用,近年来已成为促进高新技术发展和当代文明进步不可替代的材料,因此在大学物理实验开设关于磁性材料的基本性质的研究显得尤为重要。 铁磁性物质的磁特性随温度的变化而改变,当温度上升至某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质,这个温度称为居里温度,居里温度是表征磁性材料基本特性的物理量,它仅与材料的化学成分和晶体结构有关,几乎与晶粒的大小、取向以及应力分布等结构因素无关,因此又称它为结构不灵敏参数。测定铁磁材料的居里温度不仅对磁材料、磁性器件的研究和研制,而且对工程技术的应用都具有十分重要的意义。 本实验仪根据铁磁物质磁矩随温度变化的特性,采用交流电桥法测量铁磁物质自发磁化消失时的温度,该方法具有系统结构简单,性能稳定可靠等优点,通过对软磁铁氧体材料居里温度的测量,加深对这一磁性材料基本特性的理解。仪器配有自动采集系统,可以通过计算机自动扫描分析, 二、实验原理 1.铁磁质的磁化规律 由于外加磁场的作用,物质中的状态发生变化,产生新的磁场的现象称为磁性,物质的磁性可分为反铁磁性(抗磁性)、顺磁性和铁磁性三种,一切可被磁化的物质叫做磁介质,在铁磁质中相邻电子之间存在着一种很强的”交换耦合“作用,在无外磁场的情况下,它们的自旋磁矩能在一个个微小区域内“自发地”整齐排列起来而形成自发磁化小区域,称为磁畴。在未经磁化的铁磁质中,虽然每一磁畴内部都有确定的自发磁化方向,有很大的磁性,但大量磁畴的磁化方向各不相同因而整个铁磁质不显磁性。如图1所示,给出了多晶磁畴结构示意图。当铁磁质处于外磁场中时,那些自发磁化方向和外磁场方向成小角度的磁畴其体积随着外加磁场的增大而扩大并使磁畴的磁化方向进一步转向外磁场方向。另一些自发磁化方向和外磁场方向成大角度的磁畴其体积则逐渐缩小,这时铁磁质对外呈现宏观磁性。当外磁场增大时,上述效应相应增大,直到所有磁畴都沿外磁场排列好,介质的磁化就达到饱和。

热电偶测量误差分析(精)

热电偶测量误差分析 一、热电偶测温基本原理 将两种不同材料的导体或半导体A和B连接起来,构成一个闭合回路,就构成热电偶。如图1所示。温度t端为感温端称为测量端,温度t0端为连接仪表端称为参比端或冷端,当导体A和B的两个执着点t和t0之间存在温差时,就在回路中产生电动势EAB(t,t0),因而在回路中形成电流,这种现象称为热电效应".这个电动势称为热电势,热电偶就是利用这一效应来工作的.热电势的大小与t和t0之差的大小有关.当热电偶的两个热电极材料已知时,由热电偶回路热电势的分布理论知热电偶两端的热电势差可以用下式表示:EAB(t,t0)=EAB(t)-EAB(t0) 式中 EAB(t,t0)-热电偶的热电势; EAB(t)-温度为t时工作端的热电势; EAB(t0)-温度为t0时冷端的热电势。 从上式可看出!当工作端的被测介质温度发生变化时,热电势随之发生变化,因此,只要测出EAB(t,t0)和知道EAB(t0)就可得到EAB(t),将热电势送入显示仪表进行指示或记录,或送入微机进行处理,即可获得测量端温度t值。 要真正了解热电偶的应用则不得不提到热电偶回路的几条重要性质: 质材料定律:由一种均质材料组成的闭合回路,不论材料长度方向各处温度如何分布,回路中均不产生热电势。这条规律要求组成热电偶的两种材料必须各自都是均质的,否则会由于沿热电偶长度方向存在温度梯度而产生附加电势,从而因热电偶材料不均引入误差。 中间导体定律:在热电偶回路中插入第三种(或多种)均质材料,只要所插入的材料两端连接点温度相同,则所插入的第三种材料不影响原回路的热电势。这条定律表明在热电偶回路中可拉入测量热电势的仪表,只要仪表处于稳定的环境温度即可。同时还表明热电偶的接点不仅可经焊接而成,也可以借用均质等温的导体加以连接。 中间温度定律:两种不同材料组成的热电偶回路,其接点温度分别为t和to时的热电势EAB(t,to)等于热电偶在连接点温度为(t,tn)和(tn,to)时相应的热电势EAB(t,tn)和EAB(tn,to)的代数和,其中tn为中间温度。该定律说明当热电偶参比端温度不为0℃时,只要能测得热电势EAB (t,to),且to已知,仍可以采用热电偶分度表求得被测温度t值。 连接导体定律:在热电偶回路中,如果热电偶的电极材料A和B分别与连接导线A1和B1相连接(如下图所示),各有关接点温度为t,tn和to,那么回路的总热电势等于热电偶两端处于t和tn温度条件下的热电势EAB(t,tn)与连接导线A1和B1两端处于tn和to温度条件的热电势EA1B1(tn,to)的代数和。 中间温度定律和连接导体定律是工业热电偶测温中应用补偿导线的理论依据。 二、各种误差引起的原因及解决方式 2.1 热电偶热电特性不稳定的影响

居里温度的测量

实验十一 居里温度的测量 居里温度是表征磁性材料性质和特征的重要参量,测量磁导率和居里温度的仪器很多,例如磁天平、振动样品磁强计、磁化强度和居里温度测试仪等,测量方法有感应法、谐振法、电桥法等. 【实验目的】 1. 初步了解铁磁性物质由铁磁性转变为顺磁性的微观机理. 2. 学习JZB-1型居里温度测试仪测定居里温度的原理和方法. 3. 学会测量不同铁磁样品居里点的方法. 【实验原理】 磁性是物质的一种基本属性,从微观粒子到宏观物体,以至宇宙天体,无不具有某种程度的磁性,只是其强弱程度不同而已,这里说的磁性是指物质在磁场中可以受到力或力矩作用的一种物理性质。使物质具有磁性的物理过程叫做磁化,一切可以被磁化的物质都叫做磁介质.磁介质的磁化规律可用磁感应强度B 、磁化强度M 、磁场强度H 来描述,当介质为各向同性时,它们满足下列关系: ()()H H H M H B r m μμμχμμ==+=+=0001 (1) 其中m r χμ+=1,r μ称为相对磁导率,是个无量纲的量.为了简便,常把r μ简称为介质磁导率,m χ称为磁化率,m H /1047 0-?=πμ称为真空磁导率,r μμμ0=称为绝对磁导率.H M m χ=. 在真空中时0=M ,H 和B 中只需一个便可完全描述场的性质.但在介质内部,H 和B 是两个不同的量,究竟用H 还是用B 来作为描述磁场的本征量,根据磁场的性质有各种不同的表现来选择.因为H 和B 两者描述了不同情况下磁场的性质,它们都是描述磁场性质的宏观量,都是真正的物理量.在某些问题中,比如在电磁感应、霍尔效应、测量地磁水平分量等问题中,由于起作用的是磁通量的时间变化率,牵涉到的是B ;而如果考虑材料内部某处磁矩所受的作用时,起作用的就是H ,比如求退磁能及磁矩所做的功等。 从H B r μμ0=的关系看,表面上B 与H 是线性的,但实际上,由于r μ是一个与m χ值有关的量,而m χ值又与温度、磁化场有关,所以r μ是一个复杂的量,不能简单地从B 与H 的形式上来判断它们之间是线性的,或是非线性的关系. 磁体在磁性质上有很大的不同,从实用的观点,可以根据磁体的磁化率大小和符号来分为五个种类。 (1)抗磁性:是一种原子系统在外磁场作用下,获得与外磁场方向反向的磁矩的现象。某些物质当它们受到外磁场H 作用后,感生出与H 方向相反的磁化强度,其磁化率0m χ,但数值很小,仅显示微弱磁性。这种磁性称为顺磁性。多数顺磁性物质的m χ与温度T 有密切关系,服从居里定律,即

温度计工作原理

温度计工作原理 看看屋里屋外,您会发现有许多设备,它们的作用就是测量温度的变化: 院子里的温度计可以告诉您外面多热或多冷。 厨房里的肉类和糖果温度计可以测量食物的温度。 加热炉里的温度计可以控制什么时候开关。 烤箱里的温度计可以保持设定的温度(热)。 冰箱里的温度计可以保持设定的温度(冷)。 药柜里的体温计可以准确测量一个小范围内的温度。 所有这些设备都在以某种方式测量温度。在本篇文章中,我们将了解现在使用的各种温度计技术及其工作原理。您还可以制作自己的温度计! 球状温度计就是您可能从小就在用的玻璃温度计。这种温度计含有某种液体, 通常是水银。 球状温度计依据的是一个简单的原理,即液体的体积会随温度的变化而变化。 液体变冷时收缩,变热时膨胀,这一原理同样适用于气体,也是热气球的工 作原理。 您可能每天都会接触液体,但是您可能没有注意到,水、牛奶和食用油的体 积都会随着温度的变化而变化,这些变化是相当小的。所有的球状温度计都 使用一个大大的球和一根细细的管子来突出体积的变化。如果您自己动手做 一个球状温度计,您就会亲眼看到这一点。下面就是您需要的物品: 带不透水密封盖的玻璃罐或玻璃瓶,盖子应为金属或塑料制成的旋盖。 我用的是1360克的苹果酱罐。罐子必须是玻璃的,这样您挤压它时, 它的形状不会发生改变。 一把钻头,或一把锤子和一颗大钉子。 一些橡皮泥、油灰、填缝剂或口香糖。 吸管,约23厘米长,越细越好,最好是透明的。 一些食用色素(非必需)。 制作温度计: 1.在罐子盖上打一个孔,孔的大小应尽可能地接近吸管的直径。 2.将吸管的一端插入孔中,然后密封孔的四周,要用橡皮泥把盖子的内外两侧都密封 住。完成后,它看起来应该是下面这样的:

铁磁性材料居里温度的测试

铁磁性材料居里温度的测试 铁磁性物质的磁性随温度的变化而改变。温度上升到某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质,这个温度称之为居里 表示。居里温度是磁性材料的本征参量之一,它仅与材料的化学成分和晶体结温度,以T c 构有关,几乎与晶粒的大小、取向以及应力分布等组织结构因素无关,为组织和结构不敏感参量。测定铁磁性材料的居里温度不仅对磁性材料、磁性器件的研究和研制,而且对工程技术应用都具有十分重要的意义。 一、数据记录、处理及误差分析 1、实验前应列出记录数据的表格(参见表9—1、9—2),记录时准确定出有效数字位数。注意:要求记录不同样品的(室温)初始(输出)感应电压值。 表9-1磁滞回线消失时所对应的温度值及初始(输出)感应电压值 表9-2感应电动势积分值ε'及其对应的温度T值

2、绘出每个样品的U~T 曲线,按照图9—5的方法确定各自的居里点Tc ,并与通过示波器观察样品磁滞回线消失温度来确定居里点Tc 方法得到的结果进行比较,并加以分析讨论。 20 30 40 50 60 70 80 90 050100150200250300 350400 i n d u c e d v o l t a g e (m V ) temperature(℃) 图1-1 试样一的U~T 曲线 示波器法测得Tc=85℃(室温26℃) U~T 曲线用切线法测得Tc=85.2℃ 050100150200250300 350400i n d u c e d v o l t a g e (m V ) temperature(℃) 图1-2 试样二的U~T 曲线 示波器法测得Tc=130.6℃(室温25℃) U~T 曲线用切线法测得Tc=130.2℃

数显压力表、温度计基础知识

压力表、温度计知识收集 一、压力表基础知识 1.压力表的原理与构造 1.1原理:压力表通过表内的敏感元件(波登管、膜盒、波纹管)的弹性形变, 再由表内机芯的转换机构将压力形变传导至指针,引起指针转动来显示压力。 1.2构造: 溢流孔:若发生波登管爆裂的紧急情况的时候,内部压力将通过溢流孔向外界释放,防止玻璃面板的爆裂。注:为了保持溢流孔的正常性能,请在表后面留出至少10mm 勺空间,不要改造或塞住溢流孔。 指针:除标准指针外,其他指针也是可选的。(零调指针最大值指针或设定指针)请在选型表中列出。 玻璃面板:除标准玻璃外,其他特殊材质玻璃,如强化玻璃,无反射玻璃也是 可选的。 性能分类:普通型(标准)、蒸汽用普通型(M、耐热型(H)、耐振型(V)、蒸汽用耐振型(MV耐热耐振型(HV。用途区分参考JIS7505波登管压力表标准。 处理方式:禁油/禁水处理…在制造时除去残留在接液部的水或油。 外装指定:壳体颜色…除标准色以外,清特别注明。 节流阀:(可选)为了减小脉动压力,节流阀安装在压力入口处。 脉动压力:由于压力发生器中泵的脉动特性,使压力表的特诊曲线振幅较大。这对压力表是非常有害的。 连接方式:本产品连接部有三种连接方式: 钎焊…用于铜类材质的连接 银铜钎焊…用于铜类材质和不锈钢材质之间连接 TIG焊接…用于不锈钢材质之间连接 2.压力表术语 2.1正压与负压 2.2相对压力与绝对压力 2.3真空度(如图

2.4 压力的表示方法 压 力有两种表示方法:一种是以绝对真空作为基准所表示 的压力,称为绝对压力;另一种是以大气压力作为基准所表示的压力, 称为相对 压力。由于大多数测压仪表所测得的压力都是相对压力,故相对压力也称表压 力。当绝对压力小于大气压力时,可用容器内的绝对压力不足一个大气压的数 值来表示。称为”真空度”。它们的关系如下: 绝对压力=大气压力+相对压力 真空度=大气压力一绝对压力 我国法定的压力单位为Pa(N/叭,称为帕斯卡,简称帕。由于此单位太小, 因此常采用它的106倍单位MPa(兆帕)。 2.5弹性敏感元件:波登管、波纹管、 隔膜 波登管压力表波登管敏感元件是弯成圆形,截面积显椭圆形的弹性C 形管。测 量介质的压力作用在波动管的内侧,这样波登管椭圆截面会趋于圆形截面。由于 波登管微小变形,形成一定的环应力。此环应力会使波登管向外延伸。由于弹 性波登管头部没有固定,其就会产生小小变形,其变形的大小取决于测量介质的 压力大小。波登管的变形通过 机芯间接地由指针显示测量介质的压力。 (kP?) 绝对JL 堂 :二 =i! y.. 【负 JH) :專直:

居里温度测定实验报告 南京大学

南京大学 近代物理实验报告 12.6 钙钛矿锰氧化合物居里温度的测量 学号: 111120230 姓名: 朱瑛莺 2014年5月9日

南京大学近代物理实验报告 摘要 钙钛矿锰氧化合物在温度处于或高于居里温度时,原子的热运动能大于自旋交换作用能,原子磁矩有序排列不复存在,呈现顺磁性。本实验通过测量样品磁化强度随 曲线,得到材料的居里温度。 温度的变化并绘制M T 关键词:居里温度钙钛矿锰氧化物磁化强度补偿线圈

南京大学近代物理实验报告 1 引言 1、磁性材料的自发磁化来自磁性电子间的交换作用。在磁性材料内部,交换作用总是力图使原子磁矩呈有序排列:平行取向或反平行取向。但是随着温度升高,原子热运动能量增大,逐步破坏磁性材料内部的原子磁矩的有序排列,当升高到一定温度时,热运动能和交换作用能量相等,原子磁矩的有序排列不复存在,强磁性消失,材料呈现顺磁性,此即居里温度。 不同材料的居里温度是不同的。材料居里温度的高低反映了材料内部磁性原子之间的直接交换作用、超交换作用、双交换作用。因此,深入研究和测定材料的居里温度有着重要意义。 居里温度的测量方法 (1)通过测定材料的饱和磁化强度和温度依赖性得到Ms —T 曲线,从而得打Ms 降为零时所对应的居里温度。这种方法适用于那些可以用来在变温条件下直接测量样品饱和磁化强度的装置,例如磁天平、振动样品磁强计以及SQUID 等。图1示出了纯Ni 的饱和磁化强度的度依赖性。由图可以确定Ni 的居里温度。 图1 Ni 的Ms —T 曲线 图2 镍锌铁氧体的μi —T 曲线 (2)通过测定材料在弱磁场下的初始磁导率μi 的温度依赖性,利用霍普金森效应,确定居里温度。霍普金森效应指的是一些软磁材料的初始磁导率在居里点附近,由于磁晶各向异性常数K1 随温度升高而趋于零的速度远快于饱和磁化强度随温度的变化,而初始磁导率μi∝Ms2/K1,因此在局里温度附近,μi 会显示一最大值,随后快速趋于零的现象。 图2示出了不同成分的镍锌铁氧体的初始磁导率随温度的变化,这些材料的霍普金森效应十分明显。由图也可以确定各样品的居里温度。 (3)通过测量其他磁学量(如磁致伸缩系数等)的温度依赖性求得居里温度。 (4)通过测定一些非磁学量如比热、电阻温度系数、热电势等随温度的变化,随后根据这些非磁学量在居里温度附近的反常转折点来确定居里温度。 2、钙钛矿锰氧化物 钙钛矿锰氧化物指的是成分为31MnO A R x x (R 是二价稀土金属离子,A 为一价碱土金属离子)的一大类具有ABO 3型钙钛矿结构的锰氧化物。理想的ABO 3型(A 为稀土或 碱土金属离子,B 为Mn 离子。钙钛矿具有空间群为立方结构,如以稀土离子A 作为立方晶格的顶点,则Mn 离子和离B 子分别处在体心和面心的位置,同时,Mn 离子又

热电偶测温基本原理

A,B 两种导体,一端通过焊接形成结点,为工作端,位于待测介质。另一端接测温仪表,为参考端。为更好地理解下面的内容,我们将以上测温回路中形成的热电动势表示为EAB(T1,T0),理解为:A、B两种导体组成的热电偶,工作端温度为T1,参考端温度为T0,形成的热电动势为EAB(T1,T0)。 需要特别强调的是:热电偶测温,归根结底是测量热电偶两端的热电动势。测量仪表能够让我们看到温度数值,是因为它已经将热电动势转换成了温度。 图中,工作端温度T1, A、B与C、D连接处温度为T2,测量仪表端(参考端)温度为T0。 我们可以把总回路的总电动势E 分成两段热电动势的和,即A、B为一段,热电动势为EAB(T1,T2),C、D为另一段,热电动势为ECD(T2,T0), 即: E= EAB(T1,T2)+ ECD(T2,T0) (热电偶中间导体定律) (1) 在上图中,如果C、D的材质和A、B完全一样,即C即为A,D即为B,相当于热电偶A、B 在T2(中间温度)处产生了一个连接点,此时,回路总电势为: E= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (热电偶中间温度定律) (2) 从式(2)我们可以看出,只要是相同的热电偶,中间产生了连接点,则总电势与连接点的温度(中间温度)无关,而只与工作端和参考端的温度有关。这正是我们希望得到的。我们在热电偶布线中,不需要考虑中间有没有连接点,也不需要考虑连接点的温度,而是和一根热电偶连接到介质和测量仪表一样。 再来比较式(2)和式(1)。如果我们能找到某种材料C、D,它能满足: ECD(T2,T0)= EAB(T2,T0) (3 ) 则式(1)成为: E= EAB(T1,T2)+ ECD(T2,T0)= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (4) 满足式(3)的材料C、D我们称为热电偶A、B的补偿导线。 式(4)还告诉我们,使用了补偿导线,我们将T2延伸到了T0,但最后我们的测量结果与T2无关,这样我们也可以理解为,因为我们使用了导线C、D,是它补偿了T2处连接所产生的附加电势,而使得我们最终测量不需要再考虑T2,这也是C、D为什么叫补

铁磁材料居里温度的测量

铁磁材料居里温度的测量 一、实验目的 1、了解物质由铁磁性转变为顺磁性的微观机理。 2、学会一种测量铁磁材料居里点的实验方法。 3、测定铁磁环样品的居里温度。 二、实验原理 1、磁介质与物质的磁性 在磁场的作用下发生变化并反过来影响磁场的物质叫磁介质。磁介质在磁场作用下发生变化的过程叫磁化(任何物质都就是磁介质) 2、磁化的微观机制 安培的分子电流假说:每个分子内部电荷运动的总效果相当于一个圆形电流——分子电流 物质磁性的根源:原子内部电荷运动。 温度对磁性有显著影响。分子热运动,对磁畴磁矩有序排列有破坏作用,温度升高到一定数值,铁磁性消失。 居里点——铁磁材料失去磁性或者从铁磁相转变为顺磁相的温度(相变)。 测量原理: 给绕在待测样品磁环上的线圈L1通交变电流i(励磁电流),产生交变磁场H,使铁磁环反复磁化。样品中B与H的关系B=f(H)为磁滞回线。 由于H正比于L1的电流,因此可以用电流的信号代表H的信号。 在励磁电路中串接采样电阻R1,将其两端的电压讯号(与电流正比)经放大后, 送至示波器的X轴输入以表示H。

B就是通过副线圈L2中因磁通量变化而产生的感应电动势来测定的。 所以,磁环中B与L2上感应电动势积分成正比。将L2上经过R2C积分电路,从积分电容上取出B值,放大处理送至示波器Y轴输入。 示波器x轴输入反映H,Y轴输入反映B,示波器显示磁滞回线。当磁环被加热到一定温度,磁滞回线消失。对应温度即居里点。 三、实验仪器 JHD-Ⅱ型居里点测试仪: 1、电源箱(电源部分,温度设置控制,H、B信号处理部分); 2、加热炉 3、铁磁材料样品; 4、示波器。 四、注意事项 1、实验过程中适当调节X衰减,以显示较理想的磁滞回线。 2、每次须让加热炉降至常温再放入样品,以免温度传感器响应时间不同引起测量误差。 3、谨慎换放样品,不能拉扯金属插头外导线。 4、测800以上样品,小心高温烫伤。 5、观察磁滞回线时,两线圈有互感,故始终有感应电压。因此,当磁滞回线变为直线时,不能将Y轴输入衰减无限减小。 五、实验内容 一、观察材料升温过程中磁滞回线消失及居里点 1、连线、放样品。连线加热炉与电源箱面板;样品与电源箱专用线连接,放入

居里温度点测定

居里温度点测定 专业班号:材料01 姓名:薛飞学号:2010021023 【实验原理】 一.交流电桥的原理 在实际的电信号中,大量存在着不同频率的交流信号(或脉冲信号).因此,实际的元器件均表现为电抗特性,而非纯电阻.惠斯登电桥的四个臂如改为电抗元件(电阻、电感、电容或它们的组合),就是交流电桥。它有着比惠斯登电桥更广泛的用途,可用于测量元件的交流电阻、电感、电容、磁性材料磁导率、电容的介质损耗等。还可利用交流电桥的平衡条件与频率的相关性来衡量测量频率,它是测量仪器中常用的基本电路之一(如电感测试仪、Q表等)。 1、交流电桥及平衡条件 交流电桥的原理如图所示,电桥的四个臂、、、,是具有任意特性的交流阻抗,即复阻抗(可以是电阻、电容、电感或者它们的任意组合)。在A和B上加入交流电压,C和D之间接平衡指示器(耳机或晶体管毫伏表等仪器)。 当电桥达到平衡时,C与D之间电压为零,则有 两式相除得: 实际的复阻抗都包含实部和虚部,可用形式表示,因此上式可表示成: 和分别为复阻抗的模和幅角,上式的成立条件是: 上式是交流电桥平衡的充要条件。 2、元器件的等效电路 电桥四个臂所用的元件,在交流电压作用下,往往元件自身就存在能量损耗——相当于电阻,而元件上的电压和电流的相位差不为K/2。纯电阻在交流电压作用下,往往存在电感特性(线绕电阻尤为明显)和分布电容;电感元件也存在一定的导线电阻和分布电容,所 以可把电感等效为一个理想电感L和一个纯电阻的串联,如图:

电容器中一般含有介电常数为的介质(如云母、涤纶。陶瓷等)。因而,电路中有一小部分电能在介质中损耗而变成热能,可以用表示这种损耗。因此,通过电容器的交流电压和电流的相位差就不再是/2,可用图的并联电路或图的串联电路来表示电容器的等效电路。 由图(1): 由图(2)有: 两式中的是所加交流电压的角频率。 3、电容的测量 利用已知电容器来测电感,可用图麦克斯韦—维恩电桥或海氏电桥;图、、、 为电阻箱,为标准电容,为电路的损耗电阻。 由此可得: 由实部和虚部分别相等,则有: 从上述两式可知,欲使式满足,在选定和后,可调节,通过调节或来满 足式而不影响式。通过单独调节或(或)来满足平衡条件,这正是这种电桥电路的优点。 4、电容器的电容量的测量 最简单的测电容放弃电容的电桥电路如图。

相关主题
文本预览
相关文档 最新文档