当前位置:文档之家› 谐振变换器的拓扑形式

谐振变换器的拓扑形式

谐振变换器的拓扑形式
谐振变换器的拓扑形式

确定准谐振反激式变换器主要设计参数的实用方法

确定准谐振反激式变换器主要设计参数的实用方法 准谐振反激式变换器(Flyback Converter)由于能够实现零电压开通,减少了开关损耗,降低了EMI噪声,因此越来越受到电源设计者的关注。但是由于它是工作在变频模式,因此导致诸多设计参数的不确定性。如何确定它的工作参数,成为设计这种变换器的关键,本文给出了一种较为实用的确定方法。 近年来,一些著名的国际芯片供应商陆续推出了准谐振反激式变换器的控制IC,例如安森美的NCP1207、IR公司的IRIS40XX系列、飞利浦的TEA162X系列以及意法半导体的L6565等。正如这些公司宣传的那样,在传统的反激式变换器当中加入准谐振技术,既可以实现开关管的零电压开通,从而提高了效率、减少了EMI噪声,同时又保留了反激式变换器所固有的成本低廉、结构简单、易于实现多路输出等优点。因此,准谐振反激式变换器在低功率场合具有广阔的应用前景。但是,由于这种变换器的工作频率会随着输入电压及负载的变化而变化,这就给设计工作(特别是变压器的设计)造成一些困难。本文将从工作频率入手,详细阐述如何确定准谐振反激式变换器的几个主要设计参数:最低工作频率、变压器初级电感量、折射电压、初级绕组的峰值电流等。 图1是准谐振反激式变换器的原理图。其中: L P为初级绕组电感量,L LEAK为初级绕组漏感量, R P是初级绕组的电阻,C P是谐振电容。 由图1可见,准谐振反激式变换器与传统的反激 式变换器的原理图基本一样,区别在于开关管的 导通时刻不一样。图2是工作在断续模式的传统 反激式变换器的开关管漏源极间电压V DS的波 形图。这里V IN是输入电压,V OR为次级到初级 图1:准谐振反激式变换器原理图。 的折射电压。 由图2可见,当副边绕组中的能量释放完毕之后(即变压器磁通完全复位),在开关管的漏极出现正弦波振荡电压,振荡频率由L P、C P决定,衰减因子由R P决定。对于传统的反激式变换器,其工作频率是固定的,因此开关管再次导通有可能出现在振荡电压的任何位置(包括峰顶和谷底)。可以设想,如果控制开关管每次都是在振荡电压的谷底导通,如图3所示,那么就可以实现零电压导通(或是低电压导通),这必将减少开关损耗,降低EMI噪声。实现这一点并不困难,只要增加磁通复位检测功能(通常是辅助绕组来实现),以便在检测到振荡电压达到最低点时打开开关管,就能达到目的。这实质上就是准谐振反激式变换器的工作原理,前文提到的几种IC均能实现这个功能。由此带来的问题是其工作频率是变化的,从而影响了其它设计参数的确定。 设计参数的确定 设计反激式变换器,通常需要确定以下参数: f S:变换器的工作频率; I PMAX:初级绕组的最大峰值电流;

浅谈电子整流器工作原理

浅谈电子整流器工作原理 前言 整流器(什么是整流器)是一个简单的将交流(AC)转化为直流(DC)的整流装置,它作为工业应用不可或缺的电子器件已越来越受到人们的亲睐。面对纷繁复杂的电子整流器件,怎样才能判别它的好坏呢?对于有用到电子整流器(整流器的作用)的人来说,了解其基础知识是必不可少的。小编通过搜集各种资料简要的对电子整流器的基础知识进行了以下总结。 电子整流器的工作原理(整流器原理) 电子整流器的基本工作原理如下图所示: 正常情况下,电子整流器通电后逆变器连同电感L、灯丝1、电容、灯丝2组成串联谐振电路,在一定时间内电容两端产生高压,这一高电压引起荧光灯弧光放电使荧光灯启动,然后谐振电路失谐,日光灯进入稳定的点燃状态。当出现灯管老化或者灯管漏气等异常状态时,荧光灯不能正常启动,上面的电路一直

处于谐振状态(除非灯丝烧断或电子整流器损坏),逆变器输出的电流不断增大,通常这个电流会升高到正常电流的3到5倍。如果这时不采取有效的保护措施,会造成极大危害。首先,过大的电流会导致逆变器中作为开关的三极管或场效应管及其它外围部件因过载而烧毁,甚至引起冒烟、爆裂等事故。同时,灯脚对地线或中线会形成长时间的极高电压,对于20W、36W、40W及其它大部分国标/非标灯的电子整流器,这一电压往往会达到一千伏或更高,这不仅为国标GB15143所严格禁止,而且也会危及人身、财产安全。GB15143-94“11、14”及GB15144-94“5.13”部分对电子整流器的异常状态试验包括:灯开路、阴极损坏、去激活、整流效应等,同时规定电子整流器在经过上述试验后不得发生安全性故障并能够正常工作。 电子整流器满足的两大功能要求 荧光灯的工作性能在很大程度上与相配套工作的电子整流器性能有关,在使用中应使荧光灯的工作性能和电子整流器的工作性能相匹配(如灯阻抗和灯的工作特性),以使荧光灯能工作在最佳状态, 使用中电子整流器应满足以下功能要求: ①能够限制和稳定荧光灯的工作电流。 ②在交流市电过零时,也能正常工作。

半桥LLC谐振变换器介绍

半桥LLC 谐振变换器

目录 概述 硬开关与软开关分析对比LLC 工作原理 工作模态分析 效率分析计算 设计总结

概述 全球对降低能耗的需求正在促进节能技术的推广。在70W-600W 交流输入电源中,目前可能会做到更好功率,当然前提交流输入电源中目前可能会做到更好功率当然前提是很好的解决输出电压纹波噪声的基础上,由于LLC 谐振转换器(效率通常在90%以上)的效率高于标准电源拓扑,所以其运用越来越广泛。本这为了设计出更高效率电源的目的,我们在以下报告内容探讨LLC谐振转换器相比硬开关转换器的功能优势,开关工作原理,谐振工作模态,效率计算分析等,做一个简要的介绍。

硬开关与软开关分析对比 ?Hard switch Higher switching losses limit switching frequency. ?Low power density -?Lower efficiency ?-Higher flux density level of transformer, bigger core size. ?Poor EMI ( high dv/dt and di/dt ) ?Poor cross regulation ?Higher output ripple noise Hi h h l i i ?Higher thermal agitation ? Higher voltage stress on MOSFET and rectifier diode

硬开关与软开关分析对比 Soft switch (LLC converter) 9High efficiency 9Primary MOS Zero-Voltage Switching 9Secondary Rectifier Diode Zero -Current Switching & low Vf. 9High power density 9Lower flux density level of transformer, smaller core size. 9Good EMI ( low dv/dt and di/dt) G d EMI(l d/dt d di/dt 9Better cross regulation 9Lower output ripple noise 9Low thermal agitation 9Cost effective 9Low voltage stress on MOSFET and rectifier diode Simple Topology 9

准谐振和谐振转换两种提高电源效率的技术

准谐振和谐振转换-两种提高电源效率的技术 准谐振和谐振转换-两种提高电源效率的技术 全球对能源成本上涨、环保和能源可持续性的关注正在推动欧盟、美国加州等地的相关机构相继推出降低电子设备能耗的规范。交流输入电源,不论是独立式的还是集成在电子设备中的,都会造成一定的能源浪费。首先,电源的效率不可能是100%的,部分能量在电源大负载工作时被浪费掉。其次,当负载未被使用时,连接交流线的电源会以待机功耗的形式消耗能量。 近年来,对电源效率等级的要求日趋严格。最近,80%以上的效率已成为了基本标准。新倡议的能效标准更是要求效率达到87%及以上。此外,只在满负载下测量效率的老办法已被淘汰。目前的新标准涉及了额定负载的25%、50%、75%和100%这四个点的四点平均水平。同样地,最大允许待机功耗也越来越受到限制,欧盟提议所有设备的待机功耗均应低于500mW,对于我们将讨论的电视机,则小于200mW。 除专家级的高效率电源设计领域之外,电子设备中所用的功率范围从1W 到500W的交流输入电源,一直以来主要采用两种拓扑:标准(或硬开关)反激式(flyback)拓扑,和双开关正激拓扑。这两种拓扑都很易于理解,而它们存在的问题,以及如何予以避免,业界都已有充分的认识。 不过,随着对效率的要求不断提高,这两种拓扑将逐渐为三种新的拓扑所取代:准谐振反激式拓扑、LLC谐振转换器拓扑和不对称半桥拓扑。准谐振反激式拓扑已被成功用于最低功率级到200W以上的范围。在70W-100W范围,LLC谐振转换器比准谐振反激式拓扑更有效。而在这

两个功率级之上,不对称半桥转换器也很有效。 工作原理 准谐振和谐振拓扑都能够降低电路中的导通开关损耗。图1对比了连续传导模式(CCM)反激式、准谐振反激式和LLC谐振转换器的导通开关波形。 所有情况下的开关损耗都由下式表示: 这里,PTurnOnLoss为开关损耗;ID为漏极电流;VDS是开关上的电压;COSSeff是等效输出电容值(包括杂散电容效应);tON是导通时间,而fSW是开关频率。 a)CCM反激式转换器b)准谐振反激式转换器c)LLC谐振转换器 图1CCM反激式、准谐振反激式和LLC谐振转换器的开关波形比较CCM反激式转换器的开关损耗最高。对于输入电压范围很宽的设计,VDS 在500V–600V左右,是输入电压VDC与反射输出电压VRO 之和。进入不连续传导模式(DCM)时,漏电流降为零,开关损耗的第一项也随之降为零。在准谐振转换器中,若在电压波形的第一个(或后一个)波谷时导通,可进一步降低损耗。图中虚线所示为准谐振转换器在第一个谷底导通时的漏极波形。 如果准谐振反激式转换器的匝数比为20,输出电压为5V,则VRO等于100V,因此对于375V的总线电压,开关将在275V时导通。若有效

浅谈有源晶振sin的输出那些事

浅谈有源晶振sin的输出那些事 晶振输出串电阻就来自于最小化设计,对于数字电路里最重要的时钟源部分,应该特别注意保证信号完整性,最小化设计中晶振外围电路除了电阻还要有一些其他器件。 ?无源晶振输出波形为正弦波,有源晶振输出波形为正弦波(sin)或方波。有源晶振自身输出是正弦波,在其内部加了整形电路,所以输出是方波,正弦波通常用的很少,遍及用的都是方波输出(许多时候在示波器上看到的还是波形不太好的正弦波,这是由于示波器的带宽不行。例如:有源晶振 20MHz,假如用40MHz或60MHz的示波器测量,显现的是正弦波,这是由于方波的傅里叶分解为基频和奇次谐波的叠加,带宽不行的话,就只剩下基频20MHz和60MHz的谐波,所以显现正弦波。完美的再现方波需求最少10倍的带宽,5倍的带宽只能算是牵强,所以需求最少100M的示波器)。 ?无源晶振有2个引脚,需要借助于外部的时钟电路(接到主IC内部的震荡电路)才能产生振荡信号,自身无法振荡. ?有源晶振有4个引脚,是一个完整的振荡器,其中除了石英晶体外,还有晶体管和阻容元件.只需要电源,就可输出比较好的波形一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。 ?晶振是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络。电工学上这个网络有两个谐振点,以频率的高低分,其中较低的频率是串联谐振;较高的频率是并联谐振。由于晶体自

lc串联谐振变换器

https://www.doczj.com/doc/8d13913285.html, lc串联谐振变换器 谐振变换器是依靠改变开关网络的工作频率实现对输出量的控制的,因此它是一种变 频控制的开关调节系统。谐振变换器的开关动作被设定在零电流或零电压时刻发生,大大 减小了开关损耗;正弦谐振波还能降低高频谐波噪声;由于电路是利用LC谐振,电路中 的寄生电感和电容能够得到应用。基于这些优点,谐振变换器得到了广泛的应用。小信号 建模是分析和控制变换器的有力工具。 谐振变换器建模方法有扩展描述函数法、DQ等效法、注入?吸收电流法等。扩展描述函数法也是一种适用于谐振类变换器建模方法,根据描述函数理论非线性环节的稳态输出 可看成一个与输入信号同频的正弦函数,只是幅值与相位不同。把输出信号和输入信号的 复数比定义为非线性环节的描述函数,但是其前提是将输入端开关动作等效成一个统一的 函数。DQ等效法将电路中的矢量,从静止的直角坐标系变换到与电路中矢量相同角速度 旋转的DQ坐标系中。扩展描述函数法和DQ等效法都是以基波等效法为基础所建的模型,适用于电流连续模式,并不适用于电流不连续模式。注入?吸收电流法是一种电流连续模式和电流不连续模式下都可用的建模方法。本文采用注入?吸收电流法对工作于电流断续模式下的串联谐振变换器的建模展开研究,并在此基础上设计了满足要求的补偿器。 传递函数推导 根据电感电流的连续与否,变换器工作模式分为两种:连续导电模式(CCM)和不连续导电模式(DCM)。当开关频率大于 1 2 的谐振频率时,串联谐振变换器是工作在电流连续模式下的;当开关频率小于1 2 的谐振频率时,串联谐振变换器是工作在电 流断续模式下的,这样开关工作在零电流(ZCS)条件下,可以降低开关损耗,提高电源 的效率。断续工作模式的半个开关周期包含a,b,c三种工作状态。假设负载电容值远远大于谐振电容的电容,因此在一个谐振周期内,负载电容的电压上升非常小,在分析过程 中将其看成一个恒压源。根据以上分析;a,b工作模式的等效电路如图2所示。c表示谐振电流为零时的工作模式(其状态电路图省去)。 仿真实验结果

谐振电路和品质因数Q值的物理意义及教学思路

收稿日期:2012-11-27 作者简介:雷志坤(1966~),广西机电职业技术学院讲师,研究方向:电子技术、实验实训教学。浅谈谐振电路和品质因数Q 值的 物理意义及教学思路 雷志坤 (广西机电职业技术学院,广西南宁 530007) 摘 要:谐振是电路在运行过程中的一个特殊状态,处于谐振状态的电路具有明显而独特的特征;电路品质因数Q 值的物理意义在于揭示了电路谐振程度的强弱,体现了电路对信号源频率的选择性以及电路中无功功率对有功功率的比例。充分理解谐振和品质因数的物理含义对掌握和应用其原理起到事半功倍的效果。本文从实用角度出发,通过对常见应用实例分析引出谐振的概念及其学习重点,并通过对比方法讨论了两种典型谐振的特点及品质因数Q 值物理意义区别,给电路分析相关内容的教学提供了一些有效的参考方法。 关键词:谐振;品质因数Q 值;物理意义;讨论 中图分类号:G642 文献标识码:A 文章编号:1008-7508(2013)01-0123-03 引言 谐振是电路在运行过程中出现的一种特殊物理现象, 其重要性从无线电通信等技术中的应用中可见一斑。具有 电感和电容元件的不含独立激励源二端电路网络,当网络 的输入阻抗等效为纯电阻时,该电路发生了谐振现象,谐 振时电感感抗大小等于电容容抗,网络端口的电压和电流 同相位,在电感或电容上将获得比端口信号大得多的信号 响应量。Q 值的物理意义体现了一个电路发生谐振的强弱 程度和电路对输入信号选频性的好坏。然而,在电路分析 教学中,我们常常发现学生(尤其是高、中职学校的学生) 对谐振其品质因数Q 这些重要概念的物理含义理解不清或 一知半解,究其原因主要是因为其概念较为抽象,教材中 又多采用复杂而繁琐的数学公式推导,直观性不强,造成 学生对这些概念的理解出现一定程度的困难,将影响到他 们后续课程的学习效果。 如何才能便捷有效地理解电路中的谐振和品质因数等 概念呢?笔者在多年的教学实践中总结出一些较为理想的 教学方法,现归纳为以下几点供同行们探讨。 一、举例说明谐振概念及其品质因数Q 值的物理意义 1、谐振的概念及典型应用举例 现以最常见的收音机输入回路(即调台电路)为例。 如图1为简单的收音机信号输入等效电路,由天线和电阻 R 、电感L 及电容C 组成,其中,R 、L 、C 构一个串联谐振回路。 Journal of Jilin Radio and TV University No.1,2013(Total No.133) 吉林广播电视大学学报 2013年第1期(总第133期) 学术论坛

谐振转换器工作原理

4.主开关电源电路 (1)LLC谐振转换器工作原理 随着开关电源的发展,软开关技术得到了广泛的发展和应用,已推出了不少高效率的电路,尤其是谐振型的软开关电源和PWM型的软开关电源。近几年来,随着半导体器件制造技术的发展,开关管的导通电阻、寄生电容和反向恢复时间越来越小,这为谐振变换器的发展提供了又一次机遇。 对于谐振变换器来说,如果设计得当,能实现软开关变换,从而使得开关电源具有较高的效率。LLC谐振变换器实际上来源于不对称半桥电路,后者用调宽型(PWM)控制,而LLC谐振是调频型(PFM)。 LLC谐振电路简图如图10所示,工作波形图如图11所示。电路中有两只功率MOs管(S1和S2),其工作的占空比均为0.5。谐振电容为Cs。Tr为匝数相等的中心抽头变压器,其漏感为Ls,激磁电感为Lm(Lm在某个时间段也是一个谐振电感)。从图11中不难看出,在LLC谐振变换器中,谐振元件主要由谐振电容Cs、电感Ls和激磁电感Lm组成,LLC变换器的稳态工作原理如下: 当t=t1时,S2关断,谐振电流给S1的寄生电容放电,一直到S1上的电压为零,然后S1的体内二极管导通。此阶段D1导通,Lm上的电压被输出电压钳位,因此只有Ls和Cs参与谐振。 当t=t2时,S1在零电压的条件下导通,变压器原边承受正向电压;D1继续导通,S2及D2截止。此时Cs和Ls参与谐振,而Lm不参与谐振。 当t =t3时,S1仍然导通,而D1与D2处于关断状态,T:副边与电路脱开,此时Lm,Ls和Cs一起参与谐振。由于实际电路中Lm>>Ls,因此在这个阶段中,可以认为激磁电流和谐振电流都保持不变。 当t=t4时,S1关断,谐振电流给S2的寄生电容放电,一直到S2上的电压为零,然后S2的体内二极管导通。此阶段D2导通,Lm上的电压被输出电压钳位,因此只有Ls和Cs参与谐振。 当t=t5时,S2在零电压的条件下导通,Tr原边承受反向电压;D2继续导通,而S1和D1截止。此时仅Cs和Ls参与谐振,Lm上的电压被输出电压钳位,而不参与谐振。 当t =t6时,S2仍然导通,而D1和D2处于关断状态,Tr副边与电路脱开,此时Lm、Ls和Cs 一起参与谐振。实际电路中Lm> >Ls ,因此,在这个阶段可以认为激磁电流和谐振电流都保持不变。 (2)主开关电源电路分析 该电源板主开关电源电路主芯片L6599DIC2)的引脚功能与实测电压见表3所示。 1)启动控制 IC2的供电电路如图12所示,T2B绕组的感应电压经D10整流,Q5、Z3稳压后输出Vcc2 (14V 左右),供给PFC芯片,并通过Q9、Z4稳压后输出Vcc3 (12V左右)供给L6599D12脚。过流、过压、ON/OFF信号通过光耦IC4控制Q5的导通状态,进而控制PFC、LLC电路是否工作,以实现过压、过流保护与开/关机功能。 当IC2的12脚加上电压后,通过IC的内部电路给①脚(CSS)外接电容C27充电,如图13所示。此时C26可视为短路,R57与R61并联(阻值较小),L6599D的振荡频率升高,电源功率下降。当C27充满电时,C27可视为开路,振荡频率由R57决定,振荡频率降低,电源输出正常,由此实现变频软启动功能。 同时,VDC1电压经电阻R7-R9及R45分压后加到IC2的⑦脚。R45上并联的电容C17用来旁路噪声干扰。当⑦脚(Line)电压低于1.25V时,关闭IC;当高于1.25V但低于6V时,IC正常工作,通过对VDC的电压检测,实现欠压保护功能。 IC完成软启动后,内部振荡器开始振荡,从15脚(HVG)与11脚(LVG)输出占空比接近50%

准谐振SMPS控制器L6565功能原理及应用

准谐振SMPS控制器L6565功能原理及应用 准谐振SMPS控制器L6565功能原理及应用 1概述 ST公司在近期推出的L6565单片IC,是适用于准谐振(QR)零电压开关(ZVS)回扫变换器电流型初级控制器。QR操作依靠变压器退磁感测输入获得,变换器功率容量随主线电压变化通过线路前馈电压前馈补偿。在轻载时,L6565自动降低工作频率,但仍然尽可能保持接近ZVS 运行。 L6565的主要特点如下: QRZVS回扫拓扑电流型初级控制; 线路电压前馈控制保证交付恒定功率; 频率折弯(foldback)功能可获得最佳待机频率; 逐周脉冲与打嗝(hiccup)模式过电流保护(OCP); 超低起动电流(<70μA)和静态电流(<3.5mA); 堵塞功能(开/关控制); 25V±1%的内部基准电压; ±400mA的图腾驱动器,在欠电压闭锁(UVLO) 情况下,保持输出低电平。 L6565的主要应用包括TV/监视器开关型电源(SMPS)、AC/DC适配器/充电器、数字消费类产品、打印机、传真机和扫描设备等。 2功能与工作原理 21封装及引脚功能 L6565采用8脚DIP(L6565N)和8脚SO(L6565D)封装,引脚排列。 L6565的引脚功能分别为: 脚1(INV)误差放大器反相输入; 脚2(COMP)误差放大器输出; 脚3(VFF)线路电压前馈; 脚4(CS)电流感测输入; 脚5(ZCD)变压器退磁零电流检测输入; 脚6(GND)地; 脚7(GD)栅极驱动器输出; 脚8(VCC)电源电压。 22工作原理 图1L6565引脚排列 图2L6565电源电路 图3ZCD及相关电路 (1)电源 L6565的电源电路。IC脚VCC的导通门限电压典型值是135V,关闭门限电压典型值是9 5V。一旦VCC脚导通,IC内部栅极驱动器电压直接由VCC提供,其它内部所有电路的工作电压均由线性调节器产生的7V电压供给。一个内部25V±1%的精密电压,供给初级

反激式变换器设计的文献综

反激式变换器设计的文献综述 摘要:随着社会的不断发展人们对变开关电源的要求越来越高,市场的竞争也越来越激烈。其中反激式变换器因为有效的提高了开关电源的效率,元器件相对较少,成本较低,结构简单应用范围广等特点越来越受到人们的青睐。本文主要通过对反激式变换器原理的研究,以及结合SABER软件进行反真,设计出一个符合要求的反激式变换器。 关键词:反激式变换器,电流连续工作模式,电流断续工作模式,伏秒平衡 研究背景及目的:随着社会的进步和经济的不断的发展,科学技术的不断进步,特别是在20世纪60年代电力电子学的出现,更完善了电气工程的完整性。各种电力电子装置广泛的应用于高压电流输电,静止无功补偿,电力机车牵引,交直流电力传动,电解,励磁,电加热,高性能交直流电源中。因此,世界各国,都无不看中电力电子学对电气工程的作用。在我国电气工程作为一个一级学科,它包含了两个五个二级学科,即电力系统及其自动化,电机与电器,高电压与绝缘技术,电力电子与电力传动,电工理论与新技术。在这五个学科电力电子学都处于十分特殊的地位。 反激式变换器因为是开关电源的重要组成部分,开关电源的效率直接影响各电器的工作,是衡量电器好坏的重要指标。开关电源的设计若不达标,将会浪费大量的资源,因此设计一个效率高的开关电源尤其重要。反激式转换器又称单端反激式或:‘Buck-Boost’转换器,因其输出端在原边绕组关断时获得能量故而得名。在反激变换器拓扑中,开关管导通时,变压器储存能量,负载电流由输出滤波电容提供;开关管关断时,变压器将储存的能量传送到负载和输出滤波电容,以补偿电容单独提供负载电流时消耗的能量,其因电路简单,转换效率高损失小,变压器匝数比值小等优点【1】,极大的提高了开关电源的效率,所以反激式变换器日益成为国内外开关电源研究的热点。

浅谈MOSFET电容对LLC串联谐振电路的作用

MOSFET电容对LLC串联谐振电路的作用 LLC的优势之一就是能够在比较宽的负载范围内实现原边MOSFET的零电压开通(ZVS),MOSFET的开通损耗理论上就降为零了。要保证LLC原边MOSFET 的ZVS,需要满足以下三个基本条件: 1)上下开关管50%占空比,1800对称的驱动电压波形; 2)感性谐振腔并有足够的感性电流; 3)要有足够的死区时间维持ZVS。 图a)是典型的LLC串联谐振电路。图b)是感性负载下MOSFET的工作波形。由于感性负载下,电流相位上会超前电压,因此保证了MOSFET运行的ZVS。要保证MOSFET运行在感性区,谐振电感上的谐振电流必须足够大,以确保MOSFET 源漏间等效的寄生电容上存储的电荷可以在死区时间内被完全释放干净。 当原边的MOSFET都处于关断状态时,串联谐振电路中的谐振电流会对开关管MOSFET的等效输出电容进行充放电。MOSFET都关断时的等效电路如下图所示:

通过对上图的分析,可以得出需要满足ZVS的两个必要条件,如下: 公式看上去虽然简单,然而一个关于MOSFET等效输出电容Ceq的实际情况,就是MOSFET的等效寄生电容是源漏极电压Vds的函数,之前的文章对于MOSFET的等效寄生电容进行过详细的理论和实际介绍。,也就是说,等效电容值的大小会随着Vds的变化而变化。如下图所示,以Infineon的IPP60R190P6为例:

LLC串联谐振电路MOSFET的Vds放电过程分为四个阶段,如下图所示,(I) 380V-300V; (II) 300V-200V; (III) 200V-100V; (IV)100V-0V。 从图中可以看出,(I)和(IV)两部分占据了Vds放电时间的将近2/3,此时谐振腔的电感电流基本不变。这两部分之所以占据了Vds放电的大部分时间,主要原因在于当Vds下降到接近于0的时候,MOFET源漏间的寄生电容Coss会指数的增加。因此要完全释放掉这一部分的电荷,需要更长的LLC谐振周期和释放时间。 因此选择合适的MOSFET(足够小的等效寄生电容),对于ZVS的实现至关重要,尤其是当Vds接近于0的时候,等效输出电容要足够小,这样还可以进一步降低死区时间并提高LLC的工作效率。 下图进一步说明如何选择合适的ZVS方案。

高级技师论文-浅谈高频高压电源供电的效率与稳定

浅谈高频高压电源供电的效率与稳定 摘要: 论文简述:根据高频高压电源的工作原理和现场使用工况,对照工频高压供电的应用参数,简单阐述了高频高压供电的优越性。并以数字为例,简明扼要的叙述了高频高压电源高效、节能、环保概念的优良设备。在同一除尘器电场的情况下,有着降低消耗,提高转换效率,提高运行电压和电流,提高功率因数,稳定电网安全运行等优点。配以先进的微机控制使运行更可靠。同时,又结合生产使用实际,分析了影响设备稳定运行的几个方面的因素。主要是温度和灰尘对设备的影响,而且两者所牵涉的冷却和密封问题,是两个不可调和的矛盾。也是设备生产和运行首要解决的问题。 关键词:高频高压电源、除尘效率、节能、稳定 前言: 随着科技的发展和人类文明的进步,越来越多的把使用环保和节能型能源,作为一种社会的责任和追求。发电厂的除尘和脱硫装置的使用,就是这种责任的体现,而高频高压电源供电,又是在原工频高压电源供电的基础上脱颖而出。以他独特的优势,兼顾环保和节能,实现了人们珍惜生命和健康的迫切愿望。 1、导出 高频高压电源供电是目前广泛应用在电除尘设备的一项新技术。

对于高频高压电源的论文和设计理念不一而足。我们就以邹县发电厂#1—4 机电除尘器使用的龙净环保GGYAJ 为例,浅谈高频高压电源的效率与稳定。 本文涉及的关键词:高频高压电源:除尘效率:节能:稳定 2、工作原理 高频高压电源是将工频三相交流电整流后,经高频逆变;升压,再二次整流后,以直流负高压输出。为电除尘器提供一个接近直流的脉动电压波形。具有输出波纹小,平均电压电流高,转换效率高,功率因数高等优点。 高频高压电源原理上有三大部分组成。即变换器、高频变压器、控制器。是由三相电源电压输入,全桥可控整流后,经串并联谐振变换成20hz—40hz 高频信号,输入给高频变压器。相对于原工频高压供电方式,有着平衡输入;高效变换,低纹波,高电流电压输出,调制平稳的明显优势。 如图1

LLC谐振变换器的原理说明

LLC谐振变换器 要提高主变换器能效,可以采用以下四种方式: 一是降低导通损耗或者是减小初级峰值电流和均方根电流来降低一次导通损耗; 二是采用软开关技术降低开关损耗; 三是减小整流器的压降,例如采用低的正向压降二极管或者FET整流器,来降低二次损耗; 四是采用更好的磁芯材料来降低磁芯损耗. 杨恒.LED照明驱动器设计步骤详解[M].北京:中国电力出版社.2010 1软开关技术的提出(电力电子技术-西安交通大学王兆安黄俊第四版) 还是从小型化、轻量化的发展趋势看,装置的效率以及电磁兼容的要求变得更高。当提高开关频率,开关损耗增加,电路的效率下降,电磁干扰也增大,这里提出了软开关技术,它是利用谐振的辅助换流手段,从而解决电路的开关损耗和开关噪声的问题。 硬开关:开关过程中,电压电流均不为零,出现重叠,因此导致开关损耗(电路效率的降低、阻碍开关频率的提高)。并且,电流电压变化很快,波形有明显的过冲,导致了开关噪声(电磁干扰EMI)。如图5-1所示: 图5-1 硬开关电路波形 软开关:通过增加电感、电流等谐振元件,构成辅助换流网络,在开关过程的前后引入谐振过程。开关开通前电压降为零,或者关断之前电流降为零,消除电压电流之间的重叠,降低电压电流的变化率,减小开关损耗和开关噪声。如图5-2所示: 图5-2 软开关电路波形 主要的软开关拓扑结构有:

结合本文设计要求,将采用双电感加单电容的谐振变换器。 2谐振变换器的发展 为了降低开关损耗和开关噪声,并且容许高频运行,谐振开关技术得到了发展。在各类的谐振变换器中,LC串联谐振变换器是最简单也是最普遍的。 1)LC串联谐振变换器 电路中电感与电容串联,形成一个串联谐振腔。这个谐振腔的阻抗与负载串联,则由于其串联分压作用,增益总是小于1。谐振腔的阻抗与频率有关,在其谐振频率fr下阻抗最小,此时的增益也最大。根据电路的直流特性可知: ① fs>fr时,开关管 Q-->ZVS; ②轻载时,fs要变化很大才能保证输出电压不变; ③ Vin增大时,fs增大使输出电压保持不变。 此时谐振腔的阻抗也增大,则谐振腔内有很高的能量在循环,而并没有把这些能量供给负载,并且使半导体器件的应力增大。 因此,串联谐振变换器存在一些不利因素:轻载调整率高、高的谐振能量、高输入电压时较大的关断电流等。 2)LC并联谐振变换器 根据其直流特性可知: ① fs>fr时,实现软开关; ②轻载时,fs并不要变化很大来维持输出电压不变; ③ Vin增大时,fs增大来维持输出电压不变。 此时谐振腔内循环的能量依然很大,即使是在轻载的条件下,由于负载与电容并联,仍然有一个比较小的串联阻抗。与SRC相比,PRC优点:在轻载时,频率变化不大即可保证输出电压不变。其缺点是:高的谐振能量、高输入电压时关断电流较大会引起较大的关断损耗。3)LCC谐振电路: 对于LCC电路,存在两个谐振频率: f r= 1 2πL r C r f p= 2π√L r(C r//C m) 显然,fr2

浅谈射频放大器下的低噪放大器

浅谈射频放大器下的低噪放大器 射频放大器 射频功率放大器(RF PA)是各种无线发射机的重要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。 分类及用途 射频功率放大器的工作频率很高,但相对频带较窄,射频功率放大器一般都采用选频网络作为负载回路。射频功率放大器可以按照电流导通角的不同,分为甲(A)、乙(B)、丙(C)三类工作状态。甲类放大器电流的导通角为360°,适用于小信号低功率放大,乙类放大器电流的导通角等于180°,丙类放大器电流的导通角则小于180°。乙类和丙类都适用于大功率工作状态,丙类工作状态的输出功率和效率是三种工作状态中最高的。射频功率放大器大多工作于丙类,但丙类放大器的电流波形失真太大,只能用于采用调谐回路作为负载谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然接近于正弦波形,失真很小。 技术参数 放大器的主要技术指标: (1)频率范围:放大器的工作频率范围是选择器件和电 路拓扑设计的前提。 (2)增益:是放大器的基本指标。按照增益可以确定放 大器的级数和器件类型。G(db)=10log(Pout/Pin)=S21(dB) (3)增益平坦度和回波损耗 VSWR《2.0orS11,S22《-10dB (4)噪声系数:放大器的噪声系数是输入信号的信噪比与输出信号的信噪比的比值,表示信号经过放大器后信号质量的变坏程度。NF(dB)=10log[(Si/Ni)/(So/No)]

基于TEA1751的反激式准谐振开关电源的设计

基于TEA1751的反激式准谐振开关电源的设计 摘要:准谐振是一种能够实现零电压开通,减少开关损耗,降低EMI噪声的变换方式。该文介绍了准谐振变换的工作原理,设计并实现了一种采用芯片TEA1751为控制电路的准谐振反激式开关电源。与传统的反激式硬开关变换器相比,减少了开关管的开关损耗,提高了开关电源的效率。 关键词:开关电源;准谐振变换;零电压开关中图分类号:文献标识码:文章编号: 0 引言 随着电力电子技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,目前,开关电源以小型、轻量和高效率的特点被广泛应用于电子设备,是当今电子信息产业不可缺少的一种电源方式[1]。 由于开关电源频率的提高,开关电源苦工作在硬开关状态,开关管开通时,开关管的电流上升和电压下降同时进行。关断时,电压上升和电流下降也同时进行。电压、电流波形的交叠产生了开关损耗,该损耗随开关频率的提高而急剧增加。为了提高电源的效率,就必须减少开关管的开关损耗。也就是要求开关电源工作在软开关状态。 软开关技术实际上就是利用电容与电感的谐振,以使开关管上的电压或通过开关管的电流按正弦或者准正弦规律变化,在减少开关损耗的同时也可控制浪涌的发生。在软开关技术中,有全谐振、准谐振、多谐振等变换方式[3]。本文引入准谐振变换方式来提高开关电源的效率。 1 反激式准谐振变换基本工作原理 图1反激式准谐振开关电源的原理图 图1所示为反激式准谐振开关电源的原理图,其中:RP 包括变压器初级绕组的电阻以及线路电阻,T为开关变压器,Lm 为初级励磁电感量,Llk为初级绕组漏感量,VT为MOS开关管,VD为整流二极管,Co为滤波电容,电容Cr 为缓冲电容,也是谐振电容,包括开关管VT 的输出电容COSS ,变压器的层间电容以及电路中的其他一些杂散电容。 图2反激式准谐振开关电源的工作波形 准谐振变换的工作波形如图 2 所示,在准谐振变换中,每个周期可分为4个不同的时间段,各时间段分析如下: (1)t0~t1 时段 开关管导通,输入电压全部加到初级电感(包括励磁电感Lm和漏感Llk)上,电感电流以斜率线性增大。此时能量被存储在初级电感中(称磁化),开关管的漏源极电压= 0,整流二极管VD 截止。电流达到后开关管被关断。 开关管开通时间为: (1) (2)t1 ~t2 时段 t1 时,MOS开关管被关断。先是Lm与Llk串联对充电,由于两端电压不能突变,开关管的漏源极电压以斜率为 上升。随着的充电,当两端电压为时( 为整流二极管VD的正向导通电压,N为变压器T的初次级匝数比),VD

浅谈LLC变压器设计经历

浅谈LLC变压器设计经历 适用于LLC变压器,其特征在于,包括:第一MOS开关管、第二MOS开关管、第一电容、电感和至少两个变压器;所述变压器的原边串联、副边并联;所述第一MOS开关管与第二MOS开关管串联后其中点依次通过第一电容和电感与变压器原边串联后的一端相连,变压器原边串联后的另一端接地;所述变压器副边并联后接整流滤波电路。 变压器的饱和问题: 我的变压器设计的工作磁感应强度Bm并不高,为什么我的LLC变压器磁芯温度很高? 由于LLC变压器工作在LC谐振状态,LC谐振回路有个特点就是Q值问题,在这里Q值是大于1的,因而就会有实际加在变压器上的电压要比输入电压高的问题,因而在设计变压器的时候就必须考虑到这一点,否则变压器就不是工作在你设计的磁感应强度上。 由于输入电压高的时候,开关频率也比较高,谐振回路的增益也比较低,饱和的问题不大;但当输入是低压的时候,开关频率比较低,LLC谐振回路的增益较大,因而比较容易发生变压器饱和的问题。考虑到漏感的影响,保守的做法还得乘上耦合系数的倒数。 线径的选择问题: 为什么老化的时候测到的绕组温度很高? LLC变压器工作在高频模式下,交变磁场下的导体除了我们所熟知的趋附效应(Skin effect)外,还会反生一个接近效应(Proximity effect)。和反激的变压器不同,LLC的变压器原边的绕组都绕在一边,电流都是同一个方向,随着绕组层数的增加,接近效应就愈发明显,因而我们就需要选用更细的线径和更多的股数来解决问题。 变压器原副边匝数问题: 绕组是变压器的电路部分,它是用双丝包绝缘扁线或漆包圆线绕成变压器的基本原理是电磁感应原理,现以单相双绕组变压器为例说明其基本工作原理:当一次侧绕组上加上电压ú1时,流过电流í1,在铁芯中就产生交变磁通?1,这些磁通称为主磁通,在它作用下,两侧绕组分别感应电势é1,é2,感应电势公式为:E=4.44fN?m 式中:E--感应电势有效值 f--频率 N--匝数 ?m--主磁通最大值

LLC谐振变换器及L6599原理

目录 引言 一、LLC谐振变换器原理 (2) 二、LLC谐振腔之元件设计 (3) 三、L6598\L6599芯片资料 ...................................................................... 错误!未定义书签。 1、L6599 芯片介绍............................................................................................... 错误!未定义书签。 2、芯片与典型方框图 (5) 3、PIN脚功能 (5) 4、典型电源系统图 (6) 5、振荡器 (7) 6、工作在轻载或无载时 (8) 四、 L6599的工作流程 1、L6599供电回路 (8) 2、L6599的启动 (9) 3、L6599稳压原理 (10) 4、L6599的SCP保护及次级OCP保护 (11) 附:过流延时保护电路 (12)

引言 随着开关电源的发展,软开关技术得到了广泛的发展和应用,已研究出了不少高效率的电路拓扑,主要为谐振型的软开关拓扑和PWM型的软开关拓扑。近几年来,随着半导体器件制造技术的发展,开关管的导通电阻,寄生电容和反向恢复时间越来越小了,这为谐振变换器的发展提供了又一次机遇。对于谐振变换器来说,如果设计得当,能实现软开关变换,从而使得开关电源具有较高的效率。LLC谐振变换器实际上来源于不对称半桥电路,后者用调宽型(PWM)控制,而LLC谐振是调频型(PFM)。 一、LLC谐振变换器原理 图一、LLC谐振原理图 图二、LLC谐振波形图

浅谈电路理论在电气工程中的若干应用

浅谈电路理论在电气工程中的若干应用 发表时间:2019-07-23T15:31:52.443Z 来源:《基层建设》2019年第13期作者:张晓伟[导读] 摘要:电路理论是电气工程实践的重要基础,并在实践中加以完善,更好的应用于电气工程的发展与建设当中。 身份证号码:13233519810304XXXX 摘要:电路理论是电气工程实践的重要基础,并在实践中加以完善,更好的应用于电气工程的发展与建设当中。基于此,本文探讨了电路理论在电气工程中的应用价值,分别从电气工程发展以及电气设备安全运行等方面出发,充分利用整流滤波电路、谐振电路以及三相电路等基础电路理论,在电气工程应用上进行指导,提高电力系统的性能,为其安全、稳定的运行提供保障,使电路理论成为更加成熟的经验。 关键词:电路理论;电气工程;应用 电气工程在社会生产建设中发挥着重要的作用,为社会生产生活提供了便捷的服务。电路理论是电气工程实践中总结出来的知识和经验,并在电气工程实践中起到指导性的作用,在电气工程建设中具有很高的应用价值。随着电气科学技术的不断进步,电气工程的应用领域将会更加广泛,并在若干方面,需要应用到动态电路、谐振电路以及三相电路等电路理论。 1 电路理论在电气工程中的应用价值 电路理论主要涉及到物理学、数学以及工程技术等多个学科内容,能够从中了解电力系统运行原理、电器件结构等,同时对各类电路现象予以解释和分析。而在电路的设计与分析当中,电路理论具有十分重要的指导作用。随着电气工程技术的发展,电路理论内容也在实践中逐渐完善,对于电气工程的发展具有积极的推动作用。电路设计与分析是电气工程中的重要环节,而电路理论是电路设计与分析的重要基础,通过实践总结理论,在以理论服务实践,进而说明电路理论在电气工程中具有很高的应用价值,为电路理论的学习提供了重要的指导[1]。 2 电气工程中的电路理论应用 在电路理论的学习中,整流滤波电路、谐振电路以及三相电路是基础的电路理论内容,涉及到电气工程多个方面,具体如下: 2.1 整流滤波电路 为了减少输出电压波形中脉动成分的干扰,需要在整流电路中安装滤波电路,形成整流滤波电路,其中的电容、电感元件具有储能作用,可起到滤除的作用,进而获得准确的直流电压值。在电气工程中,单相桥式整流电容滤波电路的应用较为广泛。在单相桥式整流电容滤波电路当中,负载未接入时,在初始电压为 0 的条件下,将交流电源接入电容器进行充电,该过程中不会受到直流电阻(变压器副绕组)和正向电阻(整流二极管)的影响,由于电阻值很小。当交流电压达到最大值时,会输出恒定的直流电压值,这与缺乏放电回路有关。在充电之后将负载接入,当负载接入时,电容器会出现持续的充电和放电,充电时间常数小,而放电时间常数高,在负载上获得直流电压值,其放电波形呈锯齿状,并出现小幅度的上升脉动。如果未安装滤波电路,则根据非正弦波形计算平均值。在电气工程的多个方面,均需要参考整流滤波电路理论的相关内容。 2.2 谐振电路 谐振电路的相关理论一般应用于电气设备安全检测当中。交流耐压试验和电压互感器铁磁谐振现象分析是电气设备安全检测的常用方法,分别用于检查电气设备绝缘强度和电力系统的运行情况。在交流耐压试验当中,在持续工频电压的作用下,检验电气设备的绝缘强度。为了更加准确的评估电气设备的绝缘强度,需要逐渐升高工频电压。对于电容量较大的电气设备,其现场试验的难度较大,对于试验设备的要求很高,试验过程中,回路电流过高。将被检测设备与可调电抗器串联,然后对电抗器的电感大小进行调节,进而形成谐振,比较电感电压、电容电压以及电源电压。在电容发生谐振后,会产生巨大电流,电感电压、电容电压同样很高,但是电源电压则是电感电压和电容电压的几十分之一或百分之一左右,这在很大程度上降低了试验设备的要求,便于进行现场试验,了解电气设备的绝缘强度,如达不到标准,及时作出改进。在电压互感器铁磁谐振现象的出现,容易损坏电压互感器,直接关系到电力系统的安全运行。这种过电压现象的出现,与电压互感器铁心饱和有关,主要单相接地故障、空载线路突然合闸的影响,进而引起电感参数的异常变化,进而形成并联谐振,互感器电压也会大幅增加,出现电压互感器铁磁谐振现象。在电气设备安全检测中,需要对电压互感器铁磁谐振现象提高警惕。 2.3 三相电路 在三相电路中,采用 Y、V 以及开口△等接法,将互感器连接到电路当中。其中 Y 接法的应用较为普遍和广泛。而在三相对称电路中,应用 V 以及开口△接法。在测量线电压的过程中,需要采用 V 形接法价格两台非接地型单向电压互感器进行连接,配电室电压和电压互感器每相绕组电压之和即为线电压值,结合额定一次线电压、二次电压,计算二次侧三相对称线电压。在≤ 35k V 的三相电路中应用开口△接法,将辅助绕组连接于电路中,用于继电保护,二次侧则选择 Y 接法,用于提供电压。辅助绕组三相电压对称,说明互感器工作正常。而一相电压数值为 0,则说明线路中出现故障。由此可见,三相电路理论能够用于检测电力系统和电力设备的运行情况,对于电气工程建设有着重要的参考价值[2]。 3 结论 电气工程为社会生产建设提供了重要的支持,而面对日益增长的社会需求,电气工程建设也在逐步加快。电气工程的发展离不开科学理论的支持,需要参考电路理论进行设计、分析和建设,然后从实践中总结全新的理论,相互促进和支持。在电气工程中若干应用中,电路理论的作用和价值得以充分凸显。通过学习电路理论,在实践中科学、合理的运用,能够帮助我们进一步了解电气工程及电力行业,为未来参与其中打下良好的基础。 参考文献: [1] 汪圣杰,顾涓涓,胡国华.电路原理中两个关键问题及Or CAD/PSpice16.5仿真软件的应用[J].赤峰学院学报(自然版),2016,32(22):6-7. [2] 娄进.浅谈电气工程中的电力自动化技术应用 [J].广东科技,2012,21(13):50

相关主题
文本预览
相关文档 最新文档