当前位置:文档之家› 新型功能材料简介

新型功能材料简介

新型功能材料简介
新型功能材料简介

新型功能材料简介

1.超导体的概念:超导材料是一种没有电阻的材料,既能节约能量,减少电能因电阻而消耗的能量,还能把电流储存起来,供急需时使用。

2.三个临界条件 :临界温度(Tc )、临界电流(Ic )和临界磁场(Hc )是“约束”超导现象的三大临界条件,三者具有明显的相关性,只有当超导体同时处于三个临界条件以内,才具有超导电性。

临界温度是在外部磁场、电流、应力和辐射等条件维持足够低时,电阻突然变为零时的温度;超导电性可以被外加磁场所破坏,对于温度为T(T <Tc)的超导体,当外磁场超过某一数值Hc(T)的时候,超导电性就被破坏了,使它由超导态转变为常导态, 电阻重新恢复。在不加磁场的情况下,超导体中通过足够强的电流也会破坏超导电性,导致破坏超导电性所需要的最小极限电流,也就是超导态允许流动的最大电流,称作临界电流Ic(T)。

迈斯纳效应(指超导体处于外界磁场中,磁力线无法穿透,超导体内的磁通量为零)和零电阻性质是超导态的两个独立的基本属性,衡量一种材料是否具有超导电性必须看是否同时具有零电阻和迈斯纳效应。

3.伦敦第一方程: 式中,m 是电子质量,Js 为超流电流密度,n s 是超导电子密度 由上式可见:在稳态下,超导体中的电流为常值时,

,则E =0。 即,在稳态下,超导体内的电场强度等于零,因此,它说明了超导体的零电阻性质。

4.功能玻璃:功能玻璃是指与传统玻璃结构不同的、有某一方面独特性能的、有专门用途的、或者制造工艺有明显差别的一些新品种“玻璃”。生物玻璃是指能够满足或达到特定生物、生理功能的特种玻璃,主要是由Si 、Na 、Ca 以及P 的氧化物组成。

5.微晶玻璃是指通过玻璃热处理来控制晶体的生长发育而获得的一种多晶材料。它既有玻璃的基本性能,也有陶瓷多晶体的特征。微晶玻璃的微晶化包括以下几个过程:(1)玻璃结构发生微调;(2)晶核的形成;(3)基本晶相的形成及生长;

(4)介稳相转变为稳定晶相及残余玻璃。

微晶玻璃结晶过程中的核化与晶化多数属于非均相核化的类型。其基本原理是:加入玻璃配合料中的成核剂,在熔制过程中,均匀地溶解于玻璃熔融体中。当玻璃处在析晶温度区时,成核剂能降低晶核生成所需要克服的势垒,从而核化可以在较低的温度下进行.

6. 光色玻璃:我们把出现可逆的或不可逆的显色、消色现象的物质称为光致变色材料。光色玻璃就是其中的一类光致变色材料。当受紫外线或日光照射时,由于玻璃在可见光区产生光吸收而自动变色;当光照停止时,玻璃能可逆地自动恢复到初始的透明状态。具有这种性质的玻璃称为光致变色玻璃(也称光色玻璃)。

7.陶瓷在人类生活和社会建设中是不可缺少的材料,它和金属材料、高分子材料并列为当代三大固体材料。结构陶瓷是指具有力学和机械性能及部分热学和化学功能的先进陶瓷(现代陶瓷),功能陶瓷是指那些利用电、磁、声、光、热、力等直接效应及其耦合效应所提供的一种或多种性质来实现某种使用功能的先进陶瓷(现代陶瓷)。根据功能陶瓷对外场条件的敏感效应,则可制备热敏、气敏、湿敏、压敏、磁敏和光敏等敏感陶瓷。

8.陶瓷三大原料:长石,黏土,石英.

E m e n J t s s 2=??0=??s J t

石英在陶瓷生产中的作用:①在烧成前是瘠性原料,可对泥料的可塑性起调节作用,能降低坯体的干燥收缩,缩短干燥时间并防止坯体变形。②在烧成时,石英的加热膨胀可部分地抵消坯体收缩的影响,当玻璃质大量出现时,在高温下石英能部分熔解于液相中,增加熔体的强度,而未熔解的石英颗粒,则构成坯体的骨架,可防止坯体发生软化变形等缺陷。③在瓷器中,石英对坯体的力学强度有着很大的影响,合理的石英颗粒能大大提高瓷器坯体的强度,否则效果相反。同时,石英也能使瓷坯的透光度和白度得到改善。④在釉料中,二氧化硅是生成玻璃质的主要组分,增加釉料中石英含量能提高釉的熔融温度与黏度,并减少釉的线胀系数。同时它是赋予釉以高的力学强度、硬度、耐磨性和耐化学侵蚀性的主要因素。

黏土作用概括为五个方面:1)黏土的可塑性是陶瓷坯泥赖以成形的基础。2)黏土使注浆泥料与釉料具有悬浮性与稳定性。3)黏土一般呈细分散颗粒,同时具有结

合性。4)黏土是陶瓷坯体烧结时的主体,黏土中的Al

2O

3

含量和杂质含量是决定

陶瓷坯体的烧结程度、烧结温度和软化温度的主要因素;5)黏土是形成陶器主体结构和瓷器中莫来石晶体的主要来源。

9.发光是一种宏观现象,但它和晶体内部的缺陷结构、能带结构、能量传递、载流子迁移等微观性质和过程密切相关。作为发光材料的晶体,往往有目的地搀杂其它杂质离子以构成缺陷能级,它们对晶体的发光起着关键作用。发光的本质是能量的转换,稀土之所以具有优异的发光性能,就在于它具有优异的能量转换功能,而这又是由其特殊的电子层结构决定的。

10.被激发的物质在切断激发源后仍能继续发光,这种发光现象称为磷光,有时磷光能持续几十分钟甚至数小时,这种发光物质就是通常所说的长余辉材料。它是一类吸收太阳光或人工光源所产生的光发出可见光,而且在激发停止后仍可继续发光的物质。尽管长余辉材料本身就是一种功能陶瓷材料,但它的热稳定性是有一定限度的,温度对长余辉材料的发光性能的影响很大,随着灼烧温度的升高,发光亮度急剧下降,甚至发生荧光猝灭。

11.激活剂吸收能量后,激发态的寿命极短,一般大约仅10-8s就会自动地回到基态而放出光子,这种发光现象称为荧光。撤去激发源后,荧光立即停止.“荧光”指的是激发时的发光,而“磷光”指的是发光在激发停止后,可以持续一段时间。

12.智能材料就是指具有感知环境(包括内环境和外环境)刺激,对之进行分析、处理、判断,并采取一定的措施进行适度响应的智能特征的材料.智能材料需具备以下内涵:(1)具有感知功能,能够检测并且可以识别外界(或者内部)的刺激强度,如电、光、热、应力、应变、化学、核辐射等;(2)具有驱动功能,能够响应外界变化;(3)能够按照设定的方式选择和控制响应;(4)反应比较灵敏、及时和恰当;(5)当外部刺激消除后,能够迅速恢复到原始状态。

13.智能材料必须具备感知、驱动和控制这三个基本要素。

14.有些材料,在发生了塑性变形后,经过合适的热过程,能够回复到变形前的形状,这种现象叫做形状记忆效应(SME)。形状记忆合金可以分为三种:(1) 单程记忆效应;(2)双程记忆效应;(3)全程记忆效应;形状记忆材料兼有传感和驱动的双重功能,可以实现控制系统的微型化和智能化。

15.在某些晶体材料上施加机械力时,晶体表面会产生电荷,这种现象称正压电效应。在一定范围内,电荷密度与作用力成正比。相反,在晶体上施加电场时,晶体会产生几何变形,称逆压电效应。

16. 敏感陶瓷用于制造敏感元件,是根据某些陶瓷的电阻率、电动势等物理量对热、湿、光、电压及某种气体、某种离子的变化特别敏感的特性而制得的。按其相应的特性,可把这些材料分别称作热敏(PTC陶瓷、NTC和CTR热敏陶瓷等)、湿敏、光敏、压敏、气敏及离子敏感陶瓷。此外,还有具有压电效应的压力、位置、速度、声波等敏感陶瓷,具有铁氧体性质的磁敏陶瓷及具有多种敏感特性的多功能敏感陶瓷等。

17.NTC热敏电阻材料是用特定组分合成,其电阻率随温度升高按指数关系减小的一类材料,分低温型、中温型和高温型三大类。CTR热敏电阻主要是指以VO2为基本成分的半导体陶瓷,在68℃附近电阻值突变达到3--4个数量级,具有很大的负温度系数, 因此称为巨变温度热敏电阻或临界(温度)热敏电阻材料。PTC 热敏电阻有两种用途:一是用于恒温电热器,PTC热敏电阻通过自身发热而工作,达到设定温度后,便自动恒温,因此不需另加控制电路,二是用作限流元件,如彩电消磁器、节能灯用电子镇流器、程控电话保安器、冰箱电机启动器等。18.气敏陶瓷是一种对气体敏感的陶瓷材料,大致可分为半导体式、固体电解质式及接触燃烧式三种。

19.当光线照射到半导体时,在光子作用下产生的光生载流子使电导增加的现象,称为光电导效应。

20.太阳能电池是利用光生伏特效应将太阳能转换为电能的器件,太阳能电池的转换率不仅受光子激发利用率的限制,还受其他因素的影响。虽然能量h ≥Eg 的光子均可产生激发,但只有能量相当于Eg的部分才能转变为电能。光子吸收材料的禁带在Eg≈0.9eV附近时,光子激发利用率最高.综合考虑影响转换效率的因素,光子吸收材料的禁带宽度在1.0~1.6eV较合适,因此,Si、Cu2S、GaAs、CdTe等均可用作太阳能电池材料。

21.快离子导体陶瓷是指电导率可以和液体电解质或熔盐相比拟的固态离子导体陶瓷,又称电解质陶瓷。快离子导体的离子电导率可达10-1~10-2S/cm,活化能低至0.1~0.2eV。

22.氢化物储氢原理:金属吸留氢形成金属氢化物,然后对该金属氢化物加热,并把它放置在比其平衡压低的氢压力环境中使放出吸留的氢,其反应式是:

反应进行的方向取决于温度和氢压力。

23.储氢材料应具备的条件:1.易活化,氢的吸储量大;2.用于储氢时生成热尽量小,而用于蓄热时生成热尽量大;3.在一个很宽的组成范围内,应具有稳定合适的平衡分解压;4.氢吸收和分解过程中的分解过程中的平衡压差(滞后)小;

5.氢的俘获和释放速度快;

6.金属氢化物的有效热导率大;

7.在反复吸放氢的循环过程中,合金的粉化小,性能稳定性好;8对不纯物的耐中毒能力强;9储氢材料价廉。

(1)什么是超导体?其具有什么效应?这些效应产生的原因分别是什么?

答:超导材料是一种没有电阻的材料,既能节约能量,减少电能因电阻而消耗的能量,还能把电流储存起来,供急需时使用。零电阻效应和超导体的完全抗磁性(迈斯纳效应)。迈斯纳效应产生的原因,当超导体处于超导态时,在磁场的作用下,表面产生无损耗感应电流,这个电流产生的磁场与原磁场的大小相等,方向相反,因而总合成磁场为零。即无损感应电流对外加磁场起着屏蔽的作用,因此又称为抗磁性屏蔽电流。

(2)超导的三个临界条件是什么?

答:临界温度Tc,临界电流Ic,临界磁场Hc

(3)伦敦方程是什么?说明了超导体的什么性质?

答:伦敦第一方程,式中,m是电子质量,J

s 为超流电流密度,n

s

是超导电子密

度。说明了在稳态下,超导体内的电场强度等于零,因此,它说明了超导体的零电阻性质。

伦敦第二方程

? ╳(LJ

s

)= -B

式中,L =(m/n

s e2)。 m是电子质量,J

s

为超流电流密度,n

s

是超导电子密度

说明了超导体的迈斯纳效应。

(4)PTC,NTC热敏电阻分别指什么?

①电阻随温度升高而增大的热敏电阻称为正温度系数热敏电阻,简称PTC热敏电阻

②电阻随温度的升高而减小的热敏电阻称为负温度系数热敏电阻,简称NTC热敏电阻

(5)气敏陶瓷分为哪三类,分别指什么?

答:气敏陶瓷大致可分为半导体式、固体电解质式及接触燃烧式三种:

(6)太阳能电池发电的基本原理是什么?哪些材料可以做为太阳能电池材料?太阳能电池对材料的具体要求?

答:太阳能电池是利用光生伏特效应,当光线照射到半导体的p-n结上时,如果光子能量足够大,hn≥Eg,就在p-n结附近激发出电子--空穴对。在自建电场的作用下,n区的光生空穴被拉向p区,p区的光生电子被拉向n区,结果n区积累了负电荷,p区积累了正电荷,产生光生电动势。若将外电路接通,就有电流由p区流经外电路至n区,这种效应称为光生伏特效应。

光子吸收材料的禁带宽度在1.0~1.6eV较合适作为太阳能电池材料,因此,Si、Cu

2

S、GaAs、CdTe等均可用作太阳能电池材料。

(7)功能陶瓷和快离子导体陶瓷分别是什么?

答:功能陶瓷是属于无机非金属功能材料。快离子导体陶瓷是指电导率可以和液体电解质或熔盐相比拟的固态离子导体陶瓷,又称电解质陶瓷。

(8)稀土功能材料包括哪些?

答:稀土功能材料主要包括稀土永磁材料、稀土储氢材料、信息显示材料、催化材料、超磁致伸缩材料、巨磁电阻材料等。

(9)材料功能性与材料结构的关系?

答:功能材料的结构与性能之间存在着密切的联系,材料的骨架、功能基团以及分子组成直接影响着材料的宏观结构与材料的功能。

(10)光色玻璃是什么?玻璃半导体的开关效应和存贮效应分别指什么?

答:物质在触及到光或者被光遮断时,其化学结构发生变化,其中的部分吸收光谱发生改变。我们把出现可逆的或不可逆的显色、消色现象的物质称为光致变色材料。光色玻璃就是其中的一类光致变色材料。开关效应:原先处于兆欧级高阻绝缘态(“关态”)的玻璃半导体,当外加电压超过一定数值(阀值)时,就会在

l0-9s 内,变成只有几个欧姆的低电阻态(“开态”),这种特性称为“开关效应”。

存贮效应:当玻璃半导体由高阻绝缘态变成低阻态后,不需要维持电压便能永久地保持在低阻态,具有永久记忆特性。玻璃半导体的这种特殊性质称为“存贮效应”。

(11)微晶玻璃的微晶化包括哪些过程?微晶玻璃结晶过程中的核化和晶化多属于什么类型?基本原理是什么?

答:微晶玻璃的微晶化包括以下几个过程

(1)玻璃结构发生微调;

(2)晶核的形成;

(3)基本晶相的形成及生长;

(4)介稳相转变为稳定晶相及残余玻璃。

微晶玻璃结晶过程中的核化与晶化多数属于非均相核化的类型。其基本原理是:加入玻璃配合料中的成核剂,在熔制过程中,均匀地溶解于玻璃熔融体中。当玻璃处在析晶温度区时,成核剂能降低晶核生成所需要克服的势垒,从而核化可以在较低的温度下进行。

(12)生物玻璃是什么?新型功能玻璃按功能性可分为哪几类?

答:生物玻璃是指能够满足或达到特定生物、生理功能的特种玻璃。微晶玻璃、光导纤维玻璃、激光玻璃、光色玻璃、半导体玻璃、非线性光学玻璃、磁功能玻璃、生物玻璃、机械功能玻璃以及功能玻璃薄膜等。

(13)什么是永磁材料和软磁材料?

答:软磁材料:在较弱的磁场下易于磁化,也易于退磁的材料称为软磁材料,磁导率大,矫顽力小,滞损耗低,磁滞回线呈细长条形。磁化后不易退磁,而能长期保留磁性的铁氧体材料称永磁材料。磁滞回线包围面积大,矫顽力大。

氢化物的储氢原理是什么?实用的储氢材料的特征是什么?

答:金属吸留氢形成金属氢化物,然后对金属氢化物加热,并把它放置在比其平衡低的氢压力环境中使其放出吸留的氢,储氢材料应具备的条件:1, 易活化,氢的吸储量大 2,用于储氢时生成热尽量小,而用于蓄热时生成热尽量大 3.在一个很宽的组成范围内,应具有稳定合适的平衡分解压 4,氢吸收和分解过程中的平衡压差小 5,氢的俘获和释放速度快 6,金属氢化物的有效热导率大 7,在反复吸放氢的循环过程中合金的粉化小,性能稳定性好 8,对不纯物如氧,氮,,水分等的耐中毒能力强 9,储氢材料廉价。

CO,CO

2

(14)陶瓷胚体所需哪三种原料?

答:具有可塑性的黏土类原料、具有非可塑性的石英类原料和熔剂原料。

(15)黏土在陶瓷生产中的作用?石英在陶瓷生产中的作用?

答:黏土之所以作为陶瓷制品的主要原料,是由于其赋予泥料具有可塑性和烧结性,黏土作用概括为五个方面:

1)黏土的可塑性是陶瓷坯泥赖以成形的基础。

2)黏土使注浆泥料与釉料具有悬浮性与稳定性。

3)黏土一般呈细分散颗粒,同时具有结合性

4)黏土是陶瓷坯体烧结时的主体,黏土中的Al

2O

3

含量和杂质含量是决定陶

瓷坯体的烧结程度、烧结温度和软化温度的主要因素;

5)黏土是形成陶器主体结构和瓷器中莫来石晶体的主要来源。

石英在陶瓷生产中的作用

①在烧成前是瘠性原料,可对泥料的可塑性起调节作用,能降低坯体的干燥收缩,缩短干燥时间并防止坯体变形。

②在烧成时,石英的加热膨胀可部分地抵消坯体收缩的影响,当玻璃质大量出现时,在高温下石英能部分熔解于液相中,增加熔体的强度,而未熔解的石英颗粒,则构成坯体的骨架,可防止坯体发生软化变形等缺陷。

③在瓷器中,石英对坯体的力学强度有着很大的影响,合理的石英颗粒能大大提高瓷器坯体的强度,否则效果相反。同时,石英也能使瓷坯的透光度和白度得到改善。

④在釉料中,二氧化硅是生成玻璃质的主要组分,增加釉料中石英含量能提高釉的熔融温度与黏度,并减少釉的线胀系数。同时它是赋予釉以高的力学强度、硬度、耐磨性和耐化学侵蚀性的主要因素。

(16)稀土发光的本质是什么?稀土为什么具有优异的发光性能?

答:发光的本质是能量的转换,稀土之所以具有优异的发光性能,就在于它具有优异的能量转换功能,而这又是由其特殊的电子层结构决定的。稀土离子的发光特点

即 +3价稀土离子的发光特点

①有f--f 跃迁的发光材料的发射光谱呈线状,色纯度高;

②荧光寿命长;

③由于4f轨道处于内层,材料的发光颜色基本不随基质的不同而改变;

④光谱形状很少随温度而变,温度猝灭小,浓度猝灭小。

(17)智能材料所具备的三个基本要素?智能材料具备哪些内涵?

答:智能材料必须具备感知、驱动和控制这三个基本要素。

具体来说,智能材料需具备以下内涵:

(1)具有感知功能,能够检测并且可以识别外界(或者内部)的刺激强度,如电、光、热、应力、应变、化学、核辐射等;

(2)具有驱动功能,能够响应外界变化;

(3)能够按照设定的方式选择和控制响应;

(4)反应比较灵敏、及时和恰当;

(5)当外部刺激消除后,能够迅速恢复到原始状态。

(18)什么是荧光和磷光?何为长余辉材料?何为荧光的猝灭?

答:荧光:激活剂吸收能量后,激发态的寿命极短,一般大约仅10-8s就会自动地回到基态而放出光子,这种发光现象称为荧光。撤去激发源后,荧光立即停止。磷光:被激发的物质在切断激发源后仍能继续发光,这种发光现象称为磷光即:“荧光”指的是激发时的发光,而“磷光”指的是发光在激发停止后,可以持续一段时间。长余辉材料:有时磷光能持续几十分钟甚至数小时,这种发光物质就是通常所说的长余辉材料。荧光猝灭:基质晶格M吸收激发能,传递给搀杂离子,使其上升到激发态,它返回基态时以热的形式把激发能量释放给邻近的晶格,称为“无辐射弛豫”,也叫荧光猝灭。

(20)何为形状记忆效应?什么是光电导效应?

答:有些材料,在发生了塑性变形后,经过合适的热过程,能够回复到变形前的形状,这种现象叫做形状记忆效应(SME)。光电导效应:当光线照射到半导体时,在光子作用下产生的光生载流子使电导增加的现象,称为光电导效应。

请你就稀土材料中你感兴趣的性质做一个简要的论述

请你对新型功能材料热点的发展前景做一下简要论述

新型功能材料发展趋势

新型功能材料发展趋势 功能材料是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料,是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业,如农业、化工、建材等起着重要作用。功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。功能材料按使用性能分,可分为微电子材料、光电子材料、传感器材料、信息材料、生物医用材料、生态环境材料、能源材料和机敏(智能)材料。由于我们已把电子信息材料单独作为一类新材料领域,所以这里所指的新型功能材料是除电子信息材料以外的主要功能材料。 功能材料是新材料领域的核心,对高新技术的发展起着重要的推动和支撑作用,在全球新材料研究领域中,功能材料约占 85 % 。随着信息社会的到来,特种功能材料对高新技术的发展起着重要的推动和支撑作用,是二十一世纪信息、生物、能源、环保、空间等高技术领域的关键材料,成为世界各国新材料领域研究发展的重点,也是世界各国高技术发展中战略竞争的热点。 鉴于功能材料的重要地位,世界各国均十分重视功能材料技术的研究。 1989年美国200多位科学家撰写了《90年代的材料科学与材料工程》报告,建议政府支持的6类材料中有5类属于功能材料。从1995年至2001年每两年更新一次的《美国国家关键技术》报告中,特种功能材料和制品技术占了很大的比例。2001年日本文部省科学技术政策研究所发布的第七次技术预测研究报告中列出了影响未来的100项重要课题,一半以上的课题为新材料或依赖于新材料发展的课题,而其中绝大部分均为功能材料。欧盟的第六框架计划和韩国的国家计划等

新型建筑材料介绍

新型建筑材料 学院*** 专业*** 年级班别*** 学号*** 学生姓名*** 指导教师*** 2013年11月28 日

新型建筑塑料 一、塑料的组成 (一)合成树脂:合成树脂是塑料的基本组成材料,在塑料中起粘结作用。塑料的性质主要决定于合成树脂的种类、性质和数量。合成树脂在塑料中的含量约为30%~60%,仅有少数的塑料完全由合成树脂所组成,如有机玻璃。 (二)填充料 在合成树脂中加入填充料可以降低分子链间的流淌性,可提高塑料的强度、硬度及耐热性,减少塑料制品的收缩,并能有效地降低塑料的成本。 (三)增塑剂 增塑剂可降低树脂的流动温度Tf,使树脂具有较大的可塑性以利于塑料加工成型,由于增塑剂的加入降低了大分子链间的作用力,因此能降低塑料的硬度和脆性,使塑料具有较好的塑性、韧性和柔顺性等机械性质。 增塑剂必须能与树脂均匀地混合在一起,并且具有良好的稳定性。常用的增塑剂有邻苯二甲酸二辛酯、磷酸三甲酚酯、樟脑、二苯甲酮等。 (四)固化剂 固化剂也称硬化剂或熟化剂。它的主要作用是使线性高聚物交联成体型高聚物,使树脂具有热固性,形成稳定而坚硬的塑料制品。 (五)着色剂 着色剂的加入使塑料具有鲜艳的色彩和光泽,改善塑料制品的装饰性。常用的着色剂是一些有机染料和无机颜料。有时也采用能产生荧光或磷光的颜料。(六)稳定剂 为防止塑料在热、光及其他条件下过早老化而加入的少量物质称为稳定剂。常用

的稳定剂有抗氯化剂和紫外线吸收剂。 二、塑料的性质 (一)物理力学性质 1.密度。一般为0.9~2.2g/cm3。 2.孔隙率。可在很大范围内加以控制。 3.吸水率。吸水率很小,一般不超过1%。 4.耐热性。温度一般为100~200℃,仅个别塑料(氟塑料、有机硅聚合物等)的使用温度可达300~500℃。 5.导热性。密实塑料的导热系数为0.23~0.70W/m ·k,泡沫塑料的导热系数则接近于空气。 6.强度。塑料的强度较高。 7.弹性模量。约为混凝土的1/10,同时具有徐变特性。 (二)化学性质 1.耐腐蚀性。对酸、碱、盐等腐蚀性物质的作用都具有较高的化学稳定性。2.老化。在使用条件下,塑料受光、热、大气等作用,内部高聚物的组成与结构发生变化,致使塑料失去弹性、变硬、变脆出现龟裂(分子交联作用引起)或变软、发粘、出现蠕变(分子裂解引起)等现象,这种性质劣化的现象称为老化。3.可燃性。建筑工程用塑料应为阻燃塑料。 4.毒性。一般来说,液体状态的树脂几乎都有毒性,但完全固化后的树脂则基本上无毒。

高结构材料与

高结构材料与 材料实录1在沙堆“可爱的幼儿园”的活动中第一组幼儿在堆幼儿园大门时用木制的拱形积木拼放在沙子上面作为大门的门料。四分钟后周仲逸和严海兵已经完成了他们就无所事事了。 实录2第二组活动时冯佳逸和徐子伊被分工堆幼儿园的大门。冯说大门上面是拱行的有点歪歪的用什么来做呢她们俩到沙池旁的材料盒里去找找到了几根粗粗的的树枝“就用这树枝吧”徐说。于是她俩把树枝二端插在沙子里有点像拱形门了可旁边堆“海盗船”的张赵霏说这大门也太小了吧。冯说那找根长树枝吧。可翻遍了材料盒也没找到只找到了几根与第一根差不多长短的树枝。冯建议在园内找长树枝徐说不行幼儿园里的树枝都是活的不能折下来的。她们俩来求助我。我建议她们再到材料盒去找找吧在这之前我已在材料盒里放了绳子与剪刀无意间冯发现了一根绳子说我们把连根短树枝绑起来。于是她俩在交接处绑住了在绑时冯说妈妈给我扎辫子时斜着绕线的。她学着绕了起来一会儿就接住了看上去很好看绕线很有规律。整个过程为18分钟。 分析在活动中第一组幼儿能力较差为他们提供了“高结构”的木枝拱形积木。第二组幼儿能力较强。我就把木制积木换成树枝、绳子、剪刀等满足了他们探索欲望在运用零碎的低结构材料时我根据幼儿探索进程补充必要的材料。 “高结构”材料与“低结构”材料有不同的特点因此导致了它们在探索型主题活动中所起的作用也各自不同。 “高结构”材料有自己固有的形状、结构操作时有一定的规律可循。幼儿一旦掌握了材料的使用规则就能较快地按自己的构思完成作品容易获得成功感。但是由于“高结构”材料的定性结构使幼儿的随意想象和创造力受到一定的限制所以往往无法满足幼儿探索想象的需求。 “低结构”材料是一些无规定玩法、无具体形象特征的材料。幼儿可以根据自己的兴趣和当时想法随意组合并可以一物多用从而为幼儿的想象提供了广阔的空间。如类似于枯枝绳子等这些原始的废旧的材料其可塑性大可让幼儿在活动的过程中通过一次次的摆弄不断探索、不断发现新问题调整操作。如树枝太短把两根绑起来绑绳时很有规律幼儿通过对低结构材料的运用有一段较长时间的探索过程并在此过程中满足了自己的探索欲望。 进一步思考的问题在投放材料时是否低结构的材料多些有利于幼儿的探索

新型功能材料论文

新型功能材料——红外材料的性能及应用 前景 作者: 摘要:红外辐射位于电磁波谱的中央,其波长覆盖四个数量级。在整个电磁波 谱中,不管是哪一个波段,其传播速度都是光速c,波长为λ(厘米),每秒振动数称为频率ν(秒-1)。 1. 红外辐射材料 理论上,在0K以上时,任何物体均可辐射红外线,故红外线是一种热辐射,有时也叫热红外。但工程上,红外辐射材料只指能吸收热物体辐射而发射大量红外线的材料。红外辐射材料可分为热型、“发光”型和热—“发光”混合型三类。红外加热技术主要采用热型红外辐射材料。 (1)红外材料的特性 红外辐射材料的辐射特性决定于材料的温度和发射率。而发射率是红外辐射材料的重要特征值,它是相对于热平衡辐射体的概念。热平衡辐射体是指当一个物体向周围发射辐射时,同时也吸收周围物体所发射的辐射能,当物体与外界进行能量交换慢到使物体在任何短时间内仍保持确定温度时,该过程可以看作是平衡的。 当红外辐射辐射到任何一种材料的表面上时,一部分能量被吸收,一部分能量被反射,还有一部分能量被透过。由于能量守恒,吸收率、反射率、透过率之间有如下关系 根据基尔霍夫定律,任何辐射体的辐射出射度和吸收率之比相同并恒等于同温度下黑体的辐射出射度,且只和温度有关,可得: 式中 为发射率,也叫比辐射率。这说明影响材料反射、透射和辐射性能的有关因素必然会在其发射率的变化规律中反映出来。材料发出辐射是因组成材料的原子、分子或离子体系在不同能量状态间跃迁产生的。 这种发出的辐射在短波段主要与其电子的跃迁有关,在长波段则与其晶格振动特性有关。红外加热技术中的多数辐射材料,发出辐射的机制是由于分子转动

或振动而伴随着电偶矩的变化而产生的辐射。因此,组成材料的元素、化学键形式、晶体结构以及晶体中存在缺陷等因素都将对材料的发射率发生影响 (a) 材料本身结构对其发射率的影响 一般说金属导电体的值较小,电介质材料的值较高。存在这种差异的原因与构成金属和电介质材料的带电粒子及其运动性直接有关。带电粒子的特性不同,材料的电性和发射红外辐射的性能就不一样,而这往往与材料的晶体结构有关。 例如:氧化铝、氧化硅等电介质材料属于离子型晶体,它主要靠正、负离子的静电力结合在一起;碳化硅、硼化锆、氮化锆等材料属于共价晶体,它们是靠两个原子各自贡献自旋相反的电子,共同参与两个原子的束缚作用;铝等金属晶体的结构可以看作是正离子晶格内自由电子把它们约束在一起。显然,在晶格中存在杂质、缺陷时,都会影响晶体的结构参数,使材料的发射率发生变化。 (b) 材料的发射率随辐射波长的变化 如前所述,多数红外辐射材料,其发射红外线的性能,在短波主要与电子在价带至导带间的跃迁有关;在长波段主要与晶格振动有关。晶格振动频率取决于晶体结构、组成晶体的元素的原子量及化学键特性。图7.1-1 纯SiC的单色发射率与波长的关系 图7.1-1为600℃和1025℃情况下碳化硅的单色发射率曲线。由图可见,SiC在12μm附近有一个显著的发射率特征带,这是Si-C基态振动的位置。 (c) 原材料预处理工艺对发射率的影响 同一种原材料因预处理工艺条件不同而有不同的发射串值。例如,经700℃空气气氛处理与经1400℃煤气气氛处理的氧化钛的常温发射率分别为0.81和0.86。

功能材料发展趋势

材料】功能材料发展趋势 功能材料发展趋势 功能材料是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料,是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业,如农业、化工、建材等起着重要作用。功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。功能材料按使用性能分,可分为微电子材料、光电子材料、传感器材料、信息材料、生物医用材料、生态环境材料、能源材料和机敏(智能)材料。由于我们已把电子信息材料单独作为一类新材料领域,所以这里所指的新型功能材料是除电子信息材料以外的主要功能材料。 功能材料是新材料领域的核心,对高新技术的发展起着重要的推动和支撑作用,在全球新材料研究领域中,功能材料约占85%。随着信息社会的到来,特种功能材料对高新技术的发展起着重要的推动和支撑作用,是二十一世纪信息、生物、能源、环保、空间等高技术领域的关键材料,成为世界各国新材料领域研究发展的重点,也是世界各国高技术发展中战略竞争的热点。 鉴于功能材料的重要地位,世界各国均十分重视功能材料技术的研究。1989年美国200多位科学家撰写了《90年代的材料科学与材料工程》报告,建议政府支持的6类材料中有5类属于功能材料。从1995年至2001年每两年更新一次的《美国国家关键技术》报告中,特种功能材料和制品技术占了很大的比例。2001年日本文部省科学技术政策研究所发布的第七次技术预测研究报告中列出了影响未来的100项重要课题,一半以上的课题为新材料或依赖于新材料发展的课题,而其中绝大部分均为功能材料。欧盟的第六框架计划和韩国的国家计划等在他们的最新科技发展计划中,都把功能材料技术列为关键技术之一加以重点支持。各国都非常强调功能材料对发展本国国民经济、保卫国家安全、增进人民健康和提高人民生活质量等方面的突出作用。 1、新型功能材料国外发展现状 当前国际功能材料及其应用技术正面临新的突破,诸如超导材料、微电子材料、光子材料、信息材料、能源转换及储能材料、生态环境材料、生物医用材料及材料的分子、原子设计等

新型陶瓷材料的应用与发展

新型陶瓷材料的应用与 发展 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

新型陶瓷材料的应用与发展摘要:本文首先简单介绍了传统陶瓷材料向现代新型陶瓷材料转变的过程,新型陶瓷材料克服了传统陶瓷本身内部的缺陷,故使其性能大大提高,扩大了应用领域。然后论述了新型陶瓷材料分为结构陶瓷和功能陶瓷,以及它们耐高温、生物相容性能、电磁性、质量轻等特性及各自的应用领域,重点讨论了新型陶瓷材料在航空航天、军事、生物工程、电子工业等的应用,最后简单说明了新型陶瓷材料的近况和发展趋势。 关键字:新型陶瓷材料应用发展 引言:在当今科技高度发展的工业社会,每一项工业化的成就都与材料科学、材料的制造及实际使用有着密不可分的关联,它使得某些新的科学设想、构思及生产过程得以实现。离开了材料科学与材料工业,世界上的许多科学创造和发明都是难以实现或达到的。陶瓷材料是继金属材料,非金属高分子材料之后人们所关注的无机非金属材料中最重要的一种,因为它同时兼有金属和高分子材料两者的共同优点,此外在不断的改性过程中,已使它的易碎裂的性能有了很大的改善。因此,它的应用领域和各类产品都有一个十分明显的提高。 1.传统陶瓷材料到新型陶瓷材料的演变 陶瓷一词(Ceramics) 来源于古希腊Keramos 一词,意为地球之神。传统的陶瓷材料含意很广泛,它主要指铝、硅的氮化物,碳化物,玻璃及硅酸盐类。虽然传统陶瓷具有一定的耐化学腐蚀特性和较高的电阻率、熔点高,可耐高温,硬度高,耐磨损,化学稳定性高,不腐蚀等优点。但它也存在着塑料变形能力差,易发生脆性破坏和不易加工成型等缺点,这些原因大大地限制了在工业的应用范围,特别是在机械工业上的应用。而在电器上的应用也主要局限在高压电瓷瓶及其绝缘体部件等少数几个方面。 为此人们开展对传统的陶瓷材料进行改性研究和有关材料的人工合成开发,现代合成技术已经能够通过物理蒸发溅射(Vapor processing) 溶液法(Aqueous precipitation) 溶胶—凝胶技术(Solgel-technology) 及其它先进技术改造传统陶瓷或人工合成极少缺陷的陶瓷材料,其中较为重要的有Si3N4 ,A12O3 等。合成的陶瓷材料与传统陶瓷材料相比,它的性能大大提高,与其它材料相比,在同样强度下这些材料具有良好的化学、热、机械及摩擦学(tribology)特性。它质轻,可以耐高温,硬度高,抗压强度有时超过金属及合金,具有较强的抗磨性和化学隋性、电及热的绝缘性都相当好,特别是由于采用纯净材料,消除了缺陷( eliminate-defects) , 它的易脆性( brittleness) 得到了极大的改善,因此其应用,特在现代机械业的应用日益广泛。目前巳有大量的新型陶瓷材料被用于工业高温抗磨器件、机械基础元器件,除此之外,电子及电信行业,生物医疗器件乃至于陶瓷记忆材料,超导陶瓷等应用都与新型陶瓷材料的研制与开发有关。 2.新型陶瓷材料特性与分类 新型陶瓷材料按照人们目前的习惯可分为两大类,即结构陶瓷(Structural ceramics)(或工程陶 瓷)和功能陶瓷( Functional ceramics),将具有机械功能、热功能和部分化学功能的陶瓷列为结构陶瓷, 而将具有电、光、磁、化学和生物体特性,且具有相互转换功能的陶瓷列为功能陶瓷。随着科学技术的发展, 各种超为基数和符合技术的运用,材料性能和功能相互交叉渗透,确切分类已经逐渐模糊和淡化。根据现代科 学技术发展的需要,通过对材料结构性能的设计,新型陶瓷材料的各种特性得到了充分的体现。 3.新型陶瓷的应用与发展 新型陶瓷是新型无机非金属材料, 也称先进陶瓷、高性能陶瓷、高技术陶瓷、精细陶瓷, 为什么能得到高 速发展, 归纳起来有四方面原因:①具有优良的物理力学性能、高强、高硬、耐磨、耐腐蚀、耐高温、抗热震 而且在热、光、声、电、磁、化学、生物等方面具有卓越的功能, 某些性能远远超过现代优质合金和高分子材料, 因而登上新材料革命的主角地位, 满足现代科学技术和经济建设的需要。②其原料取于矿土或经合成而得, 蕴藏量十分丰富。③产品附加值相当高, 而且未来市场仍将持续扩展。④应用十分广泛, 几乎可以渗透到各 行各业。 应用领域 功能陶瓷主要在绝缘、电磁、介电以经济光学等方面得到广泛应用;结构陶瓷除了耐低膨胀、耐磨、耐腐 蚀外,还有重量轻、高弹性、低膨胀、电绝缘性等特性。因而在很多领域得到应用应该是以陶瓷燃气轮机为代 表的耐高温陶瓷部件陶瓷广泛用于道具及模具等耐磨零件,这方面的应用主要是利用陶瓷的高硬度、低磨耗 性、低摩擦系数等特性。另一方面,陶瓷材料具有其他材料所没有的高刚性、重量轻、耐蚀性等特性,从而被 有效地应用在精密测量仪器和精密机床等上面。另外,因为陶瓷材料具有很好的化学稳定性和耐腐蚀性,在生 物工程以及医疗等方面也得到广泛的应用。下面将分几方面来介绍新型陶瓷材料的应用领域。 1)航空航天材料:陶瓷基复合材料(Ceramic Matrix Composites) 当前耐高温材料已经成为航天先进材料中的由此岸优先发展方向,材料在高温下的应用对航天技术特别 是固体火箭等领域具有极其重要的推动作用。随着航空技术的发展气体涡轮机燃烧室中燃气的温度要求越来越高,并更紧密地依赖于高温材料的研究开发,而先进陶瓷及其陶瓷基复合材料具有耐高温、耐磨损、耐腐蚀质 量轻等优异性能,是最具有希望代替金属材料用于热端部件的候选材料[4]。为此世界各国开展对陶瓷发动机的 研究工作。美、欧、日等越来越多的人体涡轮机设计者们开始用陶瓷基复合材料来制作旋转件和固定件。当前 对高温结构陶瓷的研究主要集中于Sic、Si3N4、Al2O3和ZrO2等,尤其以Si3N4高温结构陶瓷最引人注目。这类 陶瓷的综合性能较突出,它们有良好的高温强度,已经在航空涡轮发动机等方面得到了应用,非常适用于制作

功能材料

科技名词定义 中文名称: 功能材料 英文名称: functional material 定义: 具有除力学性能以外的其他物理性能的特殊材料。 应用学科: 航空科技(一级学科);航空材料(二级学科) 功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。 功能材料专业介绍(新增) 本专业为2011年新增专业。专业代码:080215S,修业年限:四年,授予学位门类:工学。通过学习,将具备了以下几方面的能力:1、具有坚实的学科基础,较好的人文、艺术和社会科学基础及正确运用本国语言、文字的表达能力;2、较系统地掌握专业领域宽广的技术理论基础知识;3、具有较强的解决与力学有关的材料加工技术问题的理论分析能力与实验技能;4、具有较强的计算机和外语应用能力;5、具备相应的实验、科研能力。职业前景:这个专业是在国家新兴产业结构调整下应运而生的,有政策支持,专业的就业前景不错。毕业生可以从事与信息技术、生物工程技术等相关的新材料开发与应用相关的职业,也可在高校、事业部门从事教学、科研工作。功能材料在国外发展迅速,新工艺层出不穷,相对于传统材料领域,就读国内该专业的学生具有较多的出国、读研机会。相近专业:无机非金属材料工程(080203)、冶金工程(080201)、材料科学与工程(080205Y)、复合材料与工程(080206W)、焊接技术与工程(080207W)、生物功能材料(080213S)。开办学校:东北大学秦皇岛分校,石家庄铁道大学,西安建筑科技大学,沈阳建筑大学; 兰州理工大学;华中科技大学,华侨大学,天津大学,北京石化学院,昆明理工大学。 功能材料的重要性 功能材料是新材料领域的核心,是国民经济、社会发展及国防建设的基础和先导。它涉及信息技术、生物工程技术、能源技术、纳米技术、环保技术、空间技术、计算机技术、海洋工程技术等现代高新技术及其产业。功能材料不仅对高新技术的发展起着重要的推动和支撑作用,还对我国相关传统产业的改造和升级,实现跨越式发展起着重要的促进作用。功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。世界各国均十分重视功能材料的研发与应用,它已成为世界各国新材料研究发展的热点和重点,也是世界各国高技术发展中战略竞争的热点。在全球新材料研究领域中,功能材料约占85 % 。我国高技术(863)计划、国家重大基础研究[973]计划、国家自然科学基金项目中均安排了许多功能材料技术项目(约占新材料领域70%比例),并取得了大量研究成果。 新型功能材料国外发展现状 当前国际功能材料及其应用技术正面临新的突破,诸如超导材料、微电子材料、光子材料、信息材料、能源转换及储能材料、生态环境材料、生物医用材料及材料的分子、原子设

新型功能材料

先进功能陶瓷材料 摘要:本文概述了先进功能陶瓷材料的基本分类和优良性能,并对研究现状做了陈述和对未来先进功能陶瓷材料的发展做了展望. 关键词: 先进功能陶瓷材料;分类;优良性能;发展概况;展望 Advanced ceramic materials Abstract: This paper provides an overview of advanced ceramic materials the basic classification and excellent performance, and the research situation on the statement and the future of advanced ceramic materials is prospected. Key words: advanced ceramic materials; classification; excellent performance; development situation; Prospect 1.功能陶瓷材料的简要介绍 功能陶瓷材料对电、磁、光、热、化学、生物等现象或物理量有很强反应,或能使上述某些现象或量值发生相互转化的一种陶瓷材料。功能陶瓷是一类颇具灵性的材料,它们或能感知光线,或能区分气味,或能储存信息……因此, 说它们多才多能一点都不过分【1-3】.它们在电、磁、声、光、热等方面具 备的许多优异性能令其他材料难以企及,有的功能陶瓷材料还是一材多能呢!而这些性质的实现往往取决于其内部的电子状态或原子核结构,又称电子陶瓷。已在能源开发、电子技术、传感技术、激光技术、光电子技术、红外技术、生物技术、环境科学等方面有广泛应用。 超导陶瓷材料就是功能陶瓷的杰出代表。1987年美国科学家发现钇钡铜氧陶瓷在98K时具有超导性能,为超导材料的实用化开辟了道路,成为人类 超导研究历程的重要里程碑【2】。压电陶瓷在力的作用下表面就会带电,反 之若给它通电它就会发生机械变形。电容器陶瓷能储存大量的电能,目前全世界每年生产的陶瓷电容器达百亿支,在计算机中完成记忆功能。而敏感陶瓷的电性能随湿、热、光、力等外界条件的变化而产生敏感效应:热敏陶瓷可感知微小的湿度变化,用于测温、控温;而气敏陶瓷制成的气敏元件能对易燃、易爆、有毒、有害气体进行监测、控制、报警和空气调节;而用光敏陶瓷制成的电阻器可用作光电控制,进行自动送料、自动曝光、和自动记数。磁性陶瓷是部分重要的信息记录材料。还有半导体陶瓷、绝缘陶瓷、介电陶瓷、发光陶瓷、感光陶瓷、吸波陶瓷、激光用陶瓷、核燃料陶瓷、推进剂陶瓷、太阳能光转换陶瓷、贮能陶瓷、陶瓷固体电池、阻尼陶瓷、生物技术陶

常用机电材料简介

材料 一、金属材料: 1.金属材料的分类:黑色金属和有色金属两大类。 2.黑色金属在各类电机制造中是经常用到的基本材料。 2.1 黑色金属包括铁,锰,铬及其合金,一般都是指钢和铁。按化学成分可以把钢分为碳素钢和合金钢两 大类﹔生铁可分为炼钢生铁﹑铸造生铁和铁合金。 2.2 碳素钢是使用最多的一种, 按用途分为:碳素结构钢,碳素工具钢和易切削结构钢三类。 按含碳量可以把碳素钢分为:低碳钢(含碳≤0.25﹪)﹑中碳钢(含碳>0.25~0.6﹪)﹑高碳钢(含碳>0.6﹪).一般碳素钢中,含碳量越高硬度越高,但塑性降低。 按含磷﹑硫可以把碳素钢分为:普通碳素钢(含磷﹑硫较高) ﹑优质碳素钢(含磷﹑硫较低)和高级碳素钢(含磷﹑硫更低)。 2.3合金钢:为了满足某种性能要求,在钢中加入一种或几种合金元素(如锰﹑硅﹑钒﹑钛﹑铌﹑硼﹑稀土等). 通过合金化,可以提高和改善肮的综合机械性能﹔能显著提高和改善钢的工艺性能,如淬透性,回火稳定性﹑切削性等﹔还可以使钢获得一些特殊的物理化学性能,如耐热﹑不锈﹑耐腐蚀等。 2.3.1 2.4 钢件.铸造工艺有许多优点:能铸造形状复杂的零件,原料利用范围广,能减少切削加工,而且成本较低,还有一系列的优良性能,如耐磨性,减震性好等。 3.有色金属 3.1 有色金属又称非铁金属,它的种类很多,在被人们发现的一百多种元素中除气体,非金属有80余种,广泛的 用于现代科学技术,工业生产,人民生活之中。 3.2有色金属的分类: 按发现时间的先后分为:轻有色金属﹑重有色金属﹑贵有色金属﹑半金属和稀有色金属无大类.

按合金系统分为: 轻有色金属及其合金﹑重有色金属及其合金﹑贵有色金属及其合金﹑稀有色金属及其合金。 按用途分为:变形合金.铸造合金,轴承合金,印刷合金,焊料,中间合金. 3.3 铝及铝合金 3.3.1铝是一种白色的轻金属,在自然界中分布很广,铝的密度小(2.7g/㎝3),良好的导热性和导电性,在空气中 很容易氧化,在表面生成一层致密的氧化薄膜保护层,阻止率的继续氧化,成为抗大气腐蚀性能良好的材料。 3.3.2 铝合金: 在铝中加入一种或几种元素组合成合金.它具有强度高﹑比强度大﹑塑性良好﹑适于各种压 力加工,同时还有良好的切削性能.因而被广泛的用于机械,电机,电器等工业中. 3.3.2.1 铝合金的分类:铸造铝合金和变形铝合金,在电机工业中用于制作电机的机座﹑壳体﹑机壳﹑端盖﹑ 衬套﹑轴套﹑压圈盖帽﹑风叶等。 3.4 铜及铜合金 3.4.1 铜属重合金属,是被人类发现和使用最早的金属之一.铜的密度为8.96g/㎝3,纯铜有良好的导电性和较 强的耐腐蚀性,易于热压和冷压加工,但力学性能低,不宜做结构零件. 3.4.2铜合金:将铜和其它元素组成合金.它具有比纯铜好的力学性能,仅次于钢铁,在机械﹑电机﹑电器工业 中作导电材料﹑弹性材料﹑耐腐蚀和耐磨材料,也是艺术品及生活用品的重要材料,同时也是军事工业的重要材料. 3.4.2.1 3.5.2.1适用范围 重熔用电工铝锭适用于中小型异步电动机浇铸鼠笼转子的鼠笼导条和杯形转子之用. 3.5.2.2 技术要求 化学成分(见表3-6 P285) 外观:电工铝锭的外观应符合GB/T1196的规定。 质量: 重熔用电工铝锭外形几何尺寸不作一规定,但锭形应符合GB/T196的规定,每块质量为(15或20)±2kg。 3.5.2.3标记示例 牌号为AL99.70E的重熔用电工铝锭,其标记为:电工铝锭AL99.70E GB/T2768-1991 3.5.3 铸造铝合金 在电机中主要用作铸造机壳﹑底座﹑底盘﹑外壳﹑壳体﹑端盖﹑出线盒等零件. 3.5.4 压铸铝合金 在电机中主要用作铸造机壳﹑机座﹑底座﹑端盖﹑风扇叶片等零件 二、漆包线 1.漆包线的绝缘层是漆膜,部分采用天然材料(如绝缘紙,天然丝等)外,主要采用有机合成高分子化合物(如缩 醛﹑聚脂﹑聚胺脂﹑聚脂亞胺树脂等)和无机材料(如玻理丝等).为了提高绝缘层的性能,有的绕组线采用

几种新型无机材料简介

专 业 论 文 学校:天水师范学院 班级:2012级应化1班姓名:汪治华 学号:20122060155

几种新型无机材料简介 材料是人类生存和发展的物质基础,也是一切工程技术的基础。现代科学技术的发展对材料的性能不断提出新的更高的要求。材料科学是当前科学研究的前沿领域之一。以材料科学中的化学问题为研究对象的材料化学成为无机化学的重要学科之一。 材料主要包括金属材料、无机非金属材料、复合材料和高分子材料等各类化学物质。这里简单介绍几种新型无机材料。 ●氮化硅陶瓷材料 氮化硅(Si3N4)陶瓷是一种高温结构陶瓷材料,属于无机非金属材料。在Si3N4中,硅原子和氮原子以共价键结合,使Si3N4具有熔点高、硬度大、机械强度高、热膨胀系数低、导热性好、化学性质稳定、绝缘性能好等特点。它在1200℃的工作温度下可以维持强度不降低。氮化硅可用于制作高温轴承、制造无冷却式陶瓷发动机汽车、燃气轮机的燃烧室和机械密封环等,广泛应用于现代高科技领域。 工业上普遍采用高硅与纯氮在较高温度下非氧化气氛中反应制取Si3N4: 3Si+2N2 Si3N4 采用化学气相沉积法也可以得到纯度较高的Si3N4: 3SiCl4 +2N2 +6H2 Si3N4 +12HCl 除Si3N4外,高温结构陶瓷还有SiC,ZrO2,Al2O3等。 ●砷化镓半导体材料 砷化镓(GaAs)是一种多用途的高技术材料。除了硅之外,GaAs已成为最重要的半导体材料。 砷化镓是亮灰色晶体,具有金属光泽,质硬而脆。GaAs的晶体结构与单质硅和金刚石相似。它在常温下比较稳定,不与空气中的氧气和水作用,也不与HCl,H2SO4等反应。 砷化镓是一种本征半导体,其禁带宽度比硅大,工作温度比硅高(50~250)℃,引入惨杂元素的GaAs可用于制作大功率电子元器件。GaAs中电子运动速度快,传递信息块,GaAs可用于制造速度更快、功能更强的计算机。GaAs中的被激发的电子回到基态是以光的形式释放能量,它具有将电能转换为光能的性能,可作为发光二极管的发光组分,也可以制成二极管激光器,用于在光纤光缆中传递红外光。 ●氧化锡气敏材料 气敏陶瓷是一类对气体敏感的陶瓷材料。早在1931年人们就发现Cu2O的电导率随水蒸气吸附而发生改变。现代社会对易燃、易爆、有毒、有害气体的检测、控制、报警提出了越来越高的要求,因此促进了气敏陶瓷的发展。1962年以后,日本、美国等首先对SnO2和ZnO半导体陶瓷气敏元件进行实用性研究,并取得突破性进展。

最新常见建筑材料及特点介绍.

常见建筑材料及特点介绍 引言 从广义上讲,建筑材料是建筑工程中所有材料的总称。不仅包括构成建筑物的材料,而且还包括在建筑施工中应用和消耗的材料。构成建筑物的材料如地面、墙体和屋面使用的混凝土、砂浆、水泥、钢筋、砖、砌块等。在建筑施工中应用和消耗的材料如脚手架、组合钢模板、安全防护网等。通常所指的建筑材料主要是构成建筑物的材料,即狭义的建筑材料。 一、建筑材料是如何分类的 1、建筑材料的分类方法很多,一般按功能分为三大类: 2、结构材料主要指构成建筑物受力构件和结构所用的材料,如梁、板、柱、基础、框架等构件或结构所使用的材料。其主要技术性能要求是具有强度和耐久性。常用的结构材料有混凝土、钢材、石材等。 3、围护材料是用于建筑物围护结构的材料,如墙体、门窗、屋面 等部位使用的材料。常用的围护材料有砖、砌块、板材等。围护材料不仅要求具有一定的强度和耐久性,而且更重要的是应具有良好的绝热性,符合节能要求。 4、功能材料主要是指担负某些建筑功能的非承重用材料,如防水 材料、装饰材料、绝热材料、吸声材料、密封材料等。 5、筑工程中,建筑材料费用一般要占建筑总造价的60%左右,有 的高达75%。 二、建筑材料的发展方向

1传统建筑材料的性能向轻质、高强、多功能的方向发展。例如,大规模生产新型干法水泥,研制出轻质高强的混凝土,新型墙体材料等。 2化学建材将大规模应用于建筑工程中。主要包括建筑塑料、建筑涂料、建筑防水材料、密封材料、绝热材料、隔热材料、隔热材料、 特种陶瓷、建筑胶粘剂等。化学建材具有很多优点,可以部分代替钢材、木材,且具有较好的装饰性。 3从使用单体材料向使用复合材料发展。如研究和使用纤维混凝土、聚合物混凝土、轻质混凝土、高强度合金材料等一系列新型高性能复合材料。 4绿色建筑材料将大量生产和使用。绿色建材又称生态建材、环保建材或健康建材。 三、胶凝材料 1、什么是胶凝材料? 胶凝材料是指经过一系列物理化学变化后,能够产生凝结硬化,将块状材料或颗粒状材料胶结为一个整体的材料。胶凝材料分为无机胶凝材料和有机胶凝材料。无机胶凝材料又分为气硬性(包括石灰、建筑石膏、水玻璃和菱苦土和水硬性(如水泥两种。有机胶凝材料如沥青、树脂等。 2、什么是石灰?它有哪些特点和用途? 1石灰是人类在建筑工程中最早使用的胶凝材料之一,其主要成分为氧化钙,由于具有原材料分布广、生产工艺简单、成本低等特点,在建筑上历来应用广泛。 2石灰的特性有:保水性好;吸湿性强,耐水性差;凝结硬化慢,强度低;硬化后体积收缩较大;放热量大,腐蚀性强。

新型功能材料简介

新型功能材料简介 1.超导体的概念:超导材料是一种没有电阻的材料,既能节约能量,减少电能因电阻而消耗的能量,还能把电流储存起来,供急需时使用。 2.三个临界条件 :临界温度(Tc )、临界电流(Ic )和临界磁场(Hc )是“约束”超导现象的三大临界条件,三者具有明显的相关性,只有当超导体同时处于三个临界条件以内,才具有超导电性。 临界温度是在外部磁场、电流、应力和辐射等条件维持足够低时,电阻突然变为零时的温度;超导电性可以被外加磁场所破坏,对于温度为T(T <Tc)的超导体,当外磁场超过某一数值Hc(T)的时候,超导电性就被破坏了,使它由超导态转变为常导态, 电阻重新恢复。在不加磁场的情况下,超导体中通过足够强的电流也会破坏超导电性,导致破坏超导电性所需要的最小极限电流,也就是超导态允许流动的最大电流,称作临界电流Ic(T)。 迈斯纳效应(指超导体处于外界磁场中,磁力线无法穿透,超导体内的磁通量为零)和零电阻性质是超导态的两个独立的基本属性,衡量一种材料是否具有超导电性必须看是否同时具有零电阻和迈斯纳效应。 3.伦敦第一方程: 式中,m 是电子质量,Js 为超流电流密度,n s 是超导电子密度 由上式可见:在稳态下,超导体中的电流为常值时, ,则E =0。 即,在稳态下,超导体内的电场强度等于零,因此,它说明了超导体的零电阻性质。 4.功能玻璃:功能玻璃是指与传统玻璃结构不同的、有某一方面独特性能的、有专门用途的、或者制造工艺有明显差别的一些新品种“玻璃”。生物玻璃是指能够满足或达到特定生物、生理功能的特种玻璃,主要是由Si 、Na 、Ca 以及P 的氧化物组成。 5.微晶玻璃是指通过玻璃热处理来控制晶体的生长发育而获得的一种多晶材料。它既有玻璃的基本性能,也有陶瓷多晶体的特征。微晶玻璃的微晶化包括以下几个过程:(1)玻璃结构发生微调;(2)晶核的形成;(3)基本晶相的形成及生长; (4)介稳相转变为稳定晶相及残余玻璃。 微晶玻璃结晶过程中的核化与晶化多数属于非均相核化的类型。其基本原理是:加入玻璃配合料中的成核剂,在熔制过程中,均匀地溶解于玻璃熔融体中。当玻璃处在析晶温度区时,成核剂能降低晶核生成所需要克服的势垒,从而核化可以在较低的温度下进行. 6. 光色玻璃:我们把出现可逆的或不可逆的显色、消色现象的物质称为光致变色材料。光色玻璃就是其中的一类光致变色材料。当受紫外线或日光照射时,由于玻璃在可见光区产生光吸收而自动变色;当光照停止时,玻璃能可逆地自动恢复到初始的透明状态。具有这种性质的玻璃称为光致变色玻璃(也称光色玻璃)。 7.陶瓷在人类生活和社会建设中是不可缺少的材料,它和金属材料、高分子材料并列为当代三大固体材料。结构陶瓷是指具有力学和机械性能及部分热学和化学功能的先进陶瓷(现代陶瓷),功能陶瓷是指那些利用电、磁、声、光、热、力等直接效应及其耦合效应所提供的一种或多种性质来实现某种使用功能的先进陶瓷(现代陶瓷)。根据功能陶瓷对外场条件的敏感效应,则可制备热敏、气敏、湿敏、压敏、磁敏和光敏等敏感陶瓷。 8.陶瓷三大原料:长石,黏土,石英. E m e n J t s s 2=??0=??s J t

新型陶瓷材料在汽车中的应用

湖北汽车工业学院 本科生课程论文 论文题目新型陶瓷材料在汽车中的应用及未来发展学生专业班级材料成型及控制工程(汽车产业)T1233-5 学生姓名(学号)朱宝林(2012030526) 指导教师(职称)王天国 完成时间2014-11-5 2014 年11月05 日

目录 前言 (3) 第一章汽车发动机中的陶瓷材料 (4) 1.1 陶瓷汽车发动机 (4) 1.2 活塞顶用陶瓷结构 (5) 1.3 涡轮增压器陶瓷材料 (6) 第二章陶瓷纤维在发动机零件上的应用 (6) 第三章陶瓷材料在发动机其它部件的应用 (7) 第四章新型陶瓷材料未来的发展及在汽车上的应用·7

前言 关于新型陶瓷材料: 新型陶瓷材料在性能上有其独特的优越性。在热和机械性能方面,有耐高温、隔热、高硬度、耐磨耗等;在电性能方面有绝缘性、压电性、半导体性、磁性等;在化学方面有催化、耐腐蚀、吸 性。因此研究开发新型功能陶瓷是材料科学中的一个重要领域。 摘要:随着科学技术飞速发展,现代汽车制造业将更多特种陶瓷、智能陶瓷制品引入,采用到汽车上,并且伴随着更多的新型结构材料的引入,在汽车零部件加工制造技术上也带来了一场新的革命,在此主要介绍一些新型的陶瓷材料在现在及未来的汽车行业的使用情况及以后可能应用的发展前景。 目前应用于汽车上的陶瓷材料主要有:氧化硅陶瓷,碳化硅陶瓷,氮化硅陶瓷,氧化铝陶瓷这几种。 关键词:陶瓷材料、发动机、汽车、应用

第一章汽车发动机中的陶瓷材料 1·1 陶瓷汽车发动机 新型陶瓷是碳化硅和氮化硅等无机非金属烧结而成。与以往使用的氧化铝陶瓷相比,强度是其三倍以上,能耐1000摄氏度以上高温,新材料推进了汽车上新用途的开发。例如:要将柴油机的燃耗费降低30%以上,可以说新型陶瓷是不可缺少的材料。现在汽油机中,燃烧能量中的78%左右是在热能和热传递中损失掉的,柴油机热效率为33%,与汽油机相比已十分优越,然而仍有60%以上的热能量损失掉。因此,为减少这部分损失,用隔热性能好的陶瓷材料围住燃烧室进行隔热,进而用废气涡轮增压器和动力涡轮来回收排气能量,有试验证明,这样可把热效率提高到48%。 同时,由于新型陶瓷的使用,柴油机瞬间快速起动将变得可能。采用新型陶瓷的涡轮增压器,它比当今超耐热合金具有更优越的耐热性,而比重却只有金属涡轮的约三分之一。因此,新型陶瓷涡轮可以补偿金属涡轮动态响应低的缺点。其他正在进行研究的有:采用新型陶瓷的活塞销和活塞环等运动部件。由于重量的减轻,发动机效率可望得到提高。 由于陶瓷材料具有优良的耐热性、耐磨性、隔热性及重量轻优点,故使用陶瓷材料替代金属制备热机部件的技术受到了世界各国的高度重视。目前,发动机的主要零部件,如活塞、气缸盖、气门、排气管、涡轮烟压器、氧传感器及火花塞等都用先进的陶瓷材料来制造,并研制出了无水冷的绝热陶瓷发动机。另外为了防止汽车废气对大气环境的影响,各国都采用了的措施,制订了严格的排放标准,这些都促进了汽车工业用新技术的开发以及新材料的研多,特别是在发动机用先进陶瓷瓷材料方面取大了软大的进展,并在近年来的技术创新中发挥着更重的作用。 陶瓷发动机的优越性为: ·可以提高发动机的工作温度,从而大大提高效率。例如,目前作为发动机制造材料的镍基耐热合金,工作温度在1000℃左右。而采用陶瓷材料,则可以将工作温度提高到1300℃,使发动机效率提高30%左右。 ·工作温度高,可使燃料燃烧充分,所排废气中的有害成分大为降低,这不仅降低了能源消耗,而且减少了环境污染。

展望新型功能材料的未来

展望新型功能材料的未来 化学与化学工程系科学教育杨飞飞44号 摘要:随着社会技术的高度发展,材料,特别复合材料的加工得到很大的进步和发展,新材料因其特殊的属性,在航空航天领域发挥着越来越大的作用,众所周知,现代飞机和卫星的制造材料应具有质量轻、强度高、耐高温、耐腐蚀等特性,先进复合材料的独有性能使它成为制造飞机和卫星的理想材料。阐述了先进复合材料在飞机、航空发动机、卫星、导弹等方面的应用情况及先进复合材料未来的发展趋势。 关键词:新型材料,复合材料,应用发展 材料是人类生活和生产的物质基础,是人类认识自然和改造自然的工具。人类文明曾被划分为旧石器时代、新石器时代、青铜器时代、铁器时代等,由此可见材料的发展对人类社会的影响——没有材料就是没有发展。先进复合材料(Advanced Composites ACM)专指可用于加工主承力结构和次承力结构、其刚度和强度性能相当于或超过铝合金的复合材料。目前主要指有较高强度和模量的硼纤维、碳纤维、芳纶等增强的复合材料随着航空航天技术的不断发展,促进了材料的不断更新,发展和进步,各种新材料不断涌现并得到应用,尤其以先进复合材料的发展和应用最突出,众所周知,由于航空航天飞行器的特殊使用环境,飞行器的制造材料要求非常之高,飞机和卫星制造材料要求质量轻、强度高、耐高温、耐腐蚀,这些苛刻的条件,只有借助新材料技术才能解决。先进复合材料具有质量轻,较高的比强度、比模量、较好的延展性、抗腐蚀、导热、隔热、隔音、减振、耐高(低)温,独特的耐烧蚀性、透电磁波,吸波隐蔽性、材料性能的可设计性、制备的灵活性和易加工性等特点,被大量地应用到航空航天等军事领域中,是制造飞机、火箭、航天飞行器等军事武器的理想材料。 20 世纪以来,物理、化学、力学、生物学等学科的研究和发展推动了对于物质结构、材料的物理化学和力学性能的深入认识和了解。同时,金属学、冶金学、工程陶瓷技术、高分子科学、半导体科学、复合材料科学以及纳米技术等学科的发展促进了各种新型材料的产生,并推进了对于材料的制备、生产工艺、结构、性能及其相互之间关系的研究,为材料的设计、制造、工艺优化和材料功能和性能的合理使用,提供了充分的科学依据。现代材料科学更注重于研究新型复合材料和纳米材料的制备和创新,对于设计具有不同性能要求的材料复合工艺和纳米态材料的凝聚过程,以及各类材料之间的相互渗透和交叉的性能以及综合性能的研究给予了更多的重视。现代材料科学的发展不仅与揭露材料本质及其演化规律的物理化学性质和力学性能有关,而且与使用材料的工程技术学科以及制造加工材料的工程学科有着相互交叉性的密切关系。在此基础上,“材料科学与工程”逐步形成学科,并发展成为一门独立的一级学科。作为一级学科的“材料科学与工程”下分三个二级学科:材料物理与化学、材料学、材料加工工程。 材料的未来发展 新材料的诞生会带动相关产业和技术的迅速发展,甚至会催生新的产业和技术领域。材料科学现已发展成为一门跨学科的综合性学科。根据我国当前及未来发展的实际情况,新材料领域值得注意的新发展方向主要有半导体材料、结构材料、有机/高分子材料、敏感与传感转换材料、纳米材料、生物材料及复合材料。 1.半导体材料

新型功能材料

******************* 综合测评 ****************** * 兰州理工大学学生作业 2014年春季学期 专业班级:工业设计(1)班 课程名称:新型功能材料 学生姓名:郭建兵 学生学号:08020120 指导教师:李翠霞

浅谈新型功能材料的性能与应用 随着时代的进步,科技的发展,我国在各个方面都进入了高科技和新型功能材料的领域。比如说在功能材料应用这方面,我国已经引进并且也自己研发了许多种新型功能材料。有了这些新型功能材料,使得我们的工业生产和日常生活都得到了实惠,也为我们提供了诸多方便。 下面我就浅谈我所了解的几种新型功能材料。首先我想说的是玻璃纤维,玻璃纤维是一种性能优异的无机非金属材料。英文原名为:glassfiber或fiberglass。成分为二氧化硅、氧化铝、氧化钙、氧化硼、氧化镁、氧化钠等。它是以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺。最后形成各类产品,玻璃纤维单丝的直径从几个微米到二十几米个微米,相当于一 根头发丝的1/20-1/5,每束纤维原丝都有数百根甚至上千根单丝组成,通常 作为复材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等,广泛应用于国民经济各个领域。玻璃一般人之观念为质硬易碎物体,并不适于作为结构 用材,但如其抽成丝后,则其强度大为增加且具有柔软性,故配合树脂赋予形状以后终于可以成为优良之结构用材。玻璃纤维随其直径变小其强度增高。作为补强材玻璃纤维具有以下之特点,这些特点使玻璃纤维之使用远较其他种类纤维来得广泛。 其特性列举如下:(1)拉伸强度高,伸长小(3%)。(2)弹性系数高,刚性佳。 (3)弹性限度内伸长量大且拉伸强度高,故吸收冲击能量大。(4)为无机纤维,具不燃性,耐化学性佳。(5)吸水性小。(6)尺度安定性,耐热性均佳。(7)加工 性佳,可作成股、束、毡、织布等不同形态之产品。(8)透明可透过光线。(9) 与树脂接着性良好之表面处理剂之开发完成。(10)价格便宜。也就是因为其有这样的特性,所以才使其发展速度相对于其它功能材料遥遥领先。 玻璃纤维依其性能的特点在很多领域也都有着实际性的应用:1、在建筑业上,玻璃纤维已广泛使用在冷却塔、储水塔以及卫生间的浴盆、浴缸、门窗,安全帽和通风设施等。另外由于玻璃纤维不易沾污、隔热和不燃烧,因此它在建筑业上的应用日益广泛。玻璃纤维在基础设施中使用,主要有桥梁、码头、栈桥和临水结构等。沿海和岛上的建筑容易受到海水的腐蚀,这最能发挥玻璃纤维的特长。2、玻璃纤维在航空航天、汽车和火车上也有应用,目前波音747飞机使用

相关主题
文本预览
相关文档 最新文档